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Through the study of concrete models we establish a strong tie between topological superconduc-
tivity and ferromagnetic spin correlations. Our result can be used as as a guideline for the search of
topological superconductors whose pairing symmetry is invariant under time reversal. The results
are obtained by the functional renormalization group method.
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I. INTRODUCTION

Topological insulators and superconductors have be-
come a focus of interest in condensed matter physics.1,2

These states are characterized by symmetry protected
gapless boundary excitations. The existence of these ex-
citations reflects the fact that it is impossible to smoothly
connect a topological insulator/superconductor with its
non-topological counterpart without crossing a quantum
phase transition. Under the assumption of no electron-
electron interaction, topological superconductors and in-
sulators have been classified into ten symmetry classes3,4.
In each spatial dimension precisely five of these classes
have topological representatives. Examples of topological
insulators include the time reversal symmetry breaking
(T-breaking) integer quantum Hall insulator5, and the
time reversal invariant (T-invariant) topological insula-
tors in two6 and three7 dimensions. Examples of topo-
logical superfluid/superconductor include the T-breaking
3He-A8 and Sr2RuO4

9, and the T-invariant 3He-B8).

In this fast growing field discovering new topological
materials is clearly very important. While many topo-
logical insulators have been predicted and experimen-
tally confirmed1,2,7, there is no conclusive evidence that
topological superconductivity with time reversal invari-
ant pairing symmetry is realized in any material. The
recently discovered CuxBi2Se3

10–12 is an intriguing but
not yet confirmed candidate. This makes the theoret-
ical study of physical conditions that favor T-invariant
topological superconductivity a pressing task.

Predicting topological superconductors is much harder
than predicting topological insulators. This is because
knowing the desired Bogoliubov de Gennes (BdG) band
structure13 only meets half of the challenge. The other
half requires the knowledge the microscopic interactions
which favor the desired BdG band structure as the
mean-field theory. Leaving topology aside, it is hard
enough to predict superconductivity itself. This is be-
cause the energy scale involved in Cooper pairing is usu-
ally much smaller than the characteristic energies (e.g.,
the bandwidth) of the normal state. However in the
last five years various types of renormalization group
methods have been used to compute the effective inter-
action responsible for the Cooper pairing in iron-based

superconductors.14,15 In this paper we apply a similar
method to study topological superconductivity.

In the literature there are many interesting proposals
for inducing topological superconductivity via the prox-
imity effect.16–19 (A notable exception is the intriguing
proposal of Ref.12.) In these proposals, pairing is ar-
tificially induced by a (non-topological) superconductor.
The reason the induced superconducting state is topolog-
ical is due to the novel spin-orbit coupled electron wave-
functions in the normal state. The focus of this paper is
on materials which will be a topological superconductor
by itself.

There are two classes (DIII and CI according to
Ref.4) of T-invariant topological superconductor in three
dimensions.3,4 They are differentiated by the transforma-
tion properties with respect to time reversal and particle-
hole conjugation. In this paper we will focus on class
DIII, for it has realization in space dimension d = 1, 2 and
3. We ask “under what condition is T-invariant topolog-

ical superconductivity favored?” We shall argue that it is
when the ferromagnetic (to be precise small wavevector
magnetic) fluctuations are strong.

Due to practical limitations (on computation) we shall
limit ourselves to two dimensional, i.e., thin film topolog-
ical superconductors. Such systems inevitably break the
spatial inversion symmetry because of the presence of the
Rashba spin-orbit coupling term near the surface. As a
result the superconductors under consideration are non-

centrosymmetric. For this type of superconductors parity
even and parity odd pairing symmetries can mix. Many
real superconducting materials are non-centrosymmetric.
Examples include CePt3Si

20, CeRhSi3
21, CeIrSi3

22, and
the superconductivity found at the interface of LaAlO3

and SrTiO3
23. For discussions of topological pairing in

centrosymmetric systems see, e.g., Ref.24, and for non-
centrosymmetric systems see, e.g., Ref.25

Using functional renormalization group method, we es-
tablish a tie between topological superconductivity and
ferromagnetic fluctuations. We provide different mecha-
nisms that lead to strong ferromagnetic fluctuations and
thence triplet pairing. Under such a condition, we show
that a small Rashba coupling can induce T-invariant
topological superconductivity. Our result implies that
such a topological pairing is unlikely in superconducting
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FIG. 1: A generic 4-point vertex Γ1234 is rearranged into P -,
C-, and D-channels in (a)-(c), respectively. Here k,q,p are
momenta, µ, ν, σ, λ are spin indices, and m,n denote the form
factors. On each side of the diagrams, the spin (and sublat-
tice) labels are absorbed into the form factor labels wherever
applicable (see the main text).

materials where singlet pairing dominates. The paper
concludes with a guideline and few suggestions for sys-
tems that might realize T-invariant topological supercon-
ductivity.
The rest of this paper is structured as follows. In Sec.II

we describe briefly the functional renormalization group
method for our purpose, leaving the more technical de-
tails in the Appendix. In Sec.III and IV we provide two
concrete models that lead to T-invariant topological su-
perconductivity. In Sec.V we discuss the results and the
relevance to experiments.

II. METHOD

Technically this work requires us to generalize the func-
tional renormalization group (FRG) approach14,15,26,27

to Hamiltonians without spin rotation symmetry. In ad-
dition, because the necessity to study small momentum
transfer particle-hole scatterings we use a Matsubara fre-
quency rather than momentum cutoff. All calculations
are carried out using the singular-mode functional renor-
malization group (SM-FRG) method.27,28 More details
on this method can be found in the Appendix.
Consider a generic fully-antisymmetized irreducible 4-

point vertex function Γ1234 in Ψ†
1Ψ

†
2(−Γ1234)Ψ3Ψ4. Here

1, 2, 3, 4 represent momentum and spin (and sublattice)
indices. Figs.1(a)-(c) are rearrangements of Γ1234 into
the pairing (P), crossing (C) and direct (D) channels
each characterized by a collective momentum q. In each
channel the vertex function is decomposed as Eq. (A1)
in the Appendix. There {fm} is a set of orthonormal
lattice form factors.29 The spin (and sublattice) indices
are contained in the label of the form factors as shown
in Figs.1(a)-(c). The decomposition in Eq. (A1) is exact
if the form factors are complete, but a few of them are
often enough to capture the leading instabilities.27,28

The FRG flow equations for P,C and D as a function
of the cutoff scale Λ are given by Eqs. (A3), (A4) and
(A5) in the Appendix. The effective interaction in the
particle-particle (pp) and particle-hole (ph) channels
are given, respectively, by Vpp = −P/2 and Vph = C.
[Because of antisymmetry D (= −C) does not yield any
new information.] During the FRG flow we monitor

the singular values of the matrix functions Vpp/ph(q).
The most negative singular values, Spp/ph, occur at
special momenta qpp/ph. While qpp is usually zero,
qph can evolve under RG before settling down to fixed
values. The eigen function associated with Spp is used
to construct the gap function. Further details can be
found in the Appendix.

III. TOPOLOGICAL PAIRING IN THE

VICINITY OF VAN HOVE SINGULARITY

We consider spin-1/2 fermions hopping on a square
lattice. The Hamiltonian is given by

H =
∑

k

Ψ†
k[ǫ(k)σ0 + λ~γ(k) · ~σ]Ψk + U

∑

i

ni↑ni↓. (1)

Here Ψ† = (ψ†
↑, ψ

†
↓), ǫ(k) = −2t(cos kx + cos ky) −

4t′ cos kx cos ky−µ is the normal state dispersion (t and t′

are hopping amplitudes and µ is the chemical potential),

i labels the lattice sites, and niσ = ψ†
iσψiσ. In addition,

σ0 is the 2 × 2 identity matrix and ~σ denotes the three
Pauli matrices. In the Rashba spin-orbit coupling we
consider ~γ(k) = (− sinky, sin kx, 0).
Combining the time-reversal and point group (C4v in

the present case) symmetries , it can be shown that

the Cooper pair operator B† =
∑

k Ψ
†
k∆kΨ

†T
−k takes the

form,30 ∆(k) = [φ(k)σ0 + ~d(k) · ~σ]iσ2, where ~d(k) trans-
forms, under the point group, like the product of φ(k)
and ~γ(k). In the cases we have studied, to a good ap-
proximation, we can write

∆(k) = [φ(k)σ0 + χ(k)γ̂(k) · ~σ]iσ2, (2)

where γ̂(k) = ~γ(k)/|~γ(k)|, φ(k) and χ(k) are even func-
tions of k and are real up to a global phase. They trans-
form according to the same irreducible representation of
the point group (for multi-dimensional representations
there are several φ and χ’s). In Landau theory, φ and
χ act as order parameters, and can induce each other in
the presence of the Rashba coupling (λ 6= 0).
It is important to note that the Rashba term splits each

of the otherwise spin-degenerate Fermi surface into two.
The spin split Fermi surfaces are characterized by eigen
values ±1 of γ̂(k)·~σ. In the case where φ(k) and χ(k) are
nodeless, the gap function on the two split Fermi surfaces
will have opposite sign if the magnitudes of χ(k) domi-
nates over φ(k). It turns out that for each pair of Fermi
pockets surrounding a T-invariant k point the above sign
reversal leads to two counter-propagating Majorana edge
modes . Thus topological pairing requires the triplet χ-
component to be dominant. Moreover sign reversal (in
the gap function) on an odd/even pairs of the spin-split
Fermi surfaces (satisfying the condition specified above)
will lead to strong/weak topological superconductivity.
For t′ = −0.475t, µ = −2t and λ = 0.01t, the spin-split

Fermi surfaces are shown in Fig.2(a). They are pointy
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along x̂ and ŷ, reflecting the existence of saddle points
(van Hove singularities) on the Brillouin zone boundary.
These features lead to enhanced ferromagnetic correla-
tions via the Stoner mechanism. However, this mech-
anism over-estimates the spin fluctuations by ignoring
the overlaps to the other channels. The FRG method
we apply here treats all channels on equal footing, and
provides a mechanism of triplet pairing due to enhanced
ferromagnetic fluctuations. The form factors used in our
SM-FRG extend up to second neighbors in real space.29

The RG flow of Spp/ph is shown in Fig.2(b) for U = 2.5t.
The arrows associated with the Sph flow record the qph

evolution from q1 = (π, π) to q2 = 0. By inspecting
the spin structure of the q2-singular mode we find it
corresponds to ferromagnetic fluctuation. The increased
ferromagnetic fluctuation around q2 enhances pairing in
the triplet channel via their mutual overlaps (see Ap-
pendix). The gap function is determined by the singular
mode associated with Spp at the diverging cutoff scale.
The result is a dominant χ-component together with a
much smaller φ-component. The corresponding gap func-
tion on the two Fermi surfaces is shown in Fig.2(a) (gray
scale). A sign change is clearly visible. According to the
established criterion,2 this pairing state is topological.
To verify this, we calculate the BdG energy spectrum us-
ing the obtained pairing form factor in a strip geometry
(open-boundary along x̂). The resulting eigen energies
as a function of q = ky is shown in Fig.2(c). There are
two in-gap counter propagating Majorana edge modes
associated with each edge.
Had we turned off the Rashba coupling, the leading

pairing channel (p-wave) would be two-fold degenerate
(with dominant amplitudes on 1st neighbor bonds). Un-
der this condition even an infinitesimal Rashba coupling
breaks the degeneracy by linearly recombining the p-
waves into ∆(k) = i sinkxσ0 + sin kyσ3, or χ(k) = |~γ(k)|
in Eq. (2), leading to a gap function ±χ(k) on the in-
finitesimally split Fermi surfaces. Interestingly this gap
function has the same symmetry as the two dimensional
version of the 3He B phase. In addition, the Rashba cou-
pling plays a similar role as the parity -invariant spin-
orbit interaction in 3He: they both lift the degeneracy in
the pairing channel.
Fig.2(d) is a phase diagram of the present model,

defined by the upper critical scale in the pp- and ph-
channels. With t′ and µ fixed, we find that for U < 2.77t
the system is in the topological triplet superconducting
state, while the ferromagnetic spin-density-wave (SDW)
state is realized for U > 2.77t.

IV. TOPOLOGICAL PAIRING ENHANCED BY

INTER-POCKET SCATTERING

In this section we show another route to topological
pairing. In this case pairing is triggered by inter-Fermi
surface scattering in a way similar to the pairing in the
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FIG. 2: (Color online) (a) The spin-split Fermi surfaces. The
color scale shows the values of the gap functions. The spin-
splitting is intentionally enlarged for a better view. (b) The
SM-FRG flow of Spp/ph versus cutoff scale Λ. Arrows mark
the evolution of the wave vector in the ph-channel during the
RG flow. (c) The low energy BdG eigen spectrum in a strip
(open along x̂) as a function of the momentum qŷ. (d) The
phase diagram defined by the upper critical scale in the pp-
and ph-channels as a function of U . The vertical dashed line
marks the phase boundary.

pnictides.14,15

Consider a honeycomb lattice. The single particle
Hamiltonian is given by

H0 = −
∑

iδ

Ψ†
i tδΨi+δ − iλ

∑

iδnn

Ψ†
i (ẑ ×

~δnn · ~σ)Ψi+δnn

−µ
∑

i

Ψ†
iΨi. (3)

Here i labels lattice sites, δ runs over the 1st and 2nd
neighbor bonds, with tδ = t, t′. The spin-dependent hop-
ping, the Rashba term, is limited to the nearest neigh-
bor bonds δnn. Choosing a lattice site as the origin, the
point group is C3v. For the SM-FRG calculation, we
choose the form factors up to the 2nd neighbors.29 (Since
the honeycomb lattice has two sites per unit cell the la-
bels of the form factors in Fig.1 include the sublattice
indices.27.) The Fermi surfaces for t′ = 0.357t, λ = 0.02t
and µ = 1.664t are shown in Fig.3(a). There are a few
interesting features of the band structure that are worth
noting (1) The Fermi surfaces encircle either the zone
center (Γ) or the zone corners (K and K′). However only
Γ is T-invariant, hence according to Ref.2 only the Γ-
Fermi surfaces are topologically relevant. (2) The Γ and
K-pockets have close by segments, hence allow small mo-
mentum transfer particle-hole scattering. If such scat-
tering is magnetic, it corresponds to nearly ferromag-
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FIG. 3: (Color online) (a) The Fermi pockets and the as-
sociated gap functions (gray scale, in units of t). The spin-
splitting between each pair of Fermi pockets is enlarged for
clarity. The hexagon is the zone boundary. (b) The SM-FRG
flow of Spp/ph versus the cutoff scale Λ. Arrows mark sharp
changes of qph during the RG flow. (c) A strip (marked by
the thick lines) open along a and periodic along b directions
(a and b are parallel to the primitive lattice vectors). (d)
The low energy BdG eigen spectrum for (c) as a function of
the conserved momentum q along b. (e) The phase diagram
defined by the upper critical scale in the pp- and ph-channels
as a function of U . The vertical dashed line marks the phase
boundary.

netic fluctuations, hence can induce triplet and topolog-
ical pairing.

In the following we show for U = 1.26t this is ex-
actly what happens. During the RG flow shown in
Fig.3(b), the strength of Sph increases and qph evolves
from q1 = (0.667, 1.152)π to q2 = 0, q3 = (0.250, 0.048)π
and finally settles down at q4 = (0.333, 0.192)π. We have
checked that q4 corresponds to the scattering between
near by parallel segments between the Γ and K pockets.
Inspection of the spin structure of the singular mode as-
sociated with q2,3,4 reveals that they corresponds to spin
fluctuations. As such fluctuations are enhanced, they
causes Spp to grow in magnitude and eventually diverge
at a relatively high critical scale. The resulting gap func-
tion is shown in Fig.3(a) in gray scale. It is fully gapped
on all Fermi surfaces, and have opposite sign on each pair
of spin-split pockets. Since the K-pockets are topologi-
cally irrelevant, the sign change between the Γ Fermi sur-
faces implies the pairing is strong-topological. To verify
this we consider a strip schematically shown in Fig.3(c).
It is open along a and periodic along b directions. The
BdG energy spectrum as a function of the momentum

q = k · b̂ is shown in Fig.3(d). There are two branches
of Majorana modes at each edge. Fig.3(e) is a phase
diagram for the present model with fixed µ. The topo-
logical superconducting phase is realized for U < 1.365t,
while ferromagnetic-like SDW instability is realized for

U > 1.365t.

V. DISCUSSION

Thus in both of the above examples we have seen

small momentum magnetic fluctuations

⇒ degenerate triplet pairing, and

degenerate triplet pairing + Rashba coupling

⇒ topological pairing.

We notice that in each case there is a finite range in
the parameter space where topological pairing is realized.
The fact that ferromagnetic fluctuations enhance triplet
pairing has a long history. These include the works on
the pairing of 3He,8,31,32, and the extension of the Kohn-
Luttinger theorem to p-wave pairing for 2D and 3D elec-
tron gas in the dilute limit.33,34 Examples of works on
lattice systems include35–37

It is important to emphasize that if pairing is predom-
inantly singlet a weak Rashba coupling can only induce
a small triplet component, hence is insufficient to induce
the desired sign change in the gap function. Of course
this does not rule out the possibility of topological pair-
ing in the presence of strong spin-orbit interaction.
Many non-centrosymmetric superconductors appear

near antiferromagnetic rather than the ferromagnetic
phase. These include CePt3Si, CeRhSi3, CeIrSi3 and
CeCoGe3. For these materials topological superconduc-
tivity is unlikely. There are also many materials where
superconductivity appears near ferromagnetism. Ex-
amples include Li2Pd3B, Li2Pt3B, URhGe, HoMo6Se8,
ErRh4B4,

38 iron under pressure,39 and the interface
superconductivity of LaAlO3/SrTiO3.

23 In these systems
it should be more likely to find topological pairing.

In conclusion, our functional renormalization group
investigations indicates that T-invariant topological
superconductivity in symmetry class DIII should occur
in systems close to the ferromagnetic (or small wavevec-
tor magnetic) instability. Bandstructure wise, in the
absence of Rashba coupling, these systems should have
an odd number of spin-degenerate Fermi pockets (each
enclosing a T-invariant momentum) in order for strong
topological pairing to occur.
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VI. APPENDIX

Here we provide the technical details of the SM-FRG
method.27,28. We begin by reviewing the definition of
the vertex functions used in the main text. Consider
a generic fully-antisymmetized irreducible 4-point ver-

tex function Γ1234 in Ψ†
1Ψ

†
2(−Γ1234)Ψ3Ψ4. Here 1, 2, 3, 4

represent momentum and spin (and sublattice) indices.
Figs.4(a)-(c) are rearrangements of Γ1234 into the pairing
(P), crossing (C) and direct (D) channels each character-
ized by a collective momentum q. The rest momentum
dependence of the vertex function can be decomposed as,

Γµνσλ
k+q,−k,−p,p+q →

∑

mn

f∗
m(k)Pmn(q)fn(p),

Γµνσλ
k+q,p,k,p+q →

∑

mn

f∗
m(k)Cmn(q)fn(p),

Γµνσλ
k+q,p,p+q,k →

∑

mn

f∗
m(k)Dmn(q)fn(p). (A1)

Here {fm} is a set of orthonormal lattice form factors.
The spin (and sublattice) indices are contained in the
label of the form factors as shown in Figs.4(a)-(c). The
decomposition in Eq. (A1) is exact if the form factors are
complete, but in practice a few of them are often enough
to capture the leading instabilities.27,28 Because of full
antisymmetry, the matrices C and D satisfy D = −C,
and are therefore not independent. In the following D is
used for bookkeeping purpose.
Ignoring the spin and sublattice labels for the moment,

the form factors are given by

fm(k) =
∑

r

fm(r) exp(−ik · r), (A2)

where fm(r) transforms according to an irreducible rep-
resentation of the point group, and r is the bond vec-
tors connecting the two Ψ’s (or two Ψ†’s) in Fig.4(a)
and one Ψ and one Ψ† in Fig.4(b) and (c). In our cal-
culation we choose form factors up to the 2nd neighbor
bonds. We have checked that longer range form factors
does not change the results qualitatively. To be specific,
for square lattice, the real-space form factors we used are
1) f1 = 1 for on-site; 2) f2 = 1/2, f3 = (1/2) cos 2θr,

f4 =
√

1/2 cos θr, and f5 =
√

1/2 sin θr for 1st neigh-
bors, where θr is the azimuthal angle of r; 3) f6 = 1/2,

f7 = (1/2) sin 2θr, f8 =
√

1/2 cos(θr − π/4) and f9 =
√

1/2 sin(θr−π/4) for 2nd neighbors. For hexagonal lat-
tices, the form factors we used are 1) f1 = 1 for on-site;

2) f2 =
√

1/3, f3 =
√

2/3 cos θr and f4 =
√

2/3 sin θr
for 1st neighbors; 3) f5 =

√

1/6, f6 =
√

1/3 cos θr,

f7 =
√

1/3 sin θr, f8 =
√

1/3 cos 2θr, f9 =
√

1/3 sin 2θr,

f10 =
√

1/6 cos 3θr for 2nd neighbors. Notice that the

1st neighbor bonds stem from different sublattices are
negative to each other.

In the case where sublattices are involved, the form fac-
tor label m also includes the sublattice indices associated
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FIG. 4: A generic 4-point vertex Γ1234 is rearranged into P -,
C-, and D-channels in (a)-(c), respectively. Here k,q,p are
momenta, µ, ν, σ, λ denote spins, and m,n denote the form
factors. On each side of the diagrams, the spin (and sublat-
tice) labels are absorbed into the form factor labels wherever
applicable. The one-loop diagrams that contribute to ∂P , ∂C
and ∂D are shown in (d)-(f), respectively.

with the two Ψ’s (or Ψ†’s), or the Ψ and Ψ†. However,
once r is fixed only one of these sublattice indices is in-
dependent. We include the independent sublattice index
in the form factor label, (m, a) → m. Here a labels, e.g.,
the fermion field 1 or 4 in Fig.4(a), 1 or 4 in (b), and 1
or 3 in (c). The sublattice index is an independent label
because point group operations do not mix sublattices
when the origin is chosen to be a lattice site.

The total number of form factors N in a calculation
is determined by the number of real space neighbors,
the number of sublattices and the four spin combinations
(µ, ν) =↑↑, ↑↓, ↓↑, ↓↓ associated with two Ψ (P channel)
or the Ψ and Ψ† (C and D channels). Thus P , C and D
are all N ×N matrix functions of momentum q.

The Feynman diagrams associated with one-loop con-
tributions to the flow of the irreducible 4-point vertex
function are given in Fig.4(d)-(f). They represent the
partial changes ∂P , ∂C and ∂D, respectively. (Notice
that the three diagrams in Fig.4(d)-(f) become the usual
five diagrams in the spin-conserved case.) The internal
Greens functions are convoluted with the form factors
hence in matrix form,

∂P/∂Λ = Pχ′
ppP/2,

∂C/∂Λ = Cχ′
phC,

∂D/∂Λ = −Dχ′
phD (A3)

where we have suppressed the dependence of the collec-
tive momentum q, and
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(χ′
pp)mn =

∂

∂Λ

∫

dωn

2π

∫

d2p

SBZ
fm(p)G(p + q, iωn)G(−p,−iωn)f

∗
n(p)θ(|ωn| − Λ)

= −
1

2π

∫

d2p

SBZ
fm(p)G(p+ q, iΛ)G(−p,−iΛ)f∗

n(p) + (Λ → −Λ),

(χ′
ph)mn =

∂

∂Λ

∫

dωn

2π

∫

d2p

SBZ
fm(p)G(p + q, iωn)G(p, iωn)f

∗
n(p)θ(|ωn| − Λ)

= −
1

2π

∫

d2p

SBZ
fm(p)G(p+ q, iΛ)G(p, iΛ)f∗

n(p) + (Λ → −Λ), (A4)

where G is the free fermion Greens function, SBZ is the
total area of the Brillouine zone. Here Λ > 0 is the in-
frared cutoff of the Matsubara frequency ωn. As in usual
FRG implementation, the self energy correction and fre-
quency dependence of the vertex function are ignored.
Since ∂P , ∂C and ∂D come from independent one-

loop diagrams, they contribute independently to the full
dΓ1234, which needs to be projected onto the three chan-
nels. Therefore the full flow equations are given by, for-
mally,

dP/dΛ = ∂P/∂Λ+ P̂ (∂C/∂Λ+ ∂D/∂Λ),

dC/dΛ = ∂C/∂Λ+ Ĉ(∂P/∂Λ + ∂D/∂Λ),

dD/dΛ = ∂D/∂Λ+ D̂(∂P/∂Λ + ∂C/∂Λ), (A5)

where P̂ , Ĉ and D̂ are the projection operators in the
sense of Eq. (A1). Here we have used the fact that

K̂(∂K) = ∂K for K = P,C,D. In Eq. (A5) the terms
preceded by the projection operators represent the over-
laps of different channels. For two channels to overlap,
the spatial coordinates of all four fermion fields must lie
within the range set of the form factors. In the actual
calculation the projections in Eq.(A5) are preformed in
real space.
The effective interaction in the particle-particle (pp)

and particle-hole (ph) channels are given, respectively,
by Vpp = −P/2 and Vph = C. By singular value de-
composition, we determine the leading instability in each
channel,

V mn
X (qX) =

∑

α

Sα
Xφ

α
X(m)ψα

X(n), (A6)

where X = pp, ph, Sα
X is the singular value of the α-th

singular mode, φαX and ψα
X are the right and left eigen

vectors of VX , respectively. We fix the phase of the eigen
vectors by requiring Re[

∑

m φαX(m)ψα
X(m)] > 0 so that

Sα
X < 0 corresponds to an attractive mode in the X-

channel.
In the pp-channel qpp = 0 corresponds to the zero

center-of-mass momentum Cooper instability. The ma-
trix gap function ∆k in the spin and sublattice basis is
determined as follows. A singular mode φαpp leads to a

pair operator (in the momentum space),

Ψ†
k∆kΨ

†T
−k =

∑

m=(m,a,µ,ν)

ψ†
aµ(k)φ

α
pp(m)fm(k)∗ψ†

amν(−k).

(A7)
Here a is the independent sublattice index, and am is
the second sublattice index determined by a and m as
discussed earlier, and µ, ν are spin indices. The parity
of ∆k under space inversion determines the singlet and
triplet components. The gap function in the band eigen
basis can be determined by the unitary transformation

Ψ̃†
k = Ψ†

kU
†
k, (A8)

where the columns of U †
k are the Bloch states {|k, n〉} (n

is the band index). Under Eq. (A8) the pairing matrix
transforms into

∆̃k = Uk∆kU
T
−k. (A9)

In the weak coupling case (i.e., when the magnitude of
the superconducting gap is much smaller than the band-
width), only the diagonal part of ∆̃ (i.e., intra-Fermi sur-
face pairing) is important. Since Eq. (A9) involves Bloch
states at two different momenta, the phases of the asso-
ciated Bloch states enters ∆̃. Since there is time-reversal
symmetry we fix the Bloch state phase at k and −k by
demanding T̂ |k, n〉 = | − k, n〉 and T̂ 2|k, n〉 = −|k, n〉,

where T̂ = iσ2K is the time-reversal operator.
In the particle-hole channel, we calculate the singular

values associated with Vph(q) at all momenta q. Unlike
the Cooper channel, the most negative singular value
can occur at non-zero momentum qph. The associated
particle-hole operator is given by

Ψ†
k+qΠkΨk =

∑

m=(m,a,µ,ν)

ψ†
aµ(k+ q)φαph(m)f∗

m(k)ψamν(k). (A10)

Usually the on-site form factor dominates in the particle-
hole channel. By inspecting the spin structure of the
on-site form factor one can easily determine whether the
instability is charge or spin like.
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fluid Phases of Helium (Taylor and Francis, USA 1990).
9 For a review and references see A. P Mackenzie, and Y.
Maeno, Rev. Mod. Phys. 75, 657 (2003).

10 Y.S. Hor, A.J. Williams, J.G. Checkelsky et al Phys. Rev.
Lett. 104, 057001 (2010).

11 S. Sasaki, M. Kriener, K. Segawa et al, Phys. Rev. Lett.
107, 217001 (2011).

12 Liang Fu and E. Berg, Phys. Rev. Lett. 105, 097001
(2010).

13 A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504
(2011).

14 F. Wang, H. Zhai, Y. Ran, A. Vishwanath, D.-H. Lee,
Phys. Rev. Lett. 102, 047005 (2009); A. V. Chubukov, D.
V. Efremov, I. Eremin, Phys. Rev. B 78, 134512 (2008);
R. Thomale, C. Platt, J. P. Hu, C. Honerkamp, B. A.
Bernevig, Phys. Rev. B 80, 180505 (2009); H. Zhai, F.
Wang, and D.-H. Lee, Phys. Rev. B 80, 064517 (2009).

15 For a review see Fa Wang and D.-H. Lee, Science 332, 200
(2011).

16 Liang Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98,
106803 (2007); Liang Fu and C. L. Kane, ibid 100, 096407
(2008).

17 M.Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett.
103, 020401 (2009); J. D. Sau, R. M. Lutchyn, S. Tewari,
and S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010).

18 J. Alicea, Phys. Rev. B 81, 125318 (2010).

19 J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbø, and N.
Nagaosa, Phys. Rev. Lett. 104, 067001 (2010); J. Linder,
Y. Tanaka, T. Yokoyama, A. Sudbø, and N. Nagaosa, Phys.
Rev. B 81, 184525 (2010).

20 E. Bauer, G. Hilscher, H. Michor, Ch. Paul, E. W. Scheidt,
A. Gribanov, Yu. Seropegin, H. Nöel, M. Sigrist, and P.
Rogl, Phys. Rev. Lett. 92, 027003 (2004).

21 N. Kimura, K. Ito, K. Saitoh, Y. Umeda, H. Aoki, and T.
Terashima, Phys. Rev. Lett. 95, 247004 (2005).

22 I. Sugitani, Y. Okuda, H. Shishido, T. Yamada, A.
Thamizhavel, E. Yamamoto, T. D. Matsuda, Y. Haga, T.
Takeuchi, R. Settai, and Y. ōnuki, J. Phys. Soc. Jpn 75,
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