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Motivated by the problem of the residual surface resistance of the superconducting radio-frequency
(SRF) cavities, we develop a microscopic theory of the surface impedance of s-wave superconduc-
tors with magnetic impurities. We analytically calculate the current response function and surface
impedance for a sample with spatially uniform distribution of impurities, treating magnetic im-
purities in the framework of the Shiba theory. The obtained general expressions hold in a wide
range of parameter values, such as temperature, frequency, mean free path, and exchange coupling
strength. This generality, on the one hand, allows for direct numerical implementation of our results
to describe experimental systems (SRF cavities, superconducting qubits) under various practically
relevant conditions. On the other hand, explicit analytical expressions can be obtained in a num-
ber of limiting cases, which makes possible further theoretical investigation of certain regimes. As
a feature of key relevance to SRF cavities, we show that in the regime of “gapless superconduc-
tivity” the surface resistance exhibits saturation at zero temperature. Our theory thus explicitly
demonstrates that magnetic impurities, presumably contained in the oxide surface layer of the SRF
cavities, provide a microscopic mechanism for the residual resistance.

PACS numbers:

I. INTRODUCTION

Magnetic impurities in s-wave superconductors have
been a subject of interest for a long time. Shortly after
the development of the Bardeen-Cooper-Schrieffer (BCS)
theory of superconductivity1, Abrikosov and Gor’kov
(AG) demonstrated2 that magnetic impurities intro-
duced into the sample in moderate concentrations lead
to the suppression of superconductivity. If the magnetic
scattering rate 1/τs > 1/τ∗s exceeds the critical value
1/τ∗s ≈ 0.88Tc0, where Tc0 is the transition tempera-
ture of a sample without magnetic impurities (we set
~ = 1 throughout the paper), the superconductivity is
completely suppressed at all temperatures. In contrast,
much stronger nonmagnetic disorder is required to sup-
press superconductivity: the scattering rate 1/τ ∼ εF
must be on the order of the Fermi energy εF ∼ 103Tc0.

According to the AG and subsequent3–10 theories, even
below the critical value, 1/τs < 1/τ∗s , the presence of
magnetic impurities can result in the regime of “gap-
less superconductivity” (GSC), where the superconduct-
ing order parameter ∆ is nonzero, yet the single-particle
density of states (DOS) ν(ε) does not vanish down to the
Fermi level ε = 0, Fig. 1. The GSC regime is predicted
to occur quite generically, although the magnitude of the
“subgap” DOS is parameter-dependent. Even for low
scattering rate 1/τs � 1/τ∗s and weak exchange coupling
J , νFJ � 1 (νF is the normal state DOS at the Fermi
level per one spin projection), optimal fluctuations in the
impurity distribution produce “tails” in the DOS8–10 be-
low the “hard gap” predicted by the AG theory, Fig. 1(a).
The GSC regime becomes much more pronounced with
increasing the exchange coupling and/or scattering rate,
Fig. 1(b), as the Shiba theory4,7 demonstrates. This is
also supported by a recent numerical study11 of a differ-
ent, but mathematically equivalent model.

In the GSC regime, gapless quasiparticle excitations
give rise to dissipation even at zero temperature12. Al-
though this dissipation mechanism (caused either by
the natural presence of magnetic impurities or unin-
tentional/unavoidable contamination of the sample with
them) may be negligible for most practical applications
of superconductors, it could play an important role in
devices that require high quality performance. One ex-
ample of such systems are the superconducting radio-
frequency (SRF) cavities, widely used in particle accel-
erators (see Ref. 13 for a review and references therein;
another notable system is superconducting qubits). The
SRF cavities are characterized by exceptional quality fac-
tors, which are, however, limited to a finite residual value
∼ 1010 at temperatures T � Tc much smaller than the
superconducting transition temperature Tc, where the
contribution from thermally excited quasiparticles van-
ishes.

Despite the high practical relevance of problem, there
is no commonly accepted theoretical explanation of the
origin of the residual Ohmic losses in SRF cavities. Given
the above properties, it was recently argued in Ref. 16
that they could indeed be attributed to the presence
of magnetic impurities in the system. Although the
bulk of Nb samples used for SRF cavities is typically
very clean, a disordered oxide surface layer forms due
to exposure to atmosphere14, Fig. 2. Most importantly,
magnetic moments can develop15 in the oxygen vacan-
cies of the sub-stoichiometric Nb2O5 layer of thickness
∼ 5 − 10nm. Since the typical penetration depth of the
electro-magnetic field is ∼ 45nm, this means that super-
conductivity could be partially suppressed in a consider-
able fraction of the operating region. Scanning tunnel-
ing spectroscopy measurements of the SRF cavity sam-
ples performed in Ref. 16 revealed the surface tunneling
DOS with appreciable “subgap” contribution, consider-
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FIG. 1: Regimes of “gapped” [(a), (c), (e), weaker exchange coupling νFJ and lower scattering rate 1/τs; parameters of the
Shiba theory used: 1/(τs∆) = 0.04, γ = 0.95] and “gapless” [(b), (d), (f), stronger exchange coupling and/or higher scattering
rate; parameters used: 1/(τs∆) = 0.17, γ = 0] superconductivity. (a) and (b): The single-particle density of states (DOS)
ν(ε), obtained from the Shiba theory Eqs. (4.8)-(4.12), and (6.1). The inset in (a) schematically shows (in red) the “tail” of
the DOS produced by optimal fluctuations of impurity distribution – exponentially small nonperturbative effect, not captured
by the AG-Shiba theory and not considered in the present paper. (c) and (d): The function Q̄2(ε, k) [Eq. (5.3)] describing the
dissipative contribution to the current response from a given energy ε, see Secs. V and VI for details. The plots are presented
for k = 0; the inset in (d) shows the full range of Q̄2(ε, k). The function Q̄2(ε, k) is nonzero if and only if ν(ε) is nonzero. (e) and
(f): The temperature dependence of the surface resistance R(ω), obtained from the main Eqs. (3.1), (3.3), (4.1), (4.15), (4.16),
and (4.17) of the paper by numerically calculating the integrals over ε and k. In the gapped regime (e), R(ω) ∝ exp(−∆∗/T ) is
exponential at lower temperatures and vanishes at T = 0. In the gapless regime (f), for moderate “subgap” DOS, the surface
resistance R(ω) is exponential at lower but finite temperatures and saturates to a nonzero value at T = 0. The latter case
reproduces the commonly observed experimental behavior22.

ably greater than one would expect from a high-purity
Nb material. Combined with good fits to the Shiba the-
ory, these data suggested magnetic impurities in the ox-
ide surface layer as an important contributing factor to
the dissipation in SRF cavities.

To support this idea, in the present work, we develop
a microscopic theory of the surface impedance of s-wave
superconductors with magnetic impurities. According to
the surface chemistry of the air-exposed Nb samples14,
Fig. 2, the real SRF cavity material is most appropriately
described by a model of disordered surface layer that con-

tains both magnetic and nonmagnetic impurities, while
the rest of the sample is weakly disordered or pure. In
principle, such model can be studied in the framework of
the quasiclassical approach to superconductivity based
on the Eilenberger equation17,18. However, this involves
solving a self-consistency problem for a system of differ-
ential equations, which, for realistic parameter values, is
challenging even using numerical methods.

Instead, here we consider a simpler model of a super-
conducting sample with uniform in space distribution of
magnetic and nonmagnetic impurities, Fig. 3. The main
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FIG. 2: Typical structure of the surface layer of the air-
exposed Nb samples used for SRF cavities. Localized mag-
netic moments can form15 in oxygen vacancies of the Nb2O5

layer of thickness ∼5-10nm. Typical penetration depth of the
RF electromagnetic field is ∼45nm.

practical advantage is that for this model we are able to
analytically obtain the general expressions for the current
response function and surface impedance. The expres-
sions are valid, within the approximations of the theory,
in a wide range of parameter values and, in the general
case, only the resulting integrals need to be calculated
numerically. This generality allows for the application
of our theory to the description of experimental systems,
such as SRF cavities and superconducting qubits, in var-
ious practically relevant regimes. On the other hand, if
necessary, explicit analytical expressions can be obtained
in numerous limiting cases.

The current response function and surface impedance
of superconductors without magnetic impurities are pro-
vided by the Mattis-Bardeen19 and Abrikosov-Gor’kov-
Khalatnikov20 theories (see also Ref. 21,22), in the pres-
ence and absence of nonmagnetic disorder, respectively.
The surface impedance of superconductors with magnetic
impurities was previously studied in Refs. 23,24 in the
limit νFJ � 1 of weak exchange coupling of the AG
theory. In the present work, we consider the case of
arbitrary exchange coupling strength νFJ , treating the
interactions of conduction electrons with magnetic im-
purities within the framework of the Shiba theory. This

sufficiently widens the range of impurity concentrations,
where the GSC regime (of particular interest to us) with
appreciable DOS at the Fermi level occurs.

As the feature of key relevance to SRF cavities, we
demonstrate that the presence of magnetic impurities
does lead to the saturation of the surface resistance at
zero temperature in the GSC regime.

Our theory employs the linear response formalism and
is therefore valid as long as the superconducting state
is not appreciably suppressed by the magnetic field H.
For type-II superconductors in thermal equilibrium, the
upper bound for this is set by the first critical field Hc1,
above which the system becomes unstable towards cre-
ation of vortices. Real SRF cavities, however, are known
to operate in a metastable vortex-free state that per-
sists up to a higher “superheating” field Hsh > Hc1

25–28.
Thus, our theory should be applicable in the range H .
Hsh.

At higher fields H ∼ Hsh one could, in fact, expect
a cooperative effect of the two dissipation mechanisms:
magnetic disorder could create “hot spot” regions29 of
locally suppressed superconductivity at the surface and
thus trigger proliferation of vortices. Such regime de-
serves a separate study.

The rest of the paper is organized as follows. In Sec. II,
the studied system is presented and the main approxima-
tions are formulated. In Sec. III, the surface impedance
and current response function are introduced. In Sec. IV,
the current response function is calculated. In Sec. V, the
low-frequency expansion is performed. In Sec. VI, the key
result pertaining to the presence of magnetic impurities
– finite residual surface resistance in the GSC regime –
is demonstrated. Concluding remarks are presented in
Sec. VII.

II. MODEL

We assume the superconducting sample occupies the
half-space z > 0 and contains both nonmagnetic and
magnetic impurities, which are distributed uniformly
in space with densities n and ns, respectively, Fig. 3.
Within the framework of the BCS theory1,30, the Hamil-
tonian of the system can be written as

Ĥ =

∫
z>0

d3r
{
ψ̂†σ

[
E
(∣∣p̂− e

cA
∣∣)− εF +

∑
a
uδ(r− ra)

]
ψ̂σ +

∑
b
Jsb(ψ̂

†
σσσσ′ ψ̂σ′)δ(r− rb) + ∆[ψ̂↑ψ̂↓ + ψ̂†↓ψ̂

†
↑]
}

Here, ψ̂σ = ψ̂σ(r) is the electron field operator, σ, σ′ =↑, ↓
are the spin indices, σ = (σx, σy, σz) is the vector of Pauli
matrices, and summation over repeated spin indices is
implied; E(p) is the electron spectrum, which we assume
isotropic in momentum p, p = |p|, p̂ = −i∇; A = A(t, r)

is the vector potential of the electromagnetic field pene-
trating the sample; ∆ is the superconducting order pa-
rameter, which has to be found self-consistently in the
presence of magnetic impurities.
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FIG. 3: Studied system: a half-infinite (z > 0) supercon-
ducting sample with magnetic (green) and nonmagnetic (red)
impurities uniformly distributed over its volume. Relation
between the wave-vector k, electric E and magnetic H fields,
and the vector potential A is shown.

Next, ra and rb are random positions of nonmagnetic
and magnetic impurities, respectively. We use the con-
ventional disorder averaging technique30 (“noncrossing”
approximation) and, to keep calculations simpler, assume
contact interaction potential of impurities (“point disor-
der”). We (i) treat magnetic impurities as classical spins
described by the unit vectors sb and assume them unpo-
larized, (ii) consider arbitrary exchange coupling strength
νFJ , summing the full perturbation series for a single im-
purity. These are the approximations of the Shiba the-
ory4.

Note that the exponentially small subgap contribution
(“tail”) to the DOS arising from the optimal fluctuations
of magnetic disorder8–10 is not captured within the non-
crossing approximation. This nonperturbative effect is
dominant only in the limit of weak exchange coupling
νFJ � 1 and small impurity concentration, such that
1/(τsTc0)� 1. In this work, we concentrate on more sig-
nificant contributions to the DOS that arise at larger im-
purity concentration and/or stronger exchange coupling.

III. SURFACE IMPEDANCE

The complex surface impedance

Z(ω) = R(ω) + iX(ω) (3.1)

(see, e.g., Refs. 22,31) relates the electric E(z)e−iωt and
magnetic H(z)e−iωt fields at frequency ω at the interface
z = 0 between the vacuum and sample as

E(0) =
c

4π
Z(ω)[H(0)× n0], (3.2)

where n0 = (0, 0, 1) is the unit vector normal to the sur-
face pointing into the sample, Fig. 3. The real part R(ω)
of the impedance (3.1) determines the energy flux (aver-
aged over the oscillation period)

W =
1

2

( c

4π

)2

R(ω)|H(0)|2

of the electro-magnetic field per unit area from the vac-
uum into the sample and is referred to as the “surface
resistance”.

The general32 expression for the surface impedance of
a uniformly disordered system reads

Z(ω) = −i
4πω λ(ω)

c2
, λ(ω) =

2

π

∫ +∞

0

dk

k2 + 4πQ(ω, k)/c2
.

(3.3)
Here, Q(ω, k) is the linear current response function of
an infinite sample in Fourier representation, dependent
on the frequency ω and the absolute value k = |k| of the
wave-vector k. In Eq. (3.3), we also introduce the com-
plex penetration depth λ(ω): its real part Reλ(ω) is the
actual penetration depth that determines the decay scale
of the electromagnetic field into the bulk. The Ohmic
dissipation is determined by the imaginary part Q2(ω, k)
of the current response function

Q(ω, k) = Q1(ω, k)− iQ2(ω, k). (3.4)

According to Eq. (3.3), the surface resistance R(ω) is
finite, only if Q2(ω, k) is nonzero.

The response function Q(ω, k) defines the relation

j(ω,k) = −1

c
Q(ω, k)A(ω,k) (3.5)

in the Fourier representation between the electric cur-
rent j(ω,k) and the electro-magnetic field, described by
the vector potential A(ω,k). The trivial tensor struc-
ture of Eq. (3.5) holds for cubic crystal symmetry and,
in particular, for the isotropic electron spectrum E(|p|)
assumed here. It is convenient to work in the gauge of
absent scalar potential ϕ(ω,k) = 0. Additionally, the
vector potential A(ω,k) may be assumed to satisfy the
constraint

A(ω,k)k = 0, (3.6)

which significantly simplifies the calculations. This is
equivalent to the local electroneutrality condition, which
is a very good approximation for superconductors. The
geometric relation between the wave-vector k, vector po-
tential A(ω,k), and electric E(ω,k) = iω

c A(ω,k) and
magnetic H(ω,k) = [ik × A(ω,k)] fields is shown in
Fig. 3.

In the next section, we calculate the current response
function Q(ω, k), which fully determines the surface
impedance (3.3).

IV. CURRENT RESPONSE FUNCTION

According to the general Kubo formalism30,31, the
expression for the linear current response function
[Eq. (3.5)] can be written down as
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Q(ω, k) = Q0
−3i

2

∫ +∞

−∞
dε
[(

tanh
ε+
2T
− tanh

ε−
2T

)
〈jj〉RA(ε, ω, k) + tanh

ε−
2T
〈jj〉RR(ε, ω, k)− tanh

ε+
2T
〈jj〉AA(ε, ω, k)

]
,

(4.1)

〈jj〉ab(ε, ω, k) =

〈
n2
α

∫
dξ

2π

[
Ga(ε+,p+)Gb(ε−,p−) + F a(ε+,p+)F b(ε−,p−)

]〉
n

, a, b = R,A. (4.2)

In Eq. (4.1), we introduced

Q0 = 2(evF )2νF /3, (4.3)

where vF = (dE/dp)p=pF is the Fermi velocity, pF is the
Fermi momentum, E(pF ) = εF , and νF = p2

F /(2π
2vF ).

The quantity Q0 = Q(0, 0)|T=0,clean is the value of the
current response function for a clean system at ω = 0,
k = 0, and T = 0; it can be related to the formal Lon-
don penetration depth λL0 (which can be introduced as a
characterization parameter, regardless whether the Lon-
don limit actually applies) as

1/λ2
L0 = 4πQ0/c

2. (4.4)

The quantities Q0 and λL0 describe the corresponding
clean system and are determined only by the band struc-
ture parameters.

In Eq. (4.2),

GR(ε,p) =
ε̃+ ξ

ε̃2 − ξ2 − ∆̃2
, FR(ε,p) =

∆̃

ε̃2 − ξ2 − ∆̃2
,

(4.5)

GA(ε,p) = [GR(ε,p)]∗, FA(ε,p) = [FR(ε,p)]∗,

are the retarded (R) and advanced (A) “normal” (G) and
“anomalous” (F ) Green’s functions, averaged over disor-
der, where the conventionally introduced2,4 functions ε̃
and ∆̃ are defined below. For point disorder and due to
the property (3.6), the “ladder” contribution30 vanishes,
and the current-current correlation functions (4.2) are
determined by the products of disorder-averaged Green’s
functions.

Further, in Eqs. (4.1), (4.2), and (4.5), ε is the energy
relative to the Fermi level εF , and ε± = ε ± ω/2, p± =
p± k/2. We split the integration over momentum∫

d3p

(2π)3
. . . = νF

〈∫
dξ...

〉
n

, 〈. . .〉n =

∫
|n|=1

dn

4π
. . . ,

in a standard way into the integration over its absolute
value p = |p|, expressed in terms of ξ = E(p) − εF , and
averaging over its direction, expressed in terms of the
unit vector n = p/p.

Equation (4.2) defines the correlation functions of the
current components perpendicular to k, see Eq. (3.6),
and so, nα are the components of n = (nx, ny, nz) per-
pendicular to k: if k = (0, 0, k), as in Fig. 3, then

α = x, y. Since the spectrum is isotropic, the integral
I(nk) =

∫
dξ
2π . . . in Eq. (4.2) depends just on nk = nzk

and angular averaging is reduced to calculating the inte-
gral

〈n2
αI(nk)〉n =

1

4

∫ 1

−1

dnz(1− n2
z)I(nzk). (4.6)

Note that for the integration order as in Eqs. (4.1) and
(4.2) – first over ξ and then over ε – the contribution
to Q(ω, k) arising from the dependence of the current
operator on the vector potential is already compensated
for.

It is convenient to introduce the (retarded) quasiclas-
sical Green’s functions17,18

{g, f}(ε) =
i

π

∫
dξ{GR, FR}(ε,p), (4.7)

which, according to Eq. (4.5), equal

g(ε) =
ε̃√

ε̃2 − ∆̃2
=

v√
v2 − 1

, (4.8)

f(ε) =
∆̃√

ε̃2 − ∆̃2
=

1√
v2 − 1

. (4.9)

Within the Shiba theory4, the function

v = v(ε) ≡ ε̃

∆̃
=
g(ε)

f(ε)
(4.10)

satisfies the equation

v∆ = ε+
1

τs

√
1− v2

γ2 − v2
v. (4.11)

Here,

γ =
1− (πνFJ)2

1 + (πνFJ)2
(4.12)

is the parameter of the Shiba theory characterizing ex-
change coupling strength and τs is the scattering time on
magnetic impurities,

1

τs
=

ns
2πνF

(1− γ2) = 2πνFns
J2

[1 + (πνFJ)2]2
.
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In the weak coupling limit νFJ � 1 of the AG theory2,
γ2 = 1.

We also introduce the function h(ε) as√
ε̃2 − ∆̃2 = h(ε) +

i

2τ
, (4.13)

which is related to g(ε) and f(ε) as

h(ε) =
1

2

(
ε

g(ε)
+

∆

f(ε)

)
. (4.14)

In Eq. (4.13), τ is the scattering time on nonmagnetic
impurities,

1

τ
= 2πνFnu

2.

Solving Eq. (4.11) for v (in the general case – numeri-
cally), one obtains g(ε), f(ε), and h(ε). Integration over
ξ in Eq. (4.2) is straightforward and we obtain

〈jj〉RA(ε, ω, k) =
1

2
[g(ε+)g∗(ε−)+f(ε+)f∗(ε−)+1]〈jj〉RA(ε, ω, k), 〈jj〉RA(ε, ω, k) =

〈
in2
α

h(ε+)− h∗(ε−) + i/τ − vFnk

〉
n

,

(4.15)

〈jj〉RR(ε, ω, k) =
1

2
[1− g(ε+)g(ε−)− f(ε+)f(ε−)]〈jj〉RR(ε, ω, k), 〈jj〉RR(ε, ω, k) =

〈
in2
α

h(ε+) + h(ε−) + i/τ − vFnk

〉
n

,

(4.16)

and 〈jj〉AA(ε, ω, k) = [〈jj〉RR(ε, ω, k)]∗, 〈jj〉AA(ε, ω, k) =
[〈jj〉RR(ε, ω, k)]∗. Angular averaging in Eq. (4.15) and
(4.16) can also be performed explicitly according to
Eq. (4.6),

〈jj〉RR,RA(ε, ω, k) =

=
−i

4vF k

[(
1− l20

(vF k)2

)
ln
l0 − vF k
l0 + vF k

− 2
l0
vF k

]
, (4.17)

where

l0 =

{
h(ε+)− h∗(ε−) + i/τ, for RA,
h(ε+) + h(ε−) + i/τ, for RR.

Equations (4.1), (4.15), (4.16), and (4.17), combined
with Eqs. (4.8)-(4.14) of the Shiba theory, provide the
answer for the current response function Q(ω, k) and
constitute the main result of our work. Within the ap-
proximations of the theory, these equations are valid at
arbitrary values of frequency ω, temperature T , and six
microscopic parameters characterizing the system. Three
standard parameters19,20 describe the clean system:

• the superconducting transition temperature Tc0 or,
equivalently, the superconducting order parameter
∆0 at T = 0 for a system without magnetic impu-
rities;

• the current response Q0 [Eq. (4.3)] or, equivalently,
the formally introduced London penetration depth
λL0 [Eq. (4.4)] for a clean system at T = 0;

• the Fermi velocity vF .

The other three parameters describe disorder:

• the nonmagnetic scattering time τ ;

• the magnetic scattering time τs;

• the exchange coupling strength νFJ or, equiva-
lently, the Shiba parameter γ [Eq. (4.12)].

In the general case, Eqs. (4.1), (4.15), (4.16), and
(4.17) provide the most explicit analytical form of the
current response function Q(ω, k) possible. The func-
tion is given by the integral over energy ε in Eq. (4.1),
where the dependence of the integrand on the absolute
value of momentum k is explicit in Eqs. (4.17), while
the dependence on ε is obtained from the well-known
Shiba equation (4.11), the solution to which determines
the functions g(ε), f(ε), and h(ε).

For arbitrary values of parameters, the solution to the
Shiba equation and the integrations over ε for the current
response Q(ω, k) and over k for the surface impedance
Z(ω) [Eq. (3.3)] need to be carried out numerically. The
generality of the obtained results, however, should make
them applicable to a variety of realistic experimental
regimes.

On the other hand, in a number of limiting cases, the
general formulas can be further simplified and in many
cases explicit analytical expressions for the current re-
sponse function and surface impedance can be obtained.
Analysis of such limiting cases is straightforward and we
do not present it here.

In the weak coupling limit νFJ � 1 of the AG the-
ory2 (γ = 1), the results of Refs. 23,24 are (presumably)
recovered, and in the complete absence of magnetic im-
purities [1/τs = 0, h(ε) =

√
ε2 −∆2, g(ε) = ε/h(ε),

f(ε) = ∆/h(ε)] the Mattis-Bardeen theory19 is repro-
duced.

In the next two sections, we consider the low-frequency
limit ω � ∆, most relevant for practical applications
to SRF cavities, and concentrate on the key property
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pertaining to the presence of magnetic impurities – finite
residual surface resistance in the GSC regime.

V. LOW FREQUENCY EXPANSION

The typical operating frequencies of the SFR cavities
are ω ∼ c/L ∼ 10−2meV� ∆ ∼ 1meV, where L ∼ 10cm

is the typical size of the cavity. Thus for practical applica-
tions to SRF cavities, one may perform the low-frequency
expansion in ω � ∆. Separating the real (“nondissipa-
tive”) and imaginary (“dissipative”) parts [Eq. (3.4)] of
Q(ω, k) [Eq. (4.1)], in the leading order in ω for each, we
obtain,

Q1(k) = Q0
3i

2

∫ +∞

−∞
dε tanh

ε

2T

{
[f(ε)]2〈jj〉RR(ε, 0, k)− [f∗(ε)]2〈jj〉AA(ε, 0, k)

}
, (5.1)

Q2(ω, k) = Q0ω

∫ +∞

−∞
dε

(
−dn0(ε)

dε

)
Q̄2(ε, k), (5.2)

Q̄2(ε, k) =
3

2

{
[f(ε)]2〈jj〉RR(ε, 0, k) + [f∗(ε)]2〈jj〉AA(ε, 0, k) + [1 + |g(ε)|2 + |f(ε)|2]〈jj〉RA(ε, 0, k)

}
. (5.3)

Here, n0(ε) = 1/[exp(ε/T ) + 1] is the Fermi distribution
function.

The real part Q1(k) [Eq. (5.1)] is finite at ω = 0 and
determines the penetration depth λ(ω = 0) [Eq. (3.3)] of
the quasistatic magnetic field (Meissner effect). On the
other hand, the imaginary part Q2(ω, k) ∝ ω [Eqs. (5.2)
and (5.3)], which determines the dissipation, is nonzero
only at finite frequency and is linear in it35 at 1/τs � ω.
Since Q2(ω, k) is smaller than Q1(k) at least in ω/∆, one
may also expand Eq. (3.3) in Q2(ω, k) to obtain

Z(ω) =
32πω

c4

∫ +∞

0

dk
Q2(ω, k)

[k2 + 4πQ1(k)/c2]
2 . (5.4)

Thus the surface resistance R(ω) ∝ ω2 is quadratic in fre-
quency, which is the most common dependence observed
experimentally in SRF cavities13.

VI. RESIDUAL SURFACE RESISTANCE

We now turn to the key finding of our work. The func-
tion Q̄2(ε, k) [Eqs. (5.3)] describes the contribution to
the dissipative part Q2(ω, k) [Eq. (5.2)] of the current re-
sponse function from quasiparticles with a given energy
ε, while the derivative −dn0(ε)/dε constrains their distri-
bution to the range |ε| . T around the Fermi level. As is
well known18,30, the real part g1(ε) of the normal Green’s
function g(ε) = g1(ε) − ig2(ε) [Eq. (4.8)] determines the
DOS

ν(ε) = νF g1(ε). (6.1)

Inspecting Eqs. (5.2) and (5.3), we notice that

Q̄2(ε, k) = 0⇔ ν(ε) = 0. (6.2)

Indeed, if g1(ε) = 0, i.e., g(ε) = −ig2(ε) is imaginary,
then, according to Eqs. (4.8), (4.9), and (4.14), so are

f(ε) = −if2(ε) = −i
√

1 + g2
2(ε) and h(ε). In this case,

〈jj〉RA(ε, 0, k) = 〈jj〉RR(ε, 0, k) = 〈jj〉AA(ε, 0, k) and the
function (5.3) does vanish,

Q̄2(ε, k) =
3

2
〈jj〉RA(ε, 0, k)[−2f2

2 (ε)+1+g2
2(ε)+f2

2 (ε)] = 0.

We do not present a more cumbersome rigorous proof of
the converse here. Instead, the property (6.2) is clearly
illustrated in Figs. 1(a), (b), (c), (d).

Thus, as one would intuitively expect, only the energies
ε at which the DOS ν(ε) is nonzero contribute to dissipa-
tion. At T = 0 the envelope function −dn0(ε)/dε→ δ(ε)
becomes a delta-function and only the excitations at the
Fermi level ε = 0 contribute,

Q2(ω, k)|T=0 = Q0ωQ̄2(ε = 0, k). (6.3)

According to (6.2), as the central result, we obtain that
the system exhibits finite surface resistance (5.4) at T = 0
if and only if the DOS at the Fermi level is nonvanishing,
i.e. the system is in the GSC regime.

R(ω)|T=0 > 0⇔ ν(ε = 0) > 0.

The result is illustrated in Figs. 1. If the spectrum has
a gap ∆̄ (DOS “tails”8–10 are not captured by the AG-
Shiba theory), Figs. 1(a),(c),(e), the surface resistance

obeys an activation law R(ω) ∝ e−∆̄/T at temperatures
T � ∆̄, eventually vanishing at T = 0.

On the other hand, in the gapless regime,
Figs. 1(b),(d),(f), the surface resistance R(ω) satu-
rates to a finite value at T = 0. We note that in
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experiments it is quite typical22 for R(ω) to exhibit
both the saturation at T = 0 and an activation behavior
R(ω) ∝ exp(−∆∗/T ) at finite but low temperatures
T . ∆∗, with ∆∗ close to the value of the superconduct-
ing order parameter ∆ of a clean sample. Such behavior
can be realized, if the finite DOS ν(ε = 0) � νF at the
Fermi level is much smaller than the DOS ν(ε & ∆) ∼ νF
above the “nominal” gap. In the framework of the Shiba
theory, this is possible in the limit of low magnetic
scattering rate 1/τs � ∆ and stronger exchange cou-
pling νFJ ∼ 1, the case shown in Figs. 1(b),(d),(f).
Thus, our microscopic model can reproduce the typical
experimental temperature dependence of the surface
resistance.

VII. CONCLUSION

In conclusion, we developed a microscopic analytical
theory of the surface impedance of s-wave superconduc-
tors with magnetic impurities. The theory can poten-
tially be applied to a variety of superconducting systems
and is of direct relevance to the problem of the residual
surface resistance of SFR cavities. We explicitly demon-
strated that, in the regime of gapless superconductivity,
the system exhibits saturation of the surface resistance at
zero temperature – a routinely observed, but largely un-

explained experimental feature. This substantiates the
recent conjecture16 that magnetic impurities, formed at
the surface of the oxide surface layer, could be the dom-
inant dissipation mechanism limiting the performance of
the SFR cavities. Our theory is valid in the wide range of
parameter values and can be used for direct comparison
with experimental data, as will be presented elsewhere36.
Note added. After a preprint37 of the present work be-

came available, a paper38 came out, in which the same
problem was studied in the diffusive limit (τ∆� 1) and
for weak exchange coupling (πνFJ � 1), with an empha-
sis on the quasiparticle contribution from the vicinity of
the spectral gap. The approach of Ref. 38 based on the
Keldysh formalism and Usadel equation is equivalent to
ours in that limit and most of the analytical results of
Ref. 38 can be obtained as asymptotic expansions of our
general formulas.
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