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The present work reports first-principles DFT+U calculations of uranium self-diffusion in uranium
dioxide (UO2), with a focus on comparing calculated activation energies to those determined from
experiments. To calculate activation energies, we initially formulate a point defect model for UO2±x

that is valid for small deviations from stoichiometry. We investigate five migration mechanisms and
calculate the corresponding migration barriers using both the LDA+U and GGA+U approximations.
These energy barriers are calculated using the occupation matrix control scheme that allows one to
avoid the metastable states that exist in the DFT+U approximation. The lowest migration barrier
is obtained for a vacancy mechanism along the 〈110〉 direction. This mechanism involves significant
contribution from the oxygen sublattice, with several oxygen atoms being displaced from their
original position. The 〈110〉 vacancy diffusion mechanism is predicted to have lower activation energy
than any of the interstitial mechanisms and comparison to experimental data for stoichiometric UO2

also confirms this mechanism.
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I. INTRODUCTION

Uranium dioxide, UO2, is the most widely used nu-
clear fuel worldwide and its atomic transport properties
are relevant to practically all engineering aspects of the
material. During in-reactor operation, the fission of ura-
nium atoms produces a wide variety of fission products
that create point defects as they deposit their energy in
the surrounding material. Since many of the fuel proper-
ties that govern fuel performance are influenced by point
defects, it is of high importance to investigate their ther-
modynamic properties and migration mechanisms.

Activation energies for uranium self-diffusion have
been reported for near stoichiometric and stoichiomet-
ric UO2 single crystals ranging from 4.4 eV to 5.6 eV.1–4

One of our goals here is to use first principles calculations
to provide some physical meaning to these activation en-
ergies. Althoug uranium self-diffusion coefficients have
been determined experimentally,1–5 the migration mech-
anisms remain unknown and discrepancies are observed
even for purportedly stoichiometric compositions, both
in relation to the actual value of the self-diffusion coeffi-
cient and the associated activation energy. An essential
cause of scatter is the enhanced diffusion at the grain
boundaries. Sabioni reports a grain boundary diffusion
coefficient five orders of magnitude greater than the vol-
ume diffusion coefficient between 1773 K and 1973 K in
a reducing atmosphere.6 In addition, it has been shown
in previous work relating to oxygen self-diffusion7,8 that
one of the issues in obtaining a reliable set of data lies in
monitoring the relevant thermodynamic conditions dur-
ing the experiment, such as oxygen partial pressure, tem-
perature and the impurity content of the sample.

First-principles calculations based on the density func-

tional theory (DFT) can be used to analyze the ex-
perimental studies mentioned above. It is well known,
however, that standard approximations to DFT fail to
desribe accurately uranium dioxide because of the strong
correlations among uranium 5f electrons. In order to
entirely capture these correlation effects, one needs to
use approximations beyond standard DFT, such as the
self-interaction correction,9 the hybrid functionals,10–12

or the DFT+U approximation.13–15

The DFT+U method has been widely used to study
the behavior (formation and migration) of uranium and
oxygen point defects in UO2.16–22 Despite this, the de-
scription of UO2 remains challenging. It is now rec-
ognized that the DFT+U method creates a number of
metastable states that make the search for the electronic
ground state difficult and can lead to large errors in calcu-
lations of defect energies if no care is taken to control the
correlated electronic states. To our knowledge, there are
currently three methods to circumvent these difficulties:
the occupation matrix control (OMC) scheme,8,21–26 the
U -ramping method,27 and the quasi-annealing method.28

The OMC scheme was used in the present work. It was
first developed by Jomard et al.23 and Amadon et al.24

then applied to uranium dioxide.8,21,22,25 Compared to
the U -ramping method or the QA approach, the OMC
scheme allows us to more precisely control various valence
states for uranium atoms in defective UO2, such as U3+

and U5+ cations. We have already applied this scheme
in our previous studies,21,22,29 particularly in relation to
oxygen self-diffusion.8 The results have shown that this
method can provide accurate physical properties and de-
fect migration energies and we here extend this work to
defect energies involving the cation sublattice.

Assessing defect formation and migration energy cal-
culations against self-diffusion data requires a rigorous
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point defect model that establishes the point defect con-
centrations as a function of temperature and oxygen po-
tential. In Sec. II, we establish such a point defect model
and specify its range of validity. Analytical expressions
for activation energies are then derived in two limiting
cases when electronic defects are predominant over an-
ion disorder and vice versa. Sec. III describes in detail
all the energies that are required for the calculation of
activation energies. In Sec. IV, we present our first-
principles calculations. The energies corresponding to
the mass balance equations required for the point de-
fect model are evaluated using both neutral and charged
supercell approaches. Also, different uranium defect mi-
gration mechanisms and associated energy barriers are
computed. Finally in Sec. V, we analyze the point defect
model using the formation energies calculated from first
principles and we assess the model predictions against
the experimental data reported in the literature.

II. POINT DEFECT MODEL FOR UO2±x

Experimental methods for direct measurement of for-
mation and migration energies are often complex and
thus difficult to implement. Self-diffusion properties,
however, are directly dependent on these quantities. In
order to correlate self diffusion data with formation and
migration energies, a point defect model is needed which
enables one to relate the various defect concentrations
to prevailing thermodynamic conditions. In this work,
we rely on such a point defect model to compare defect
energies calculated from first principles to uranium self-
diffusion data, as was recently done in the simpler case
of oxygen diffusion.8 The model developed is similar to
others reported in the past30,31 and is based on defect
chemistry using the Kröger and Vink formalism.32 We as-
sume that charged defect concentrations are governed by
a set of simultaneous equations amongst which so-called
mass-action laws are the expression of thermodynamic
equilibrium.

A. Applicability

The model presented in this section is only applicable
to a limited region of the UO2±x phase diagram, typically
x < 2×10−3 (this validity range will be demonstrated in
Sec. V). This is because in the traditional defect chem-
istry approach that we adopt here, defects are assumed
to be far apart, which means both that the configura-
tional entropy is given by the dilute limit approximation
(i.e. low defect concentrations) and that strong defect
interactions that are known to occur in oxide systems
are neglected. Methods have been developed to account
for strong defect interactions, as well as the modifications
to the configurational entropy due to defect clustering.33

These approaches, however, are thought to be neces-
sary for defect concentrations greater than approximately

10−2 mol fraction. Hence, the equations described below
are applicable to low deviations from stoichiometry only.
In addition, the model only accounts for point defects in
the strict sense of the term, i.e. it does not explicitly
describe the formation of defect clusters that readily ap-
pear in UO2 as deviation from stoichiometry increases.34

Finally, it is assumed that all point defects are created
thermally (i.e. intrinsic regime), which limits the appli-
cability of the model to high temperatures, in practice
above ca. 1273 K. Below 1273 K, the regime is known to
be extrinsic with the hole concentration being controlled
by impurities.35

B. Model formulation

Magnetic susceptibility experiments on U4O9 have
shown that this oxide contains a mixture of U4+ and U5+

ions.36 In addition to this, first principles calculations22

have shown that two U5+ ions are more stable than
one U6+ ion upon introduction of an oxygen intersti-
tial. Hence, we follow here the assumption of many other
authors35 that electronic disorder is controlled by the dis-
proportionation of two U4+ (5f2) ions to one U5+ (5f1)
ion and one U3+ (5f3) ion, which may be written as fol-
lows using the Kröger-Vink notation:

2UX
U 
 h· + e

′
, (1)

where UX
U designates a uranium atom on a normal ura-

nium lattice site (U4+) and h· and e
′

designate holes
(U5+) and electrons (U3+) respectively. Oxygen disorder
on the anion sublattice results from the Frenkel equilib-
rium:

OX
O + VX

i 
 O
′′

i + V··
O, (2)

where OX
O is an oxygen atom on a normal oxygen lattice

site and VX
i is a vacant interstitial site. The following

equilibrium equation describes the incorporation of oxy-
gen atoms from the gas phase into the solid:

1

2
O2 + VX

i + 2 UX
U 
 O

′′

i + 2 h·. (3)

Note that in Eq. (3), the two holes (U5+) are not
bound to the oxygen interstitial. Finally, the Schottky
and uranium Frenkel disorder are described as follows:

�
 V
′′′′

U + 2V··
O, (4)

and

UX
U + VX

i 
 U····
i + V

′′′′

U . (5)
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In the dilute limit approximation, the configurational
entropy terms for each of the chemical potentials of the
different defect species are given by the corresponding
site fractions. If ∆Gα designates the Gibbs free energy
of one of the above defect formation equations [electron-
hole pair (α = eh), oxygen Frenkel pair (α = FPO), oxy-
gen interstitial (α = Oi), Schottky defect (α = S) and
uranium Frenkel pair (α = FPU)], then thermodynamic
equilibrium determines relations between activities, i.e.
site fractions. Site fractions are proportional to defect
concentrations and it can be shown that the equilibrium
constants may be expressed as a function of defect con-
centrations normalized to the uranium site concentration.
Equilibrium is therefore expressed as five relationships,
each corresponding to the five chemical equilibria (1) to
(5):

Keh =
[e

′
][h·]

[UX
U]2

= exp

(
−∆Geh

kBT

)
, (6)

KFPO =
[O

′′

i ][V··
O]

[OX
O][VX

i ]
= exp

(
−∆GFPO

kBT

)
, (7)

KOi
=

[O
′′

i ][h·]
2

√
pO2

[UX
U]2[VX

i ]
= exp

(
−∆GOi

kBT

)
, (8)

KS = [V
′′′′

U ][V··
O]2 = 4 exp

(
−∆GS

kBT

)
, (9)

and

KFPU
=

[V
′′′′

U ][U····
i ]

[UX
U][VX

i ]
= exp

(
−∆GFPU

kBT

)
, (10)

where the square brackets represent normalized defect
concentrations and pO2

the equilibrium oxygen partial
pressure. Note that the factor of 4 on the right hand
side of Eq. (9) is due to the fact that defect equilibrium
constants are expressed as a function of concentrations
and not site fractions. There are nine unknowns to this
model and in addition to the five defect equilibrium re-
lationships, three equations express the constraints im-
posed by the crystalline structure and an additional one
guarantees electroneutrality:

[UX
U] + [V

′′′′

U ] = 1, (11)

[OX
O] + [V··

O] = 2, (12)

[O
′′

i ] + [VX
i ] + [U····

i ] = 1, (13)

4 [V
′′′′

U ] + 2 [O
′′

i ] + [e
′
] = 4 [U····

i ] + 2 [V··
O] + [h·]. (14)

A first-order approximation of deviation from stoi-
chiometry x (for small x) may then be expressed from
the defect concentrations that the model provides:

x =
[O

′′

i ]− [V··
O]

1− [V
′′′′
U ] + [U····

i ]
. (15)

C. Analytical expressions for activation energies

Following Kofstad,37 two limiting cases are discussed
and a corresponding analytical expression for the ura-
nium activation energy is provided assuming a vacancy
or interstitial diffusion mechanism. All expressions are
derived under the assumption of proximity to stoichio-
metric composition.

We assume [e
′
] ≈ [h·] (i.e. intrinsic ionisation pre-

dominates) and [UX
U] ≈ [VX

i ] ≈ [OX
O]/2 ≈ 1. Note that

these assumptions will be validated later in Sec. V. In
this case, the system of equations (6) to (14) may be

solved analytically and in particular [V
′′′′

U ] and [U····
i ] are

expressed as follows:

[V
′′′′

U ] =
K2

Oi
KS

K2
ehK

2
FPO

pO2
, (16)

[U····
i ] =

K2
ehK

2
FPO

KFPU

K2
Oi
KS

1

pO2

. (17)

Note that the above assumption ([e
′
] ≈ [h·]) implies

that the Fermi level is located in the middle of the
bandgap. This is important because the position of the
Fermi level has an influence on the charge states of de-
fects in UO2.19,38 Crocombette et al. have shown that
for a Fermi level located in the middle of the bandgap,
the most stable defects are O

′′

i and V
′′′′

U with no local
charge compensation around the defects, which is consis-
tent with our model. As for oxygen vacancies, we used
a +2 charge state in our model (i.e. with two unbound
U3+) even though there are indications that they might
be charged +1 when the Fermi level is located near the
middle of the bandgap.38 However, our calculations in-
dicate that the +2 charge state is favored up to a Fermi
level positions that are higher than the midgap position.
For sake of consistency, we therefore only account for
oxygen vacancies in a +2 charge state.

Now, if diffusion proceeds via simple mechanisms, then
the expression for the uranium self-diffusion coefficient is
given by39:

DU = fVU
[V

′′′′

U ]DVU
+ fUi

[U····
i ]DUi

, (18)
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where fVU
and fUi

are the correlation factors for the va-
cancy and interstitial mechanisms. DVU

and DUi
are

the vacancy and interstitial diffusion coefficients, respec-
tively. The latter may be expressed as:

Dd = D0
d exp

(
− Ed

m

kBT

)
, (19)

where Ed
m (EVU

m and EUi
m ) are the vacancy and interstitial

migration barriers respectively. Combining Eqs. (16)
to (19) yields the corresponding activation energies EVU

a

and EUi
a that can be written as:

EVU
a = 2EOi +ES− 2Eeh− 2EFPO +EpO2

+EVU
m , (20)

EUi
a = −2EOi

−ES+2Eeh+2EFPO
+EFPU

−EpO2
+EUi

m ,
(21)

where Eα are the energies (or strictly speaking en-
thalpies) associated with the Gibbs free energies ∆Gα
of Eqs. (1) through (5).

Note that the term EpO2
that appears in Eqs. (20)

and (21) has been introduced because DU depends on the
oxygen partial pressure via Eqs. (16) and (17). There-
fore, assessing this theoretical approach to the experi-
mental data would in principle require the knowledge of
the oxygen potential at which the experiments were car-
ried out. This information is not available. We know,
however, that the experiments were carried out under re-
ducing atmospheres generally obtained by introducing a
proportion of hydrogen in the carrier gas, which activates
the following equilibrium:

H2O � H2 +
1

2
O2. (22)

As a result, the actual oxygen potential under which
the experiments are carried out has an Arrhenius de-
pendence. We have carried out measurements of oxy-
gen potentials of Ar/5%H2 at different temperatures and
estimated an activation energy of 4.3 eV for the above
equilibrum, which is close to the expected value of 5.1
eV that would be expected if the H2O � H2 + 1

2O2 equi-
librium were buffering the oxygen partial pressure.

Note that if the uranium vacancy concentration is still
predominant with respect to the uranium interstitial con-
centration in the sub-stoichiometric region of the phase
diagram (which is quite possible if EFPU

is high), then
the apparent activation energy (i.e. the activation en-
ergy of an Arrhenius representation of DU) should show
no change of slope, even in the possible case where the
material goes from a slightly hyper- to slightly hypo- sto-
ichiometric composition as the temperature increases.

The other limiting case is when internal disorder pre-
dominates (i.e. [V··

O] ≈ [O
′′

i ]). In this case, it is
straightforward to show that the self-diffusion coefficient

is no longer dependent upon equilibrium partial pressure,
which is in contradiction with experimental results that
show a sharp increase in DU as the deviation from stoi-
chiometry increases. We would therefore expect this sit-
uation not to arise if the theory outlined in this work
were consistent.

III. ENERGIES REQUIRED FOR THE
CALCULATION OF ACTIVATION ENERGIES

Given the point defect model described above, the fol-
lowing energies are required in order to calculate activa-
tion energies for uranium diffusion in UO2±x:

− The formation energies of oxygen interstitials
(EOi), with two unbound U5+ cations.

− The formation energies of oxygen and uranium
Frenkel pairs (EFPO

and EFPU
), Schottky defects

(ES) and electron-hole pairs (Eeh).

− The migration energy of uranium atoms (EIU
m and

EVU
m ).

A. Calculations of defect formation energies and
associated charge compensations

As mentioned in Sec. II, Eq. (3) describes the inser-
tion of an oxygen interstitial in UO2. In this equation,
the two holes (U5+) are not bound to the oxygen inter-
stitial. This means that the formation energy should be
calculated using a supercell in which there is no local
charge compensation around the oxygen interstitial. In
the same way, Eqs. (1), (2), (4) and (5) assume (i) the
charged defects do not interact and (ii) there is no lo-
cal charge compensation. The corresponding formation
energies should therefore also be computed using defec-
tive supercells with no charge compensation around the
defects.

In a standard DFT calculation (i.e. using a neutral
supercell), however, local charge compensations always
occur, i.e. there are always U5+ or U3+ cations created
because of the presence of the defects. For instance, an
oxygen interstitial always captures two electrons from the
surrounding uranium atoms and gets a −2 charge, leav-
ing two U5+ cations as charge compensation. In order
to be entirely consistent with the model described above,
however, it is required to remove the local charge com-
pensations in our calculations. This can be done by using
charged defective supercells instead of neutral ones. By
adding or removing electrons in the supercell, the charge
of the interstitial atom (or vacancy) remains unchanged
but the charge of the whole defect (i.e. extra atom or
atom deficit along with the local charge compensation on
uranium atoms) may be controlled through the following
reactions: U5+ + e− → U4+ and U3+ − e− → U4+. The
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difference between a neutral and a charged supercell cal-
culation therefore lies in the presence (or absence) of the
local charge compensation.

B. Oxygen interstitial formation energy

The accurate determination of the formation energy of
an interstitial oxygen remains challenging, both from the
experimental and theoretical standpoints. In this sec-
tion, we describe the various attempts made at calculat-
ing this value, as well as the difficulties encountered, and
we explain why the values obtained from first-principles
should be considered more reliable than the current ex-
perimental ones. We perform a careful comparison of our
work with all previous DFT based studies and we infer
an approximate value for this formation energy.

1. Determination from experimental measurements

The (effective) formation energy of oxygen interstitials
can be calculated from experimental measurements of the
oxygen potential as a function of temperature at fixed
UO2+x composition. The oxygen potential is given by:

∆GO2
= RT ln pO2

= ∆HO2
− T∆SO2

, (23)

where ∆HO2
/2 corresponds to the (effective) intersti-

tial formation energy in Eq. (3) calculated from DFT.
∆GO2

has been measured by several investigators40–48

and the results have been analyzed in thermodynamic
assessments and reviews of the U-O system.46,49–51 For
example, based on experimental data from Markin and
Bones,41 Labroche et al. calculated ∆HO2

/2 to range
from −1.4 eV to −1.5 eV between UO2.01 and UO2.082.51

Similarly, Aronson and Belle provided estimates between
−1.3 (x = 2.013) and −1.6 (x = 2.203) eV, which is also
very close to the oxygen potentials predicted by the as-
sessed CALPHAD thermodynamic model for the same
concentration regime.50 It should be noted that in this
composition range, stoichiometric variations are domi-
nated by clustering phenomena (hence the use of the term
effective). Similarly, the lowering of the formation en-
ergy as function of increasing non-stoichiometry (x) fol-
lows from increased clustering. There are experimental
measurements of ∆GO2

as the stoichiometry approaches
stoichiometric UO2 and the corresponding ∆HO2

values
rapidly reaches more negative values,52 however this is
not related to lowering of the interstitial formation energy
but rather indicates the onset of oxygen vacancies and it
is thus related to the transition from UO2+x to UO2−x
defect chemistry. Consequently, it is difficult to derive ac-
curate estimates of the interstitial formation energy from
measurements of the oxygen chemical potentials. The
formation energy of −1.3 eV measured at x = 2.013 rep-
resents a lower limit for the interstitial formation energy

relevant for the present analysis, but it cannot necessar-
ily be used as an accurate estimate of the reaction in Eq.
(3). This leads us to put more emphasis on the oxidation
energies derived from DFT.

2. Direct determination from GGA+U calculations

The oxygen interstitial formation energy can be deter-
mined directly from GGA+U calculations by evaluating
the energy required for the following reaction:

1

2
O2 + VX

i + 2 UX
U 
 O

′′

i + 2 h·. (24)

This is done by calculating the total energies of the
UO2 perfect and defective supercells, as well as the to-
tal energy of the O2 molecule. In our previous work, we
have estimated the formation energy to be approximately
zero using GGA+U and occupation matrix control,8 with
holes bound to the oxygen interstitial. In this case, the
corresponding equation using the Kröger-Vink notation
is:

1

2
O2 + VX

i 
 OX
i , (25)

which is not consistent with the model that assumes ran-
domly distributed and unbound U5+ ions [Eq. (3)]. It is
therefore necessary to add to our value the binding en-
ergy of two holes with the oxygen interstitial, which was
evaluated to be 0.4 eV using charged supercell calcula-
tions similar to those applied in Ref. 29. Our oxygen
interstitial formation energy with unbound U5+ is there-
fore 0.4 eV, which is surprisingly high given that UO2 is
known to oxidize easily.

Contrary to what Oxford and Chaka stated,53 the
DFT+U approximation is not likely the cause for such a
high formation energy. It is rather because of the GGA-
PBE functional that fails to accurately describe the O
atom and the O2 molecule, resulting in a calculated O2

dissociation energy that is off by 30%, 20% of which is
due to the PBE functional.54 If we correct our value to ex-
actly reproduce the experimental dissociation energy, the
formation energy becomes −0.5 eV. Note that the magni-
tude of our correction is in good agreement with the cor-
rections derived in studies of other metal oxides53,55–57

and molecules.54 Based on assessment of a large number
of oxidation reactions for transition metal oxides, Wang
et al.56 proposed an empirical correction of −0.7 eV that
is meant to capture errors for the O2 molecule as well
as provide a more accurate description of the filling of O
2p orbitals in oxides. If we use Wang’s correction, our
corrected formation energy becomes −0.3 eV.
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3. Indirect determination using U4O9 compounds

Another way of assessing bounds for the interstitial
formation energy is to compare the formation energy of
U4O9 compounds with the formation energy of single in-
terstitials. By calibrating the calculated data for U4O9

to experimental data for the heat of formation, which is
a rather well-known quantity for this ordered compound,
we are able to estimate a correction that can then be ap-
plied to the formation energy of single interstitials. This
takes care of the reference energy of the O2 molecule as
well as other uncertainties related to filling the O 2p or-
bitals of oxygen interstitials.

One of the difficulties of this approach is that the ex-
perimental structure of U4O9 is very complex and beyond
the reach of current DFT calculations. However, recent
advances in alternative structure models for this com-
pound based on the ordering patterns proposed by An-
dersson et al.58 enable us to determine the U4O9 forma-
tion energy from DFT with reasonable accuracy.59 Using
the LDA+U approximation, we calculated the formation
energy of U4O9 to be −1.4 eV. By comparing our cal-
culated value with the experimental value (−1.8 eV)50,
we derive a correction of −0.4 eV. Assuming that this
correction is constant (measured per interstitial oxygen
ion) for all UO2+x compositions, which is reasonable if
the correction is related to the O2 molecule and filling of
the O 2p orbitals, we can apply the same value to the
calculated interstitial formation energy. Using LDA+U ,
the corrected oxygen interstitial formation energy with
unbound U5+ is found to be −0.6 eV after applying the
previously derived correction term.

4. Assessment of Oi formation energy

Table I presents a summary of all the DFT based val-
ues for the oxygen interstitial formation energy that were
discussed in this section.

Direct Wang et al. U4O9

GGA+U Ref. 56 LDA+U
GGA+U −0.5 −0.3
LDA+U59 −0.6

TABLE I. Formation energy (in eV) of the oxygen intersti-
tial in UO2 with unbound U5+, determined from DFT based
calculations. Three different corrections are applied, derived
from (i) direct GGA+U calculations (ii) LDA+U calculations
using U4O9 compounds and (iii) Wang’s study.56

We see from Table I that all DFT based values con-
verged to an oxygen interstitial formation energy between
−0.3 eV and −0.6 eV, i.e. approximately −0.5 eV, which
is significantly higher (less negative) than the value de-
rived from oxygen potential measurements away from
stoichiometry. Note that for consistency, we did not ap-
ply the GGA+U corrections to the LDA+U values, and

vice versa. Although a few uncertainties remain, this
value probably represents the most accurate estimate of
the interstitial formation energy to date. For complete-
ness, we will perform our analysis using four different
formation energies ranging from 0 to −1.5 eV (see Table
V), thus covering the range of possible values obtained
from theory and experiments.

C. Frenkel pair, Schottky defect and electron-hole
pair formation energies

DFT values of Frenkel pair (uranium or oxygen) and
Schottky defect formation energies are more accurate
than the oxygen interstitial one because they do not in-
volve any reference state. From the model described in
Sec. II, it is seen that the formation energies required
are those of isolated Frenkel pairs and Schottky defects,
i.e. those with the corresponding defects created in two
separate supercells in order to remove the interactions
between them. Associated formation energies have been
calculated many times before but only those from Ref.
29 are relevant here: in the latter work, we indeed used
charged supercell calculations in order to remove the cre-
ation of U5+ and U3+ cations, which is consistent with
our model. We will therefore use the formation energies
from Ref. 29 for the oxygen Frenkel pair (3.3 eV), the
uranium Frenkel pair (11.2 eV) and the Schottky defect
(6.0 eV). It should be noted that these energies were ob-
tained using the LDA functional. We will demonstrate
in Sec. IV B, however, that LDA and GGA calculations
yield similar results. As for the formation energy of an
electron-hole pair [given in Eq. (1)], it has been calcu-
lated using charged supercell calculations and estimated
to be approximately 1.7 eV. The corresponding equation
is

2U4+ 
 U3+ + U5+, (26)

where U4+ refers to a perfect 96-atom neutral super-
cell and U3+ (resp. U5+) refers to a perfect 96-atom
charged supercell in which an electron was added (resp.
removed). Note that the electron-hole formation energy
that we calculated is consistent with the value of the band
gap in UO2, which is around 2 eV.

Table II displays a summary of all formation energies
(EF, in eV) needed for the model.

EF (eV)
Oxygen interstitial −1.5 to 0
Oxygen Frenkel pair 3.3
Uranium Frenkel pair 11.2
Schottky defect 6.0
Electron-hole pair 1.7

TABLE II. Summary of all formation energies (EF, in eV)
needed by the point defect model
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The only remaining unknowns in our model are there-
fore the migration energies for uranium in UO2. Sec.
IV is dedicated to their determination using both the
LDA+U and GGA+U approximations in order to assess
the differences between them.

IV. THEORETICAL DETERMINATION OF
MIGRATION ENERGIES

A. Computational details

We only consider the fluorite phase, which is stable
above 30.8 K, since it is the experimentally relevant
phase. It should be stressed that during the calculation
of migration barriers, it is very difficult to maintain the
perfect fluorite structure due to the breaking of symme-
tries that turn some atoms around the defect into the
distorted Jahn-Teller phase of UO2, stable below 30.8 K.
However, we have shown in a previous work8 that this
effect does not significantly affect the calculated migra-
tion barriers. All calculations were carried out using the
vasp package.60–62 The Kohn-Sham wavefunctions were
calculated within the projector augmented-wave (PAW)
formalism63 with the compensation charge n̂ truncated
up to L = 6 (see Ref. 26 for implications of the com-
pensation charge truncation). We used the Liechtenstein
approach of DFT+U with a double-counting correction
in the fully localized limit.14 For all calculations, the U
and J parameters of the DFT+U approximation were set
to 4.50 eV and 0.54 eV respectively, as determined by Ya-
mazaki and Kotani,64,65 based on the analysis of X-ray
photoemission spectra. Migration energies were calcu-
lated using the nudged elastic band (NEB) method,66

using a 96-atom supercell with a collinear 1k AFM order
as an approximation of the real paramagnetic order. Note
that the paramagnetic order is approximated because it
cannot be modeled yet with the DFT+U approximation
due to the prohibitive computational cost of the calcu-
lations. In UO2, the influence on the migration energies
of the 1k AFM order approximation, and of the mag-
netic ordering in general, is currently unknown. In order
to give a rough estimate, we have perfomed calculations
in ferromagnetic UO2 and we found that the migration
energy for the most probable diffusion mechanism was
approximately 0.5 eV higher than that in AFM UO2.
The difference is significant but we expect the 1k AFM
order to be closer to the actual paramagnetic state than
a ferromagnetic state, because the 1k AFM order keeps
a total magnetic moment of zero (consistent with param-
agnetism) though displaying a local ordering of the mag-
netic moments, instead of a completely random one. A
500 eV cutoff energy was used with a 2×2×2 Monkhorst-
Pack k-point mesh. This ensured the convergence of the
cell parameters and of the total energy to less than 10−3

Å and 10 meV/atom, respectively. For the calculation of
fractional occupancies, we used a gaussian smearing with
a smearing width of 0.1 eV. Finally, spin-orbit coupling

(SOC) is neglected in all calculations. Our previous stud-
ies of oxygen point defect formation22 and migration8

have shown, however, that the DFT+U approximation
can still quantitatively describe transport phenomena in
UO2, even with the neglect of SOC. We can therefore ex-
pect this trend to be the same for uranium self-diffusion.

B. Migration energies: Comparison of LDA and
GGA functionals

Five migration mechanisms were considered for ura-
nium self-diffusion:

− Direct interstitial mechanism in 〈110〉 direc-
tion: A uranium atom at an octahedral interstitial
site moves to the nearest octahedral interstitial site,
along the 〈110〉 direction (Fig. 1).

FIG. 1. (Color online). Schematics of the interstitial mecha-
nism in the 〈110〉 direction. Light grey and red spheres repre-
sent uranium and oxygen atoms, respectively. The dark blue
sphere represents the initial interstitial uranium atom.

− Interstitialcy mechanism: A uranium atom at
an octahedral interstitial site first kicks a uranium
atom out of a lattice site, which in turn moves to
the nearest octahedral interstitial site. There are
two interstitialcy mechanisms depending on the di-
rection taken by the kicked atom (Fig. 2).

− Vacancy mechanism in the 〈100〉 direction:
A uranium atom moves in the 〈100〉 direction to
the nearest uranium vacancy (Fig. 3). Note that
this mechanism involves the uranium ion traveling
through an interstitial site.

− Vacancy mechanism in the 〈110〉 direction: A
uranium atom moves in the 〈110〉 direction to the
nearest uranium vacancy (Fig. 4).

− Vacancy mechanism in the 〈110〉 direction
with contribution of oxygen sublattice: A
uranium atom moves in the 〈110〉 direction to the
nearest uranium vacancy. Compared to the previ-
ous mechanism, this mechanism involves a signifi-
cant contribution from displacements of the oxygen
sublattice around the migrating U atom (Fig. 5).29

Table III reports the migration energies calculated for
the mechanisms described above, both in the LDA+U
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FIG. 2. (Color online). Schematics of the two interstitialcy
mechanisms, depending on the direction taken by the kicked
atom: collinear (top) and noncollinear (bottom). Light grey
and red spheres represent uranium and oxygen atoms, respec-
tively. The dark blue sphere represents the initial interstitial
uranium atom.

FIG. 3. (Color online). Schematics of the vacancy mechanism
in the 〈100〉 direction. Light grey and red spheres represent
uranium and oxygen atoms, respectively. The small yellow
spheres represent uranium vacancies.

and GGA+U approximations with the equilibrium vol-
umes of the corresponing defective supercells (≈ 5.45 Å
and≈ 5.53 Å for LDA and GGA, respectively). Note that
we only considered the noncollinear interstitialcy mech-
anism within both LDA+U and GGA+U . The collinear
barrier was calculated within LDA+U to be 3.7 eV. Even
though this barrier is lower than the noncollinear mech-
anism, the conclusions of our work are not affected given

FIG. 4. (Color online). Schematics of the vacancy mechanism
in the 〈110〉 direction. Light grey and red spheres represent
uranium and oxygen atoms, respectively. The small yellow
spheres represent uranium vacancies.

FIG. 5. (Color online). Transition state for the oxygen-
assisted vacancy mechanism (left), compared to the regular
vacancy mechanism along the 〈110〉 direction (right). Light
grey and red spheres represent uranium and oxygen atoms, re-
spectively. The dark blue sphere represents the uranium atom
migrating to the nearest neighbor uranium vacancy along the
〈110〉 direction. In the assisted mechanism, several oxygen
atoms have moved significantly away from their fluorite posi-
tion.

the extremely large activation energies of all interstitial
mechanisms, irrespective of the mechanism considered
(see Sec. V).

Mechanism Migration energy (eV)
LDA+U GGA+U

Direct interstitial 8.8 7.9
Interstitialcy noncollinear 4.7 4.1
Vacancy 〈100〉 7.6 7.2
Vacancy 〈110〉 6.1 5.5
Vacancy 〈110〉 (O displacement) 4.8 3.6

TABLE III. Migration energies (in eV) for the various ura-
nium migration mechanisms considered in the fluorite phase
of UO2 given by the DFT+U approximation.

We see from Table III that for both approximations
the vacancy mechanism in the 〈110〉 direction is found to
have the lowest migration barrier when assisted by the
oxygen sublattice. The calculated migration barriers are
4.8 eV and 3.6 eV in LDA+U and GGA+U , respectively.
The former value is 1 eV higher than the experimental
value reported by Matzke,4 which is as low as ≈ 2.4 eV.
While it is of the same order of magnitude, we would
expect the DFT results to be closer to the experimen-
tal value if the correct mechanism had been considered.
The experimental migration barrier reported by Matzke
for uranium self-diffusion might therefore correspond to
diffusion of defect clusters rather than single uranium
vacancies.29

As mentioned in a previous work,29 LDA+U always
yields higher migration energies than GGA+U . This
could be due to the fact that the LDA equilibrium vol-
ume is smaller than that calculated by GGA, which in
turn has an influence on the migration energies. To as-
sess the influence of the cell volume, we performed LDA
calculations but retained the GGA equilibrium volume.
The results are reported in Table IV and are denoted as
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“LDA+U∗”. We see from Table IV that the LDA+U∗

results are closer to the GGA+U values, indicating that
the calculated migration barriers are almost independent
of the approximation used for the exchange correlation
functional. Therefore, if the GGA+U results reported in
Table III are lower than the LDA+U results, it is mainly
because the equilibrium volumes differ, even though ad-
ditional calculations are required to firmly establish this
connection. We have also compared point defect energies
between LDA+U and GGA+U and, unlike uranium mi-
gration, good agreement is found at the respective equi-
librium volumes. Apparently, the higher equilibrium vol-
ume for GGA+U primarily influences migration barriers
of large species such as uranium ions. This emphasizes
that we can use the LDA point defect formation ener-
gies calculated in Ref. 29 as input data for the model
presented in Sec. II.

Mechanism Migration energy (eV)
LDA+U∗ GGA+U

Direct interstitial 8.1 7.9
Interstitialcy noncollinear 4.3 4.1
Vacancy 〈100〉 7.3 7.2
Vacancy 〈110〉 5.8 5.5
Vacancy 〈110〉 (O displacement) 3.8 3.6

TABLE IV. Migration energies (in eV) for uranium self-
diffusion in the fluorite phase of UO2 given by the LDA+U
approximation with the GGA+U equilibrium volume .

V. DISCUSSION

The model presented in Sec. II has been applied with
the formation energies defined and calculated in Sec. III.
Fig. 6 represents the variations of all point defect con-
centrations as a function of equilibrium oxygen partial
pressure calculated at 1873 K, except [U ····

I ] for which
concentrations are too low. Deviation from stoichiome-
try x [as calculated from Eq. (15)] is also represented.

It can be seen from Fig. 6 that defect formation ener-
gies lead to uranium defect concentrations that are far be-
low both the majority oxygen defect and electronic defect
concentrations over the entire range of oxygen potential
calculated. This is a marked improvement over previous
point defect models38,67,68 which, in combination with
the formation energies calculated in those studies, have
a tendency to predict more stable uranium vacancies in
the hyperstoichiometric region of the phase diagram. It
should be noted that we used the oxygen interstitial for-
mation energy of −0.5 eV, but the diagram is not signifi-
cantly affected if this formation energy ranges from −1.5
eV to 0 eV. The figure also indicates that at compositions
near to stoichiometry (i.e. where the model is thought to
apply theoretically), the electroneutrality equation that

applies is [e
′
] ≈ [h·]. This is also encouraging since, as

pointed out in Sec. II, the relationship [V··
O] ≈ [O

′′

i ] is

FIG. 6. (Color online). Calculated changes as a function of
oxygen potential of various defect concentrations and devia-
tion from stoichiometry x.

inconsistent with the oxygen potential dependence of the
uranium self-diffusion coefficient. In fact [e

′
] ≈ [h·] ap-

plies over a range of oxygen partial pressures, the lower
and upper bounds of which may be defined as follows:

[h·] ≈ 2× [V··
O], (27)

and

[e
′
] ≈ 2× [O

′′

i ]. (28)

The corresponding oxygen partial pressures are given
by:

pmin
O2

=
K2

eh

2K2
Oi

, (29)

and

pmax
O2

=
4KehK

2
FPO

K2
Oi

. (30)

A numerical application of Eqs. (29) and (30) yields
values of oxygen potentials of 2 × 10−22 and 5 × 10−15

respectively and an upper bound value of deviation from
stoichiometry of approximately ±0.002.

We now turn to the calculation of activation energies
using Eqs. (20) and (21). Table V reports the activation
energies calculated using both the LDA+U and LDA+U∗

migration barriers. Since the GGA+U and LDA+U∗

barriers are very close, we did not create a separate en-
try for the GGA+U . As mentioned in Sec. III B, we use a
range of different values for the oxygen interstitial forma-
tion energy (EOi

= −1.5,−1.0,−0.5 and −0.05 eV) given
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the uncertainties associated with this value. Having said
that, based on our earlier analysis we believe −0.5 eV
to be the most representative. Finally, the values in Ta-
ble V correspond to activation energies calculated with
the experimentally measured activation energy for oxy-
gen partial pressure (4.3 eV) while the values in brackets
correspond to those calculated with the value of 5.1 eV
that we would expect if the H2O � H2+ 1

2O2 equilibrium
were buffering the oxygen partial pressure.

We can draw several conclusions from the results of
Table V. First, it is seen that the LDA+U activation en-
ergies are approximately 1 eV higher than the LDA+U∗

values. This is significant and highlights the importance
of volume effects in the migration process. Second, we
notice that our model does not favor low values for the
oxygen interstitial formation energy. For EOi

< −1.00
eV, the resulting activation energies are lower than all
experimental values, especially for LDA+U∗ results. Fi-
nally, interstitial mechanisms may be completely dis-
carded since they yield activation energies for uranium
migration which are all higher than 14 eV.

From this study, the oxygen-assisted uranium vacancy
mechanism emerges as the most likely mechanism for ura-
nium diffusion in near stoichiometric UO2, with an ap-
parent activation energy derived from DFT that is close
to that reported by Sabioni under a reducing atmosphere
(4.4 eV).2 In addition, the theoretical approach may be
used to rationalize the two studies relating to uranium
diffusion in near stoichiometric UO2 reported by Matzke
and Sabioni.2,4 Indeed we see from our study that the
term “stoichiometric” covers deviations from stoichiom-
etry of ±0.002. Although these values are small they
correspond to equilibrium oxygen partial pressure vari-
ations of over six orders of magnitude. Fig. (6) shows
that a change in x from 10−3 to 0 (not measurable using
standard thermo-gravimetric techniques) covers a three
order of magnitude change in the oxygen partial pressure.
Changes in the carrier gas used in different experiments
could lead to such variations in the oxygen potential re-
sulting in small undetectable changes in the oxygen con-
tent of the material. Hence assuming vacancy assisted
uranium diffusion and further assuming that the uranium
vacancy concentration is proportional to the equilibrium
oxygen partial pressure would explain discrepancies ob-
served in both studies. These uncertainties warrant new
uranium self diffusion studies in which oxygen partial
pressure and temperature are monitored carefully.

VI. CONCLUSION

We report DFT+U calculations of uranium self-
diffusion in UO2 and carefully compare these calculated
values to existing experimental data. To make this com-
parison possible, a point defect model based on mass
balance equations involving the most probable defects
was formulated and the corresponding formation ener-
gies were calculated. These calculations show that at sto-

ichimetric composition, electronic defects constitute the
predominant defect population, followed by anion and
finally cation disorder (mainly in the form of uranium
vacancies).

In addition, migration barriers for different mecha-
nisms were calculated and an analytical expression is
derived for the uranium self-diffusion activation energy
assuming a vacancy and an interstitial mechanism. By
comparing the theoretical results to existing data, it is
shown that the oxygen-mediated uranium vacancy mech-
anism is the most probable diffusion mechanism in UO2.
The lowest migration barrier is obtained for the move-
ment of a vacancy along the 〈110〉 direction involving a
substantial concerted distortion of the anion sublattice.

Finally, it is shown that a careful comparison of a the-
oretical approach to experimental self-diffusion data, al-
though promising, suffers to some extent from a lack of
data. These results encourage us to pursue this effort and
warrant a thorough investigation of cation self-diffusion
under controlled oxygen partial pressures.
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EOi (eV)
−1.5 −1.0 −0.5 0.0

LDA+U

Direct interstitial 22.7 (21.9) 21.7 (20.9) 20.7 (19.9) 19.7 (18.9)
Interstitialcy noncollinear 18.6 (17.8) 17.6 (16.8) 16.6 (15.8) 15.6 (14.8)

Vacancy 〈100〉 4.9 (5.7) 5.9 (6.7) 6.9 (7.7) 7.9 (8.7)
Vacancy 〈110〉 3.4 (4.2) 4.4 (5.2) 5.4 (6.2) 6.4 (7.2)
Vacancy 〈110〉 (O displacement) 2.1 (2.9) 3.1 (3.9) 4.1 (4.9) 5.1 (5.9)

LDA+U∗

Direct interstitial 22.0 (21.2) 21.0 (20.2) 20.0 (19.2) 19.0 (18.2)
Interstitialcy noncollinear 18.2 (17.4) 17.2 (16.4) 16.2 (15.4) 15.2 (14.4)

Vacancy 〈100〉 4.6 (5.4) 5.6 (6.4) 6.6 (7.4) 7.6 (8.4)
Vacancy 〈110〉 3.1 (3.9) 4.1 (4.9) 5.1 (5.9) 6.1 (6.9)
Vacancy 〈110〉 (O displacement) 1.1 (1.9) 2.1 (2.9) 3.1 (3.9) 4.1 (4.9)

TABLE V. Calculated activation energies for uranium diffusion in UO2±x (in eV), depending on the uncertainties on EOi

and the mechanism involved for uranium migration. The activation energies in brackets correspond to those obtained with
EpO2

= 5.1 eV while the others correspond to EpO2
= 4.3 eV.
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