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We discuss the importance of the vortex core energy and the realistic boundary conditions to the
Fokker-Plank equation for the calculation of thermally-activated hopping of vortices across narrow
superconducting films. Disregarding these issues in the paper by L.N.Bulaevskii, M. J. Graf and
V.G.Kogan, Phys. Rev. B 85, 014505 (2012), in which an uncertain London vortex core cutoff
was used, can produced large numerical errors and a significant discrepancy between the results of
Refs.1,2 and3. These issues can be essential for the interpretation of experimental data on thin film
photon detectors and other superconducting nanostructures.

PACS numbers: 74.20.De, 74.20.Hi, 74.60.-w

Recently L.N. Bulaevskii, M. J. Graf and V.G. Ko-
gan published two papers on the theoretical description of
experiments on NbN thin film-based photon detectors1,2.
The central part of both works constituted the calcula-
tion of the voltage produced by thermally-activated hop-
ping of vortices across a thin film strip. The authors of
Ref.1,2 used the approach developed in Ref. [3], which, in
turn, was based on the earlier work by Ambegaokar et
al.4 describing the dynamics of a vortex in a film in terms
of the Langevin equation ηẋ+U ′(x) = ζ(t). Here x is the
position of the vortex across the strip (0 < x < w), ζ(t) is
the thermal noise source, and η is the viscous drag coeffi-
cient. The energy U(x) of a vortex in a film of the width
w < Λ = λ2/d and the thickness d in the presence of the
dc current I and the magnetic field H perpendicular to
the film is given by3
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where ǫ = φ2
0/16π

2Λ, ξ1 = 0.34ξ, ξ is the coherence
length, λ is the London penetration depth, φ0 is the
flux quantum, and c is the speed of light. The volt-
age V (T,H, I) caused by uncorrelated jumps of vortices
is calculated using the Fokker-Planck equation for the
probability density f(x, t)4,5:

ḟ = ∂x[U
′(x)f + Tf ′]. (2)

The length ξ1 = 0.34ξ in Eq. (1) of Ref.3 was calculated
using a self-consistent solution of the Ginzburg-Landau
(GL) equations which take into account the energy of the
vortex core6,7. By contrast, the authors of Ref.1,2 took
ξ1 = ξ/2 by imposing an arbitrary London core cutoff and
disregarded the vortex core energy. This model assump-
tion of Ref.1,2 can manifest itself in huge uncertainties in
the thermally-activated vortex hopping rate, as will be
shown below.
The results of Refs.1,2 essentially reproduce those of

Ref.3, however the vortex hopping rate Rv derived in
Ref.3 differs by the factor F = 2ν(ν − 1)w/ξ from that
of Ref.1,2. The authors of Refs.1,2 asserted that, for ν =

ǫ/T = 110 used in Ref.1 to fit the experimental data,
Rv of Ref.3 was overestimated by the factor F = 2ν(ν −
1)w/ξ ≃ 3.5× 1036 because:
1. The factor 2ν in F comes from the factor 2 under

the logarithm in Eq. (1) which, according to Ref.1,2, was
missed in Ref.3.
2. The factor ν−1 in F results from the use of the peri-

odic boundary conditions for Eq. (2) in Ref.3 as opposed
to a ‘realistic’ boundary condition of Ref.1.
3. The factor w/ξ in F results from the vortex inter-

action which, according to Ref.1,2, leads to the statistical
weight of a vortex P ∼ L/w, as opposed to P ∼ L/ξ
used in3, where L is the length of the strip.
In this Comment we show that these statements are

incorrect because they result from model artifacts of
Refs.1,2. Below we address the issues taken into account
in Ref.3 but neglected in Refs.1,2 and discuss their impor-
tance for a more consistent theory of thermally-activated
hoping of vortices in thin films and the interpretation of
experimental data.

A. 1. Core contribution

The authors of Ref.1 apparently overlooked that ξ1 =
0.34ξ in Eq. (1) of Ref.3 absorbs both the factor 2 un-
der the logarithm1,2,7,8 and the vortex core energy dis-
regarded in Ref.1,2. Here Eq. (1) results from U(x) =
ǫ[ln[(2w/πξ) sin(πx/w)] + β] obtained in Ref. 7, where
β = 0.38 accounts for the vortex core energy, so that
ξ1 = 0.34ξ = e−βξ/2 in Eq. (1), unlike ξ1 = ξ/2 used
in1,2. We emphasize that ξ in Eq. (1) used in Ref.3 is a
true coherence length but not an uncertain London cut-
off factor ∼ ξ like in Refs.1,2. The value β = 0.38 was
extracted by comparing the lower critical field Hc1 =
(φ0/4πλ

2)[ln(λ/ξ) + 0.497] calculated from the GL the-
ory6 with the London result Hc1 = (φ0/4πλ

2)[K0(ξ/λ)+
β], where β is the core contribution. Here the core en-
ergy results from the spatial variation of the order pa-
rameter not accounted for by the London cutoff, and
K0(ξ/λ) ≈ ln(2λ/ξ) − 0.577 for λ ≫ ξ. Matching these
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formulas for Hc1 yields β = 0.497 + 0.577− ln 2 = 0.38.
In the limit of κ = λ/ξ ≫ 1, the core line energy is inde-
pendent of the sample geometry so β ≈ 0.38 is the same
both in bulk samples and films with w ≫ ξ, except for
vortices spaced by x ∼ ξ from the film edge.
The incorporation of the vortex core energy in U(x) of

Ref.3 eliminates the uncertainty of the London core cut-
off and assures that the activation barrier Um coincides
with the exact numerical GL result for the vortex self-
energy. Indeed, Eq. (1) with β = 0.38 used in Ref.3 was
fully confirmed by recent numerical simulations of the
GL equations describing vortices in thin film strips for
J < 0.6Jd where Jd is the GL depairing current density.
These calculations gave β = 0.37, 0.38, 0.38, and 0.38 for
strips of widths w/ξ = 7, 10, 15, and 30, respectively. By
contrast, U(x) and particularly the vortex hopping rate
of Ref.1 are very sensitive to the arbitrary core cutoff
which was a-priori chosen at r = ξ.
Taking β into account significantly decreases Rv(β) ≃

R̃ve
−βǫ/T as compared to R̃v calculated without the core

contribution, while the variation of the core energy at
the film edge affects the pre-exponential factor in Rv, as
will be discussed below. The core contribution β = 0.38
is no less important than the London numerical correc-
tion ln(2/π) = −0.45 in U(x), so taking β into account
is essential when comparing the model of Ref.1,2 with
experiment. Indeed, neglecting the vortex core energy
in Ref.1 overestimates Rv by ∼ exp(βǫ/T ) ∼ 1018 for
ν = ǫ/T = 110. In turn, changing the core cutoff

from ξ to
√
2ξ (which would be more consistent with

the GL theory) in the model of Ref.1 increases Rv by
2ν/2 ≃ 3.6× 1016. This shows that the London model of
Refs.1,2 is hardly adequate for the calculation of the vor-
tex activation energy and the more consistent GL theory
should be used to calculate the parameters of U(x) in
Eq. (1)3. The importance of the vortex core contribu-
tion in the vortex-related dynamic phenomena has been
extensively discussed in the literature (see, for example,
the recent work10 on the effect of the vortex core energy
on the Berezinskii-Kosterlitz-Thouless transition).

B. 2. Boundary condition

Here we show that the extra factor ∼ ν−1 in Rv of
Ref.1 does not come from the different boundary condi-
tions used in Refs.1 and3, but rather from artifacts of the
model of Ref.1. The vortex crossing rate was obtained in
Ref.1 from the standard formula for a particle hopping
between two potential wells5:

R−1
v = D

∫ x1

0

e−U(x)/Tdx

∫ w

x0

eU(x)/Tdx, (3)

where D = T/η, x0 ∼ ξ, and x1 is a length smaller than
xm at which U(x) is maximum.
The authors of Ref.1 assumed a model form of

UBGK(x) in Eq. (3): UBGK = U(x) where U(x) is given

by Eq. (1) with ξ1 = ξ/2 for x > x0 ∼ ξ, UBGK(x) = 0
for 0 < x < x0, and UBGK(x) = ∞ at x = 0. The in-
finite repulsive barrier at the film edge was introduced
artificially to trap vortices in the film by imposing the
boundary condition of zero probability current S = ẋf
at x = 0 for Eq. (2). Vortex hopping in this model oc-
curs as a ‘pre vortex’1 is somehow placed in the film past
this barrier, but it is unclear how this model can describe
penetration of vortices in the film.
The postulated form of UBGK(x) = 0 at 0 < x .

ξ significantly overestimates the first integral Z =
∫ x1

0 exp[−U(x)/T ]dx in Eq. (3). To see how it happens, it
is instructive to juxtapose UBGK(x) with U(x) obtained
by numerical simulations of vortices using the GL equa-
tions, which take into account the vortex core energy and
its change near the edge. These calculations have shown
that the energy of a vortex, U(x) = (b+ax/ξ)ǫ, increases
linearly with the distance x of the core phase singularity
from the film edge up to x ∼ ξ11,12. This gives rise to a
constant force aǫ/ξ caused by a “string” of the suppressed
order parameter between the core and the surface, where
a ∼ 0.1 − 0.3 and the constant b ∼ 0.05 − 0.1 accounts
for the fact that U(x) > 0 even at x → 0 due to lo-
cal superconductivity suppression around a vortex core
as it emerges from the film edge11. These features are
essential for the evaluation of Rv if U(x) > T at x < ξ.
Substituting U(x) = (b + ax/ξ)ǫ in Z =

∫ x1

0 exp[−U(x)/T ]dx yields Z = ξe−bν/aν for e−aν ≪ 1.

As follows from Eqs. (1) and (3), the factor e−bν can be
combined with eβν from the second integral in Eq. (3),
so that the effect of the vortex core on the hopping rate
Rv ≃ R̃v exp[(b− β)ν] is determined by the difference of
core energies in the bulk and at the film edge. Here both
a and b appear to be dependent of current11, indicating
that the London notion of the rigid vortex core becomes
hardly adequate at x ∼ ξ.
The calculation of Z ∼

∫

∞

ξ1
(ξ1/x)

νdx ≃ ξ1/ν in Ref.3

is qualitatively consistent with the GL result. Here the
cutoff ∼ ξ1 where the London theory becomes invalid was
used, and the upper limit can be extended to infinity
if e−aν ≪ 1 and I ≪ Id, where Id = cφ0/16π

2Λξ is
of the order of the depairing current. By contrast, the
potential, UBGK(x) = 0 at 0 < x < x0, yields Z = x0 ∼
ξ1, which overestimates Z by the factor ∼ ν ≫ 1 as
compared to both the GL results and Ref. 3. Treating a
vortex like a particle in the London model combined with
the Fokker-Plank equation does bring uncertain factors
∼ 1 in Z coming from the edge effects discussed above.
Yet the simplified model of Ref.1 does not capture the
qualitative behavior of Z ∼ ξ/ν, which follows from the
more consistent GL theory and the approach of Ref.3

(also adopted in Ref.2). A more realistic model of the
vortex core penetration would require solving the time-
dependent GL equations13.
The above consideration shows that the claim of Ref.1

that the extra factor ∼ ν in R−1
v comes from the ‘realis-

tic’ boundary conditions as opposed to the periodic U(x)
of Ref.3 is misleading. In fact, the solution of Eq. (2)
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adopted in Ref.3 is only defined inside the film 0 < x < w
and does not require any unphysical barriers at the film
edges. Here the use of periodic U(x) in Eq. (2) is a stan-
dard method of satisfying the boundary conditions of a
fixed probability flux S of vortices entering and exiting
the film, which is equivalent to the method of images for
solving the Laplace or diffusion equations. For example,
Eq. (1) can be obtained by either finding a proper analyti-
cal function or summing up potentials of an infinite chain
of vortex-antivortex images outside the film. Moreover, if
only the forward jumps of vortices are taken into account
in the limit of e−ν ≪ 1 considered in Ref.1, Eq. (3) re-
duces to Eq. (7) of Ref.3. This is not surprising because
the exponentially small probability current S is mostly
determined here by narrow vicinities of neighboring min-
imum and maximum of U(x), so the boundary condition
of fixed S3 appears to be very close to the boundary con-
dition S = 0 of Ref.1.

C. 3. Correlation effects

Finally we comment on the statement of Ref.2 that the
statistical weight of a single vortex penetrating through
the film edge should be P ∼ L/w, instead of P ∼ L/ξ
used in3. It is noteworthy that the models of Refs.1–3 only
hold in the limit of exponentially low density of vortices,
thus P should coincide with its value in the thermody-
namic limit. The assumption of P ∼ L/w is therefore
inconsistent with the thermodynamics of vortices in thin
films4,14 used to obtain P ∼ L/ξ in Ref.3. Here P ∼ L/ξ
is the 1D analog of the statistical weight P = C(L/ξ)2

of a single vortex in the film of area L2 where C ∼ 1 de-
pends on the distribution of the order parameter in the
vortex core14.
The assumption P ∼ L/w2 was based on the fact that

two vortices in the middle of the strip strongly repel
each other if they are separated by distances smaller than
the interaction radius w/π. However, uncorrelated hop-
ping of vortices described by Eq. (2) implies that they
enter the film at random times and are separated by
distances larger than w at any given moment. Taking
vortex correlations into account requires solving coupled
equations for the higher order correlation functions which
cannot be described by Eq. (2). Basically, the authors
of Ref.2 selected rare events when two vortices enter the
film nearly simultaneously and ascribed their statistical
weight P ∼ L/w to all vortex jumps. However, repul-
sion of vortices suppresses their simultaneous entering the
film, forcing them to go one by one so that a vortex can
enter at any of L/ξ edge sites after the preceding vortex
in the area ∼ w has already crossed the film. Such un-
correlated jumps3 have a much higher probability than
the correlated jumps assumed in Refs.1,2. In addition,
the interaction radius of vortices at the film edge (x ∼ ξ)
is much smaller than w because currents of two vortices
spaced by the distance s along the edge are nearly extin-
guished by their antivortex images, resulting in the dipole

interaction U(ξ, s) ∼ ǫ(ξ/s)2 which does not extend well
beyond s > ξ.
In conclusion, we show the importance of the vortex

core energy, the realistic behavior of U(x) at the film
edge, and the physical boundary conditions to Eq. (2)
for the calculation of thermally-activated hopping of vor-
tices across narrow films. Disregarding these issues in
Refs.1,2 has produced large numerical errors and a sig-
nificant discrepancy between the results of Refs.1,2 and3.
This can also be essential for the interpretation of exper-
imental data on thin film photon detectors.
This work was supported by the US Department of En-
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