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We compare efforts to extract self energies and fluctuation spectra of the cuprates using optical and photoe-
mission techniques. The fluctuations have contributions from both the coherent and incoherent parts of the band,
which are spread over the full bare bandwidth of > 2 eV. Many experimental studies concentrate on the co-
herent part of the band and hence miss higher energy fluctuations. Our study establishes the universal presence
of high energy bosonic fluctuations across various spectroscopies as a key ingredient in the high temperature
superconducting cuprates.

PACS numbers: 78.20.-e,78.15.+e,74.25.Gz,71.10.-w

I. INTRODUCTION

A critical issue in unlocking the mechanism of super-
conductivity in the cuprates is determining the spectrum of
bosonic [phononic or electronic] fluctuations that strongly in-
teract with the electrons, and which can drive a variety of in-
stabilities and exotic physics. In particular, what is the energy
scale of the relevant fluctuations: If high-Tc superconductivity
is produced by fluctuations at a low energy scale comparable
to the magnetic resonance mode1, then the bosons responsi-
ble for pairing – the so-called ‘glue’ – could be phonons or
magnetic excitations. If on the other hand higher energy fluc-
tuations (∼ J , U , or charge transfer scales) play an important
role2–5, a novel electronic mechanism would be clearly indi-
cated.

Recently there have been a number of attempts to extract
self energies and fluctuation spectra of the cuprates from
angle- resolved photoemission (ARPES), tunneling, and op-
tical spectra. Most experimental probes find strong coupling
to a low-energy boson6–11 – often with significant isotope
effect12–14. In addition, ARPES finds a high-energy kink
(HEK) suggestive of significant coupling to electronic bosons
in the 300-600 meV range.15–22 These bosons are believed to
be predominantly magnetic,23,24 with charge bosons at higher
energies up to the charge-transfer energy ∼2 eV. In contrast,
recent attempts to extract the fluctuation spectra or the ‘op-
tical glue’25 functions from optical measurements6,7,9–11 find
little evidence for spectral weight above ∼300 meV, suggest-
ing that high energy scales are unimportant in the cuprates.
However, these analyses are generally restricted to energies
below ∼1 eV, thereby precluding the possibility of fluctua-
tions at the∼2 eV charge transfer energy scale (the U scale of
the one band Hubbard model).26

Several recent attempts at quasi-first-principles calculations
of the optical spectra have found that the cuprate intraband op-
tical spectrum extends up to ∼2.5 eV, with a residual charge
transfer gap, associated with the incoherent part of the band,
persisting well into the overdoped regime27–30. This suggests
that optical glue studies should be extended into the higher
energy regime, to provide definitive answers about the role
of charge transfer excitations in high-Tc superconductivity.
This is important since several optical studies11,31 have found
evidence that the onset of superconductivity affects spectral

weight in an energy range extending beyond 1 eV.
In the present paper, we explore how the results of real-

istic self energy calculations can be used to guide the anal-
ysis of the optical glue. We explore the role of anisotropy,
and clarify just what the glue function actually measures. We
point out a simple correction to commonly used formulas for
self energy, which largely eliminates the problem of negative
scattering rates. We find that an important contribution to the
high-energy fluctuations has been ‘hiding in plain sight’. And
we provide an example of an optical glue recovery which in-
cludes the high energy contribution, and which bears a striking
similarity to the calculated results. Our study thus resolves a
puzzling discrepancy between optical vs other experiments re-
lated to the nature of bosonic fluctuations, and clearly demon-
strates that experimental attempts to extract the optical glue
need to probe a higher energy range to weigh in on the is-
sue of a possible U -scale glue involved in the mechanism of
high-Tc superconductivity.

This paper is organized as follows. Section IIA shows how
including self energy effects in optical calculations can pro-
vide insight into attempts to extract fluctuation, or ‘pairing
glue’ functions from optical experiments. Section IIB pro-
vides an example of extracting glue functions from real opti-
cal data. Section III describes numerical experiments to test
the accuracy of the glue extraction, while Section IV com-
pares the optical self energy to ARPES-derived self energies.
Sections V and VI give a discussion and conclusions, respec-
tively. Details of our self energy calculations are presented in
an Appendix.

II. CALCULATING THE ‘GLUE’ FUNCTION

A. General Considerations

We first briefly comment on how the optical ‘glue’ is mea-
sured and what it really represents. One starts with the optical
conductivity σ(ω), which can be calculated following Allen32.
For a k-independent Σ

σ(ω) =
iω2
p

4πω

∫ ∞
−∞

dω′
nF (ω′)− nF (ω′ + ω)

ω + Σ∗(ω′)− Σ(ω′ + ω)
, (1)
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where nF is the Fermi function. In optical glue studies, an
‘optical self energy’ function is derived from the experimental
optical conductivity σ by assuming it to be of an extended
Drude form33,34

σ(ω) =
iω2
p

4π

1

ω − 2Σop(ω)
, (2)

where ωp =
√

4πne2/m is the plasma frequency, n the car-
rier density, and e, m are the electronic charge and mass re-
spectively. This can also be written in terms of a frequency
dependent scattering time τ(ω) and effective mass m∗(ω) as

2Σop(ω) = ω(1− m∗

m
)− i

τ
. (3)

An important question is, how is Σop related to the self en-
ergy function Σ? Two approaches are commonly employed,
which we call Method I, which simply assumes:

Σop = Σ, (4)

and Method II:35–38

Σop =

∫ ω
0

Σ(ω′)dω′

ω
. (5)

We test these schemes in Section III, by comparing self ener-
gies extracted from calculated optical spectra with the input
self energies, calculated using a GW model39 appropriate for
the cuprates. We find similar results for both methods: they
can approximately reproduce Σ” at energies below∼1 eV, but
both methods have problems in the pseudogap regime.

In the GW method, the self energy is calculated as the
convolution of the Green’s function G and an interaction W
which is U2 times a susceptibility, which represents the spec-
trum of electronic bosonic modes (see the Appendix for de-
tails). For cuprates with d-wave pairing, the true pairing glue
is given by the d-wave average of this q-dependent function.
In contrast, the optical spectra are measured at q = 0, and pro-
vide no information on this anisotropy. Hence optical experi-
ments can only measure an average W̄ , which we nevertheless
denote as α2F . Below we show that α2F approximately rep-
resents the q-averaged susceptibility

α2F (ω) = U2[χ̄”c(ω) + 3χ̄”s(ω)]/2, (6)

with U the Hubbard U , χ” the imaginary part of χ, χc [χs]
the charge [spin] susceptibility, and we neglect the distinc-
tion between α2F and α2

trF , where the latter is a transport
Eliashberg function. Also χ̄i(ω) =

∫
a2d2qχi(q, ω)/(2π)2,

i = s, c. Within RPA

χs = χ0/(1− Uχ0), (7)

χc = χ0/ε, (8)

where χ0 is the bare susceptibility as calculated in the local-
density approximation [LDA], and the dielectric constant can
be written as ε = ε0 + Uχ0 with ε0 ∼ 4.8, a background

dielectric constant. Thus optical measurements determine the
q-averaged susceptibility as a function of energy. This can be
compared to susceptibilities measured in other spectroscopies,
such as ARPES, to determine the spectra of the bosons which
strongly couple to electrons, but cannot directly provide infor-
mation on how well these bosons contribute to d-wave super-
conductivity.

When the susceptibility is replaced by its q-average, the for-
mula for the self energy can be simplified, Appendix A. At
T = 0, for ω > 0, it becomes

Σ′′(ω) = −
∫ ω

0

α2F (Ω)Ñ(ω − Ω)dΩ, (9)

where Ñ(ω) = [N(ω) + N(−ω)]/2Nav is the electron-hole
averaged density of states (DOS), and Nav is the average of
the DOS over the energy range of interest, chosen to make Ñ
dimensionless. Then for Method II

Σ′′op(ω) =

∫ ω

0

dΩ

ω
α2F (Ω)neh(ω − Ω), (10)

where

neh(ω) =

∫ ω

0

dωÑ(ω). (11)

We note that in many previous inversion schemes the DOS
is approximated by a constant. In this case Eq. 9 becomes40

α2F0(ω) = −
∂Σ′′op(ω)

∂ω
. (12)

We use the subscript ‘0’ on α2F to denote that it is assumes
a constant DOS. According to Eq. 12 the glue function can
become negative unless |Σ′′op| is a monotonically increasing
function of ω.41 We find that α2F and α2F0 can display very
different energy dependencies as can be seen by comparing
Figures 4(a) and 4(b) below. A similar problem arises with
Method II.35 Many groups use a finite-temperature version of
this result11,42. From Eq. 10, it follows that−∂Σop”/∂ω must
be > 0, as for Eq. 12, and

α2F1(ω) = − ∂

∂ω

(
ω2α2F0(ω)

)
, (13)

where α2F1 is the glue function corresponding to Eq. 10.
While this works for phonon contributions to the self energy,
this substitution is not appropriate over a 2-3 eV energy range.
We find that Σ” cannot be monotonic over the full bandwidth,
and that may be why previous analyses often had problems
with negative α2F , or why they are restricted to fairly low en-
ergies. In contrast, these problems do not arise with Eqs. 9, 10.

The question remains, what is the appropriate DOS? This
has two aspects. First, since the optical self energy Σ”op
involves the sum of the electron and hole self energies, one
should use the average of the electron and hole DOS, Ñ in
Eq. 9. But which DOS? In the GW approach, one could con-
sider using either the bare N0 or the fully dressed DOS N .
The use of N is prohibitively expensive, since to calculate it
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requires knowledge of the glue function, which we are trying
to extract. On the other hand, N0 can be directly calculated
from the LDA dispersion and should work progressively bet-
ter with overdoping, as correlation effects weaken. For sim-
plicity, in the present analysis we use N0. This approximation
should have no effect on the qualitative features we are de-
scribing.

B. Application to Bi2212
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FIG. 1. (color online) (a) Optical conductivity of optimally-doped
Bi2212 [a-axis]43 (red short-dashed line) and x = 0.15 LSCO46

(green solid line) compared with theory for LSCO27 (blue dashed
line; expanded ×3: thin blue dashed line). (b) Corresponding loss
function, −Im(1/ε). (c) Dielectric constant ε.

Figure 1(a) compares the measured43 optical conductiv-
ity of near-optimally-doped Bi2Sr2CaCu2O8+δ (Bi2212) (red
dotted line)44,45 and La2−xSrxCuO4 (LSCO)l46 (green solid
line) with calculated27 (blue dashed line) conductivities for
LSCO. The theoretical conductivity consists of a Drude term
associated with the coherent part of the electronic band plus
an effective interband term associated with the incoherent
spectral weight, a residue of the upper and lower magnetic
bands. While the theory underestimates the incoherent spec-
tral weight [a known shortcoming of the QP-GW model]47,48,
it does capture an enhanced conductivity near 1.5 eV, associ-
ated with this residual charge transfer band27. Given the con-
ductivity, the corresponding dielectric constant and inverse di-
electric constants can readily be calculated. These are shown

in Figs. 1(b,c) for LSCO, to be compared to the experimen-
tal results for Bi2212. The good agreement strongly suggests
that all features in the spectrum up to ∼2.5 eV are character-
istic features of the cuprate plane, and are well described by a
single band Hubbard model.49 Note that the electronic suscep-
tibility should be nonzero over the same frequency window as
the loss function, so both charge and spin contributions to the
glue function should remain finite up to ∼2.5 eV, which is
approximately the bare [LDA] electronic bandwidth.
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FIG. 2. (color online) (a) Optical self energy extracted from the ex-
perimental data43 of Fig. 1 (dark blue solid line), compared with cal-
culated self energies using Eq. 10 (red dashed line) or Eq. 9 (violet
dotted line) and the corresponding glue function from frame (b) (red
dashed line). Also shown is the low-energy measured self energy50

(blue triangles) from Fig. 6 below. (b) Glue functions used in frame
(a). Green dotted line is glue function calculated from Eq. 12. These
are compared with calculated glue functions, including the calculated
spinα2Fs of Fig. 4(b) (orange dot-dashed line), the charge glue func-
tion, Eq. 14, with Uc,eff = 2 eV (violet dashed line), and their sum
(blue solid line). (c) Electron-hole averaged bare DOS for Bi2212.

Given the optical spectrum, we can extract the glue func-
tion over the full bandwidth. Figure 2(a) plots the optical self
energy of Bi2212 (solid blue line) extracted from the data in
Fig. 143 using Eq. 2. For simplicity, we calculated Σop us-
ing the full optical spectrum, but the features above ∼2.5 eV
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are probably due to interband transitions, and hence should be
disregarded. In the low energy limit, the self energy is in rea-
sonable agreement with earlier work50 (blue triangles), which
neglected the DOS factor. Shown also are model self energies
calculated from Eq. 9 or Eq. 10, using the glue function plot-
ted in Fig. 2(b) as a violet dotted line and the DOS of Fig. 2(c).
For the present illustrative purposes, we use T = 0 expres-
sions to analyze the spectrum, even though the experiments
were done at room temperature.

In our model calculation, we represent the glue function by
a simple histogram. We find a very good fit to the data using
Method II, black dot-dot-dashed line in Fig. 2(a). Using the
same glue function, the self energy calculated by Method I
(violet dotted line in Fig. 2(a)) fits the data well below 1.5 eV,
but falls off too rapidly at higher energies. An improved fit
would therefore require additional weight in the glue function
at even higher energies, which seems less likely. Remarkably,
the green dashed line in Fig. 2(b) shows that the glue function
can also be approximately found from Eq. 12, if we neglect
the negative glue function contributions at higher energy.

According to Eq. 6, the glue function should be calcula-
ble in terms of the spin and charge susceptibilities. In a pre-
vious publication48 we showed that the charge susceptibility
that enters the self-energy should be the same as in the loss
function plotted in Fig. 1(b). However, From Fig. 1(b), it can
be seen that the present model does not well reproduce the ex-
perimental loss function, perhaps because the Hubbard model
does not describe the charge susceptibility of Eq. 8 well, and
longer range Coulomb interactions need to be included.23,47,51

We can avoid this difficulty by directly comparing two ex-
perimental measures of the loss function, taking the charge
contribution to the glue function as

α2Fc(ω) = −Uc,eff
2

Im(
1

ε(ω)
), (14)

where Uc,eff is a phenomenological charge vertex, and ε is
the measured dielectric constant. In Fig. 2(d), we compare
the extracted glue function with the calculated spin suscepti-
bility of Fig. 4(b) (orange solid line) [the corresponding self
energy is plotted in Fig. 2(a)]. There is satisfactory agreement
up to 0.5 eV, but the experimental glue function reveals excess
weight in the charge-transfer regime above 1 eV. There should
be an extra contribution due to charge fluctuations, which we
plot in Fig. 2(d), using the experimental loss function from
Fig. 1(b) in Eq. 14. Figure 2(d) shows that the combination
of spin and charge glue functions qualitatively reproduces the
glue function extracted directly from the optical spectrum, in-
cluding a significant contribution near 1 eV. Differences above
1 eV may be due to limitations in extracting the true Σ from
Σop, as discussed in the following section. We note that the
contribution of the loss function to the optical glue has not
been previously recognized.

III. TESTING OPTICAL INVERSION SCHEMES

A. Connecting Σ and α2F

Having a realistic scheme for calculating optical spectra al-
lows us to test how well glue functions can be extracted, by
inverting calculated data and comparing the inverted with the
input susceptibilities. Here we briefly describe the results of
several tests we have carried out. We first note that while the
q-dependence of χ” is important, the self energy is a convo-
lution over χ and the Green’s function, and we find that its
momentum-dependence is relatively weak in the overdoped
regime. This is important, since when the self energy has
a significant momentum dependence, the Kubo formula for
conductivity includes significant vertex corrections52, which
to our knowledge have not been included in any inversion
scheme. Fortunately, the weak momentum dependence of the
self energy that we find suggests that a self energy extracted
from optical studies could still be fairly representative.

0.4

0.2

0.0

-Σ
'' 

(e
V

)

3210
ω (eV)

(b)

1.0

0.5

0.0

U
2 χ'

' (
eV

)

1.51.00.50.0
ω (eV)

Av.

(π,0)

(π,π)

(a)

FIG. 3. (color online) (a) Imaginary susceptibility χ′′s at T = 0
plotted along two directions in k-space, (π, 0) (blue line) and (π, π)
(green line), along with the value averaged over all k (red line). (b)
Resulting imaginary self energy Σ′′, comparing the exact anisotropic
calculation (blue line) with the present isotropic approximation (red
line), and a scaled isotropic calculation multiplied by 1.2 (dashed red
line).

Since optical techniques can only find a momentum-
averaged glue function, in Fig. 3 we address the issue of
the extent to which the average glue function can reproduce
the self energy.53–55 We denote this momentum-averaged glue
function as α2F (ω). To avoid tensor complications we limit
our analysis to the overdoped normal state spectra and analyze
only the RPA magnetic susceptibility χs = χ0/(1 − Uχ0),
with bare susceptibility χ0 and U being the Hubbard U . In
Fig. 3(a), the average χ̄′′s is compared to individual χ′′s peaks,
demonstrating that there is significant anisotropy in χ′′s . The
weight in χ̄′′s extends to energies ∼1.5 eV, in good agreement
with early optical determinations31. Figure 3(b) compares the
calculated Σ′′ using either the correct expression, Eq. A3 be-
low (blue line), or the angle averaged Eq. 9 value (red line). It
can be seen that averaging before integrating underestimates
the magnitude of Σ′′, by about 20% (dashed line), but ap-
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proximately reproduces the shape of Σ′′. Hence we estimate
that the average glue function extracted from optical spectra
should have the correct frequency dependence, but could be
overestimated by ∼20% in intensity.

Once the self energy is known, we can invert it to try to

recover the susceptibility. Here as a test case we take a deriva-
tive of Σ, Eq. 9, and fit the −∂Σ′′/∂ω data using a bar graph
representation for χ̄′′.10 We illustrate the calculation with only
two bars, which works reasonably well, but the generalization
to many bars is straightforward. Thus, if α2F (ω) = α2F1 for
ω < ω1, α2F2 for ω1 ≤ ω < ω2, and 0 for ω ≥ ω2, then

−1

2

∂Σ′′(ω)

∂ω
=


α2F1N(ω) ω < ω1

α2F1[N(ω)−N(ω − ω1)] + α2F2N(ω − ω1) ω1 ≤ ω < ω2

α2F1[N(ω)−N(ω − ω1)] + α2F2[N(ω − ω1)−N(ω − ω2)] ω ≥ ω2.

(15)

Figure 4(a) shows a fit using this procedure, with −∂Σ′′/∂ω
taken from the correct self-energy, blue curve in Fig. 3(b). For
a simple two-step glue function, the fit is remarkably good,
and could be further improved by adding more steps. Fig-
ure 4(b) shows that the resulting α2F is a reasonable repro-
duction of the input form. Exact agreement is not expected,
since the calculated α2F is the scaled average used to gener-
ate the approximate self energy, red dashed curve in Fig. 3(b),
whereas the extracted glue function is based in the exact self
energy (calculated with anisotropic susceptibility). The sim-
ilarity of the two glue functions provides additional evidence
that the angle averaged formula captures the essential physics.
The two peaks in α2F have a simple interpretation, the lower
peak, below 0.5 eV, represents the fluctuation spectrum of the
coherent part of the band, while the peak near 1 eV represents
the fluctuations responsible for opening the charge-transfer
gap at lower doping. A glimpse at Fig. 3(a) reveals that these
are heavily concentrated near (π, π).
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FIG. 4. (color online) (a) −∂Σ′′/∂ω (green line) compared with fit
based on Eq. 15 (blue line). (b) Glue functions, comparing the calcu-
lated α2F (blue dashed line) with the input function from Fig. 4(a)
(red line), and with an earlier optical glue function8 (green dot-dot-
dashed line).

Most previous analyses of the optical glue are consistent

with the coherent part of Fig. 4(b), displaying a peak near
0.3 eV. For instance, the dot-dot-dashed line in Fig. 4(b) shows
the ‘continuum’ glue function extracted from optical experi-
ments in Ref. 8. However, they also find a sharper peak at
low energies, below ∼0.1 eV, not reproduced by the present
calculation. We suggest that this peak may be associated ei-
ther with phonons or with superconducting or pseudogap ef-
fects [e.g., related to the magnetic resonance peak], none of
which are included in the present normal state analysis. We
note that when superconductivity is included, our susceptibil-
ity calculations can reproduce many features of the magnetic
resonance phenomenon56.

B. The Weak Link: From Σop to Σ

Finally, we test how well the true self energy can be ex-
tracted from Σop in Eq. 2. First, we expand Eq. 1 in the small
ω limit, in which case nF (ω′)−nF (ω′+ω) ' ωδ(ω′) at T =
0, while ω + Σ∗(ω′) − Σ(ω′ + ω) = ω (1− ∂Σ′(ω)/∂ω) −
2iΣ′′(ω), so that Eq. 1 becomes

σ(ω) =
iω2
p

4π

1

ω − ω (∂Σ′(ω)/∂ω)− 2iΣ′′(ω)
. (16)

Comparing Eq. 2 and Eq. 16,

Σ′op(ω) = (∂Σ′(ω)/∂ω)ω/2 (17)

Σ′′op(ω) = Σ′′(ω). (18)

In the special case where Σ′ is quadratic in ω, Σop = Σ, the
Method I result. However, we generally find Σ′ ∼ ω at low
frequencies, so Σ′op and Σ′ differ by a factor of 2, and Σop
does not satisfy the Kramers-Kronig relation.

Despite this limitation, Σop can be used to extract the quasi-
particle self-energy, at least in the low energy regime at not-
too-low doping. Figure 5 compares the quasiparticle self en-
ergy Σ of NCCO to Σop calculated by first computing the op-
tical conductivity57, and then extracting Σop via Eq. 2. The
optical conductivity is calculated from a standard linear re-
sponse theory in the presence of an antiferomagnetic pseudo-
gap and the quasiparticle self-energy Σ corrections. In accord
with experimental results in NCCO, the optical spectra show
two distinct features, a mid-infrared feature originating from



6

0.0

0.8

1.6

2Σ
op′

(ω
),

Σ′ (ω
) [

eV
] (a)

0 1 2 3
0

1

2

−2
Σ op′′

(ω
), 
−2

Σ′′ (ω
) [

eV
] (b)

ω [eV]

0.05
0.10
0.15
0.17

FIG. 5. (color online) The computed values of the optical self-
energies (solid lines) are compared with the corresponding quasi-
particle self-energy (dashed lines of same color) for a series of dop-
ings for NCCO55,57. Both results agree well in the low-energy, high-
doping region.

the pseudogap order and the high-energy Mott gap feature as-
sociated with the magnon scattering peak in Σ′′.57

Figure 5 shows that Eqs. 17 and 18 hold in the low-energy
region for the paramagnetic phase. However, for the under-
doped samples (x = 0.05, 0.10, 0.15) Σop shows an addi-
tional kink at low-energies coming from the pseudogap fea-
ture, not present in the quasiparticle self-energy. [The calcu-
lated quasiparticle self-energy includes the antiferromagnetic
pseudogap, but this arises in the off-diagonal term of a 2 × 2
tensor, and is not captured in the scalar approximation Σop.]
Thus, near optimal doping optical studies should be able to
determine Σ” in the range up to ∼1 eV, but the calculation
breaks down in the underdoped regime. For work at higher
energies a more sophisticated approach is needed. One pos-
sibility would be to use model self energies to reproduce the
experimental spectra. We have illustrated the comparison for
Method I, but very similar results are found for Method II.

IV. MAGNITUDE OF SELF ENERGY IN ARPES AND
OPTICAL STUDIES

While the energy dependence of the self energy is readily
extracted from optical or ARPES experiments, we find that

there are subtle issues in normalizing the spectra. ARPES
probes the one-particle self energy, with full momentum de-
pendence, but only for the filled states.58–62 Figure 6 shows
measured17–22 and calculated values55,63 of the imaginary self
energy Σ” as a function of excitation energy ω. The data rep-
resent a number of different cuprates at several dopings, but
in all cases Σ”(ω) has a similar shape. There is a clear but
relatively weak material dependence, in good agreement with
calculations.
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FIG. 6. (color online) Imaginary self energy Σ′′ at T = 0 vs en-
ergy ω, comparing experimental and theoretical results derived by
several techniques. In all cases, an impurity contribution was ap-
proximately removed by subtracting off Σ′′(0). Experimental points
are ARPES data from: (a) LBCO (blue diamonds, Ref. 18); Bi2201
(gold squares, Ref. 17, green circles, Ref. 19); (b) Bi2212 (violet tri-
angles, Ref. 18, open red squares, Ref. 20, open blue circles, Ref. 21),
and (c) Ca2CuO2Cl2 (CCOC) (open red-brown diamonds, Ref. 22).
Included in (b) and (c) are optical data from Bi2212 (inverted red
triangles, Ref. 50) (taken at T = 130K > Tc to avoid compli-
cations associated with superconductivity). Theoretical curves are
from: LSCO (light blue dotted line), Ref. 27, Bi2201 (gold line),
Ref. 23, Bi2212 (red dashed line), Ref. 24. Note that the magnitudes
of several data sets have been rescaled.

However, the experiments fail to find a consistent magni-
tude of Σ”, with values varying by a factor of four – some-
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times (as in the case of Bi2201, Fig. 6(a)) on virtually the
same material measured by two different groups. This is be-
cause Σ” is not measured directly. Instead, data were acquired
by measuring the momentum-space width ∆k of a spectral
peak and then multiplying by the ‘bare Fermi velocity’, vF0.
Unfortunately, the bare velocity is not a measured quantity,
and a variety of techniques have been utilized for estimating
the value. The largest Σs are found by assuming the bare and
dressed dispersions do not cross, hence drawing the bare dis-
persion as a straight line that either lies below the ARPES
dispersion or touches it at some high energy. This assump-
tion is equivalent, via Kramers-Kronig, to assuming that Σ”
is monotonic in energy. Neither of these features is consistent
with theory – see Ref. 23 and Fig. 6 – and moreover, most
experiments find that the ARPES linewidth narrows again at
higher energies – i.e., Σ” should have a peak in the region of
the HEK. Note that for a band of finite width it can be shown
analytically that Σ′′ → 0 as ω →∞.

Using a smaller vF0 brings the result into better agreement
with theory. The best choice for the bare dispersion is prob-
ably the first principles LDA calculation.64,65 However, it is
also possible for experiments to find a too small value of vF0.
This is because in Bi2212 the self energy is large enough
that the peak in Σ” [the high-energy kink] splits the disper-
sion into low and high energy branches, with a pseudogap
in between. ARPES experiments find the coherent band in
Bi2212 is renormalized by a factor of Z = 0.5 with coher-
ent spectral weight extending to a band bottom at the Γ-point
near -0.5 eV,66,67 whereas incoherent spectral weight extends
∼> 1 eV below the Fermi level. If only this coherent branch
is considered in extracting the self-energy, the resulting Σ”
will be underestimated by the same factor Z = 0.5, consistent
with the smallest values found in Fig. 6.

The Dresden group21 attempted to extract both self energy
and bare dispersion, treating the Γ → (π/2, π/2) (nodal)
bare dispersion as a parabola, and adjusting the magnitude
of the dispersion until the real and imaginary self energies
satisfied Kramers-Kronig relations. The resulting bare band
can be parametrized by the energy of the band bottom at Γ,
E0(Γ) = −0.9 eV for Bi-2212 at optimal doping. In contrast,
the corresopnding LDA result is -1.55 eV. This suggests either
that LDA is not a good model for the bare bands or that the
extracted self energies are too small by approximately the ra-
tio of the E0(Γ)’s, 0.6. This is indeed close to the difference
seen between their experiment and theory in Fig. 6.

We note that our calculations involve only electronic
bosons, whereas experiments suggest that phonons may play
a role in the temperature dependent broadening of the optical
spectra, even in the undoped insulators68. This could explain
some of the differences between calculated and experimental
self energies.

Figures 6(a,b) also display the optically derived Σ” =
−1/2τ from Ref. 50. We see that its energy dependence is in
good agreement with theory, but its magnitude is smaller than
theory by a factor of 2, consistent with some ARPES evalua-
tions. In optical studies one can encounter a similar problem
to those found in photoemission. If m∗(ω) = m∗1 + m∗2(ω),

then we can rewrite

σ(ω) =
iω∗2p
4π

1

ω(1 +m∗∗2 /m) + i/τ∗(ω)
, (19)

where ω∗2p = Zω2
p, m∗∗2 = Zm∗2, and 1/τ∗ = Z/τ , with

Z = m/m∗1. We note that if ω∗p is used in Eq. 2, then the fre-
quency dependence of the extracted Σ′′ is correctly given by
the measured σ, but its magnitude is too small by the factorZ.

V. DISCUSSION

The present study finds that both low and high energy
fluctuations couple strongly to electronic excitations in the
cuprates. This has important implications for the origin of
superconductivity in these materials, and in particular is sug-
gestive of two-component α2F models, with a strong peak
at low frequencies and a weak [electronic] peak at very high
frequencies.69,70 In Ref.4, we showed that in a hole-overdoped
cuprate x = 0.3, the glue functions below and above 0.3 eV
made comparable contributions to the supercondicting gap.
This is consistent with the predictions of Refs. 2 and 3, but
is contradicted by another study which finds that low energy
fluctuations in the vicinity of the magnetic resonance peak can
by themselves produce a 100K superconductor.71 The differ-
ence would seem to be that the latter study explored only the
role of fluctuations near the resonance, whereas our full sus-
ceptibility calculation found an important role of ferromag-
netic pairbreaking fluctuations, widely expected to be limiting
Tc on the overdoped side.72,73 As Cohen and Anderson74 have
noted, a key impediment to finding high Tc superconductors
is the emergence of competing phases.

VI. CONCLUSIONS

In conclusion, our study provides a number of insights into
attempts to derive self energies and glue functions from ex-
perimental studies of the cuprates. We find a surprising vari-
ability in the magnitude of self energy reported in different
studies. We have identified possible sources and recommend
use of first principles dispersions in the analyses to minimize
the problem. With respect to specifically optical studies, we
find that the self energy is relatively momentum independent,
so these studies should be useful for extracting momentum av-
eraged fluctuation spectra. A possible weak link is relating the
optical spectrum to an underlying self energy, as the usual Σop
is found to deviate from the true Σ at energies above ∼1 eV.

Most importantly, we have shown that in the overdoped
regime the optical spectra of the cuprates should be described
in a single band model for energies below∼2.5 eV. When this
is done, the resulting fluctuation spectrum or glue function
displays substantial spectral weight in the high energy region
extending to ∼1.5 eV. Our study thus finds additional high
energy bosonic fluctuations in the optical spectra and recon-
ciles a puzzling discrepancy in this regard involving optical
and other spectroscopies. In the conventional terminology of
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optical studies, these contributions should also be considered
as part of the optical ‘glue’ function.

Of course, from optical studies there is no way of deter-
mining which of the observed fluctuations promote d-wave
superconductivity, which play no role in superconductivity,
and which are actually pairbreaking. Nevertheless, we must
abandon the common perception that optical studies “prove”
that only low frequency bosonic fluctuations are important for
high-Tc superconductivity – particularly when those studies
are restricted to energies below ∼1 eV.

This work is supported by the U.S.D.O.E contract DE-
FG02-07ER46352 and benefited from the allocation of su-
percomputer time at NERSC and Northeastern University’s
Advanced Scientific Computation Center (ASCC). This work
was begun while RSM was on sabbatical at the University of
Rome, partially funded by the Marie Curie Grant PIIF-GA-
2008-220790 SOQCS. RSM acknowledges stimulating con-
versations with M. Grilli.

Appendix A: Model Self-energy for Cuprates

A recent series of calculations has led to a reassessment of
the strength of correlations in cuprates. It has been found that,
within a single band Hubbard model, U ≤ 8t is too small
to satisfy the Brinkman-Rice criterion for a Mott transition,
and the magnetic phase in the cuprates is closer to a conven-
tional [Slater-type] antiferromagnet.75,76 Here U is the Hub-
bard U -parameter and t is the nearest neighbor hopping. With
doping, spectral weight is transferred from the ‘upper Hub-
bard band’ to low energies too rapidly to be consistent with a
U =∞ Hubbard or a t−J model.77 In contrast, intermediate
coupling models can describe this anomalous spectral weight
transfer,28,78 and more generally provide a good description
of angle resolved photoemission spectroscopy (ARPES) and
optical spectra over a wide doping and energy range.23,27,29,30

In these models, a self energy is derived either from dynamic
mean-field theory calculations or from a modified GW proce-
dure. Here we describe the modified GW self energy calcula-
tion.

In the metallic phase at high doping, the quasiparticle-GW
(QP-GW) self-energy Σ is given by a convolution over the
green function G and the interaction W ∼ U2χ as24,79–82,

Σ̃(k, σ, iωn) =
1

2
U2Z

′∑
q,σ′

ησ,σ′

∫ ∞
0

dωp
2π

G̃(k + q, σ′, iωn, ωp)Γ(k,q, iωn, ωp)Im[χ̃σσ
′

RPA(q, ωp)].

(A1)

where σ is the spin index and ησ,σ′ is 3 for the spin and 1 for
the charge modes. Extensions to the antiferromagnetic and/or
superconducting phases are described in the references. In
the QP-GW-scheme, Σ is calculated self consistently, with G
and W calculated from an approximate self-energy Σt0(ω) =(
1− Z−1

)
ω, where the renormalization factor Z is adjusted

self-consistently to match the coherent (low energy) part of
the self-energy.23,48,81 The vertex correction Γ in Eq. A1 is
taken as (Ward’s identity) Γ = 1/Z. We take the dispersions
directly from LDA calculations (ξk), accurately fitted by a one
band tight-binding model83, without any adjustment of the re-
sulting parameters.84–86 In the overdoped regime a value for
the screened Hubbard U = 1eV is used27. In Eq. A1 we
use the RPA magnetic and charge susceptibilities. Since the
k-dependence of Σ is weak23, we further simplify the calcula-
tion by assuming a k-independent Σ, which we calculate at a
representative point k = (π/2, π/2).

When the correct susceptibility is replaced by a k-averaged
version, the formula for the self energy simplifies. The GW
self energy can be written:

Σ(q, ω) = −3

2
U2
∑
k

∫ ∞
−∞

χ′′(k,Ω)dΩ

∫ ∞
−∞

A(k + q, ε)dε

×
[nB(Ω) + nF (ε)

ω + Ω− ε
+
nB(Ω) + 1− nF (ε)

ω − Ω− ε

]
,(A2)

where A(k, ε) is the electronic spectral function, nF [nB] is
the Fermi [Bose] function, and χ′′ is the imaginary part of an
appropriate susceptibility.23,87 Then

Σ′′(q, ω) = −3

2
U2
∑
k

∫ ∞
−∞

χ′′(k,Ω)dΩ

×
[
A(k + q, ω + Ω)(nB(Ω) + nF (ω + Ω))

+A(k + q, ω − Ω)(nB(Ω) + 1− nF (ω − Ω))
]
.(A3)

When χ” is replaced by χ̄” in Eq. A3, the k-sum reduces
to
∑

kA(k, ε) = N(ε) and Eq. A3 becomes88,89

Σ′′(ω) = −1

2

∫ ∞
−∞

α2F (Ω)

Nav
dΩ

×
[
N(ω + Ω)

(
coth(

Ω

2T
)− tanh(

Ω + ω

2T
)
)

+N(ω − Ω)
(
coth(

Ω

2T
)− tanh(

Ω− ω
2T

)
)]
.(A4)

At T = 0 and ω > 0, this becomes Eq. 9, while for ω < 0,
the only changes are that the upper limit of the integral is |ω|
and the argument of N is Ω− |ω| which is < 0.
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