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We measure quantum and thermal phase-slip rates using the standard deviation of the switching
current in superconducting nanowires. Our rigorous quantitative analysis provides firm evidence
for the presence of quantum phase slips (QPS) in homogeneous nanowires at high bias currents.
We observe that as temperature is lowered, thermal fluctuations freeze at a characteristic crossover
temperature Tq, below which the dispersion of the switching current saturates to a constant value,
indicating the presence of QPS. The scaling of the crossover temperature Tq with the critical temper-
ature Tc is linear, Tq ∝ Tc, which is consistent with the theory of macroscopic quantum tunneling.
We can convert the wires from the initial amorphous phase to a single crystal phase, in situ, by
applying calibrated voltage pulses. This technique allows us to probe directly the effects of the wire
resistance, critical temperature and morphology on thermal and quantum phase slips.

PACS numbers: 74.25.F-,74.40.-n,74.78.Na

I. INTRODUCTION

Topological fluctuations of the order parameter field,
so-called Little’s phase slips,1 are at heart of supercon-
ductivity at the nanoscale.2–4 These unavoidable stochas-
tic events give rise to the finite resistivity of nanowires be-
low the mean field transition temperature. Thermally ac-
tivated phase slips (TAPS) have been routinely observed
experimentally, see Ref. 4 for review. However, at low
temperatures, phase-slips events are triggered by intrin-
sic quantum fluctuations,5–7 so they are called quantum
phase slips (QPSs), and represent a particular case of
macroscopic quantum tunneling (MQT). Clear and un-
ambiguous demonstration of MQT in homogeneous su-
perconductors is of great importance, both from the fun-
damental and technological prospectives. It has been ar-
gued recently by J. E. Mooij and Yu. V. Nazarov8 that a
wire where coherent QPSs take place may be regarded as
a new circuit element – the phase-slip junction – which is
a dual counterpart of the Josephson junction.9 The pro-
posed phase-slip qubit10 and other coherent devices8,11–13

may be useful in realization of a new current standard.
Furthermore, comprehensive study of QPSs may eluci-
date the microscopic nature of superconductor-insulator
quantum phase transition in nanowires.14–17

It is difficult to obtain firm conclusions about the pres-
ence of QPS by means of low-bias resistance measure-
ments because the resistance drops to zero at relatively
high temperatures. Measured in the linear transport
regime, high-resistance wires seemingly exhibit QPS,18

while low-resistance wires probably do not.19 At high
bias currents, on the other hand, M. Sahu et al.7 ob-
tained strong evidence supporting quantum nature of
phase slips, by measuring switching current distributions.
Observed drop of the switching current dispersion with
increasing temperature was explained by a delicate inter-
play between quantum and multiple thermal phase slips.

Recently P. Li et al.20 provided direct experimental evi-
dence that, at sufficiently low temperatures, each single
phase slip causes a nanowire switching from supercon-
ducting to normal state by creating a hot spot.21 The
destruction of superconductivity occurs by means of over-
heating the wire. Thus the dispersion of phase slip events
is equivalent to the dispersion of the switching current.

We build on these previous findings and reveal MQT
in homogeneous nanowires via the quantitative study of
current-voltage characteristics. First, we examine the
higher temperature regime, Tq < T < Tc, and iden-
tify thermal phase slips through the temperature depen-
dence of switching current standard deviation, σ, which
obeys 2/3 power-law predicted by J. Kurkijärvi.22 At
lower temperatures, T < Tq, a clear saturation of σ is
observed – the behavior indicative of MQT. An impor-
tant new evidence in favor of QPS is provided by the
fact that the mean value of the switching current keeps
increasing with cooling even when the associated disper-
sion is already saturated. We observe a linear scaling of
the saturation temperature, Tq, with the critical temper-
ature Tc of the wire. We also show that such behavior
is in agreement with our generalization of the MQT the-
ory. This fact provides an extra assurance that other
mechanisms, such as electromagnetic (EM) noise or in-
homogeneities are not responsible for the observed be-
havior. Furthermore, we achieve controllable tunability
of the wire morphology by utilizing a recently developed
voltage pulsation technique.23 The pulsation allows us to
gradually crystallize the wire and to change its Tc in situ.
The fact that the QPS manifestations are qualitatively
the same in both amorphous and crystallized wires elim-
inates the possibility that the observed MQT behavior
is caused by the presence of weak links. Thus we pro-
vide a conclusive evidence for the existence of QPS in
homogeneous wires in the nonlinear regime of high bias
currents.
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FIG. 1: [Color online] (a) The saturation temperature Tq ver-
sus the critical temperature Tc, for samples A-D, pulsed and
unpulsed. The line is the best fit. Insert (a)-top: SEM image
of an unpulsed nanowire. Insert (a)-bottom: TEM micro-
graph of a nanowire crystallized by applying 3.735 V voltage
pulses. The fringes corresponding to atomic rows are visible.
(b) The standard deviation of the switching current versus
temperature, for samples A-F (prior to any pulsing).

II. EXPERIMENTAL DETAILS

Superconducting nanowires were fabricated by molecu-
lar templating.4,15 Briefly, a single-wall carbon nanotube
is suspended across a trench etched in a silicon wafer.
The nanotube and the entire surface of the chip are then
coated with 10-20 nm of superconducting alloy Mo76Ge24
using dc magnetron sputtering. Thus a nanowire, seam-
lessly connected to thin film electrodes at its ends, forms
on the surface of the electrically insulating nanotube.
The electrodes approaching the wire are between 5 µm
and 20 µm wide. The gap between the electrodes, in
which the nanowire is located, is 100 nm.

The signal lines in the He-3 cryostat were heavily fil-
tered to eliminate electromagnetic noise, using copper
powder and silver paste filters at low temperatures and
π filters at room temperature.5 To measure switching
current distributions, the bias current was gradually in-
creased from zero to a value that is about 20% higher
than the critical current (1-10 µA). Such large sweeps
ensure that each measured I-V curve exhibits a jump
from the zero-voltage sate to the resistive normal state.
Such jump is defined as the switching current Isw, and
N = 104 switching events were detected at each temper-
ature through repetitions of the I-V curve measurements
N times. The standard deviation (i.e. dispersion) σ and
the mean value 〈Isw〉 are computed in the standard way.

We apply strong voltage pulses to induce Joule heating,
which crystallizes our wires (see inset in Fig. 1a) and also
changes their critical temperature Tc.

23 With increasing
pulse amplitude, the Tc (as well as Ic) initially diminishes
and then increases back to the starting value or even
exceeds it in some cases. Such modifications of the Tc
and Ic have been explained by morphological changes,
as the amorphous molybdenum germanium (Mo76Ge24)
gradually transforms into single crystal Mo3Ge, caused
by the Joule heating brought about by the voltage pulses.
The return of Tc and Ic is accompanied by a drop in
the normal resistance Rn of the wire, which is caused
by the crystallization and the corresponding increase of
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FIG. 2: [Color online] Distributions and the switching rates
for the wire A. (a) Measured switching current distributions
(circles) for various temperatures ranging from 2 K for the
left curve to 0.3 K for the right curve (step=0.1 K). The fits
are shown as solid lines of the same color.34 Insert: SEM im-
age of a representative nanowire after completing the pulsing
procedure. (b) Switching rates, derived from the distribution
shown in (a), are represented by circles while solid curves of
the same color are fits by Eq. (1) with b = 3/2.

the electronic mean free path. The pulsing procedure
allows us to study the effect of Tc on Tq (see Fig. 1a)
and the effect of morphology of the wire on QPS process
in general. Note that after the pulsing is done and the
morphology of the wire is changed in the desired way, we
always allow a sufficient time for the wire to return to
the base temperature before measuring Isw.

III. RESULTS, ANALYSIS AND MODELING

Current-voltage characteristics for our wires display
clear hysteresis, sustained by Joule heating, similar to
Refs. 7,17,24. The switching current from dissipationless
to resistive branch of I-V curve fluctuates from one mea-
surement to the next one, even if the sample and the en-
vironment are unchanged. Examples of the distributions
of the switching current are shown in Fig. 2a, for differ-
ent temperatures. Since, by definition, the area under
each distribution is constant, the fact that at T < 0.7 K
its height stops increasing with cooling implies that its
width, which is proportional to σ, is constant as well,
see Fig. 1b. Thus we get the first indication that the
quantum regime exits for T < 0.7 K, i.e. for this case
Tq ≈ 0.7 K.

We now turn to the discussion and analysis of the main
results. Following the Kurkijärvi-Garg (KG) theory22,28

the rate of phase slips, such as shown in Fig. 2b, can be
written in the general form

Γ = Ω exp[−u(1− I/Ic)b] , (1)

where I and Ic are the bias and critical currents respec-
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FIG. 3: [Color online] Average switching current (c,d) and its
standard deviation (a,b) are plotted versus temperature. The
computed critical current Ic(T ) is also plotted for comparison
(c,d). (a) Sample A, unpulsed. (b) Sample C, pulsed. In
panels (a) and (b) the fits are generated by Eq. (3). The
two almost horizontal curves (solid and dashed), fitting well
the low-temperature part, correspond to the QPS-dominated
regime. They are computed assuming Tesc = Tq in Eq. (3),
where Tq =0.8 K for sample A and Tq =0.6 K for sample C.
The two other curves (solid and dashed), which fit well the
high temperature part of the data, represent TAPS according
to Eq. (3), with Tesc = T . The solid red curve corresponds
to b = 5/4 and the dashed black curve—to b = 3/2. In
(c)–unpulsed and (d)–pulsed the 〈Isw〉 is plotted. The Tq is
indicated by the vertical dotted line. The fits to 〈Isw〉 are
also shown, following the convention explained in (a) and (b),
according to Eq. (2). The green dotted line is Ic(T ) from
Bardeen’s expression, which is used to compute 〈Isw〉. Note
that 〈Isw〉 does not saturates at Tq and keeps increasing for
lower T .

tively, Ω = Ω0(1 − I/Ic)a is the attempt frequency and
u = Uc(T )/Tesc, where Uc is a model-dependent free en-
ergy barrier for a phase slip at I = 0. Parameter Tesc is
known as the effective escape temperature. In the case
of thermal escape Tesc = T , according to the Arrhenius
law, where T is the bath temperature. In the quantum
fluctuation-dominated regime Tesc is the energy of zero-
point fluctuations. We have checked explicitly that this
energy equals the crossover temperature Tq (see Sec. V-a
for details). Thus in the QPS regime Tesc = Tq.

Exponent b defines the dependence of the phase-slip
barrier on I. While the value of this exponent is well
known for thermally-activated phase slips, in the quan-
tum regime the value of b is poorly understood. Thus
experimental determination of b represents a significant
interest to the community. The approximate linearity of
the semi-logarithmic plots Γ(I) (see Sec. V-b for details),
which is especially pronounced at low temperatures in the
QPS regime (curves on the right in Fig. 2b), provides a
useful estimate for the current exponent bqps ∼ 1.

As was shown in Refs. 7,20, a single phase slip event

is sufficient to drive a nanowire into the resistive state
so that the temperature dependence of the dispersion is
power law. In all our high-critical-current samples (A–
D, C-pulsed, D-pulsed) the power law is observed, as is
illustrated in Fig. 3 for two representative samples (see
the range Tq < T <2 K).

As the temperature is lowered TAPS rate drops expo-
nentially while QPS rate remains finite. This leads to the
crossover between thermal and quantum regimes, which
occurs at Tq. It will be shown below that there exist a
definite relation between the superconducting transition
temperature Tc and Tq. We suggest that experimental
observation of such relation can be used as a new tool
in identifying MQT. In particular, we use this approach
to eliminate the possibility of a noise-induced switching
and thus confirm the QPS effect.

According to the KG theory22,28 the average value of
the switching current is given by

〈Isw〉 ' Ic
[
1− u−1/bκ1/b

]
. (2)

Here κ = ln(Ω0tσ), tσ is the time spent sweeping through
the transition. Since Ω0tσ is only in the logarithm, its
exact value is fairly unimportant. Dispersion σ of the
switching current which corresponds to the escape rate
in Eq. (1) can be approximated as

σ ' πIc√
6b
u−1/bκ(1−b)/b =

πIc√
6bκ

[
1− 〈Isw〉

Ic

]
. (3)

Let us discuss first the higher-temperature TAPS
regime. To distinguish the Josephson junction (JJ) from
the phase-slip junction (PSJ), as we call our supercon-
ducting nanowire following Ref. 8, we consider in parallel
two basic models. The JJs are commonly described by
the McCumber-Stewart model25,27 with the correspond-
ing washboard potential. It can be solved exactly and
gives Uc = 2

√
2~Ic/3e and b = 3/2. The PSJ barrier

for the current-biased condition,24,26 which is our case,
is Uc =

√
6~Ic/2e and the power is b = 5/4. Although Uc

is very close in both models, it is expected that different
scaling determined by b should translate into different
current switching dispersions.

Figs. 3a-3b show our main results for the temperature
dependence of the standard deviation for one represen-
tative not pulsed and one pulsed wire (see Sec. V-c for
more information). In all the cases σ(T ) decreases as
a power law and saturates to a constant value at low
temperatures. The higher temperature regime of TAPS
appears in good agreement with the KG theory. All our
amorphous wires show properties somewhat similar to
JJs (bTAPS = 3/2), indicating that the barrier for phase
slips depends on the bias current as (1 − I/Ic)3/2. The
two pulsed and crystallized wires agree better with the
predictions of PSJ-model for perfectly homogeneous 1D
wires (bTAPS = 5/4). As will be discussed later, the QPS
phenomenon is found in both types of wires. Thus we
conclude that the QPS is ubiquitous, as it occurs in amor-
phous wires and in 1D crystalline wires. Note that the
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pulsed crystalline wires are more into 1D limit since their
coherence length is larger while their diameter, measured
under SEM, is not noticeably affected by the pulsing crys-
tallization (see inset in Fig. 2a).

Now let us focus on the quantum fluctuations repre-
sented by the saturation of σ at low temperatures T < Tq.
The observed crossover is a key signature of MQT. A
strong evidence that the saturation is not due to any sort
of EM noise or an uncontrolled overheating of electrons
above the bath temperature follows from the fact that
although σ is constant at T < Tq, the switching current
keeps growing with cooling, even at T < Tq (see Figs. 3c-
3d). The observed saturation of σ for T < Tq and the
simultaneous increase of 〈Isw〉 with cooling at T < Tq are
in agreement with the QPS theoretical fits of the KG the-
ory (Fig. 3). The value of the critical current here is taken
from Bardeen’s formula31: Ic = Ic0(1 − (T/Tc)

2)3/2,
which works well at all temperatures below Tc.

32 The
critical current at zero temperature Ic0 and Tc are used
as fitting parameters. Such MQT-reassuring behavior
(i.e. saturation of σ when 〈Isw〉 does not show satura-
tion) has not been observed previously on superconduct-
ing nanowires and constitutes our key evidence for QPS.

Conventionally, the crossover temperature Tq between
regimes dominated by thermal or quantum phase slips
is defined as a temperature at which the thermal acti-
vation exponent becomes equal to the quantum action,
both evaluated at zero bias current.29,30 Such definition
is limited to small bias currents; thus it is not applicable
to our study since it neglects the role of the bias current
which in our case is the key control parameter.35,36

Alternatively, the effectiveness of a phase slip mech-
anism can be described by the deviation of the average
switching current from the idealized critical current of
the device Ic i.e. the switching current in the absence of
stochastically induced phase slips. Such characterization
provides an assessment of the tunneling rate since it is
the latter which determines 〈Isw〉. Using Ic − 〈Isw〉 as
a measure of a phase-slip tunneling rate and accounting
for the fact that the idealized critical current of the de-
vice is a phase slip-independent quantity we arrive at the
following implicit definition of the crossover temperature
Tq: 〈Isw,1(Tq)〉 = 〈Isw,2(Tq)〉 where 1 and 2 denote two
phase slip driving mechanisms. Assuming that 〈Isw,i〉
can be represented by a generic expression (2) and that
parameters Ω0, a, u and b can be specified for a particular
phase slip mechanism the above equation reduces to:

u
1/b1
1 (Tq) = γ u

1/b2
2 (Tq). (4)

Constant γ ≡ κ
1/b1
1 /κ

1/b2
2 depends only logarithmically

on temperature and other parameters; such dependence
is subleading and will be neglected.37

To calculate Tq using Eq. (4) knowledge of phase slip
parameters ui and bi is required. For a long wire in TAPS
regime these are given by utaps = (11.34/T )sN0

√
D(Tc−

T )3/2 and btaps = 5/4 where s is the wire cross-section, D
diffusion coefficient and N0 is the density of states.29 In

QPS regime uqps = AsN0

√
D∆ where A is a numerical

constants of order 1 and ∆ is the temperature-dependent
gap.29,30 Since a posteriori Tq � Tc one can safely ap-
proximate ∆ by its zero-temperature value ∆ = 1.76Tc.

The value of bqps – exponent which governs current
dependence of the QPS action – is poorly known. Moti-
vated by the fact that the fits to rates Γ shown on Fig. 2b
are made with the same value of b for all temperatures
and match the data well, we make a plausible assump-
tion that bqps ≈ btaps. Then, combining Eq. (4) with the
expressions for uqps and utaps given above, one arrives
at the conclusion that Tq ∝ Tc. This is in agreement
with our experimental finding that Tq ≈ 0.16Tc. The
observed coefficient of proportionality 0.16 implies that
γbA ≈ 41.38

In practice, when looking for MQT/QPS through the
temperature dependence of the switching current distri-
bution, one has to worry about an alternative explana-
tion that the σ saturation is caused by the presence of a
constant noise level. Such saturation, if present, can also
be analyzed in the framework outlined above. Modeling
noise as a thermal bath with temperature Tn one obtains
that the crossover temperature to noise-dominated phase
slip regime is equal to Tn and hence does not correlate
with Tc, which is in contrast to our observation, Fig. 1a.
We also argue that wires, which are less susceptible to
the noise, i.e. the wires with higher critical temperatures
and therefore larger barriers for phase slips, exhibit more
pronounced quantum effects, i.e. their saturation tem-
perature Tq is larger. We conclude therefore that corre-
lation between the crossover temperature and the critical
temperature, observed in our experiment (Fig. 1a), is a
strong evidence in favor of MQT below Tq.

The saturation of σ at low temperatures is seen on all
tested samples, A-F (Fig. 1c) with critical currents 11.1,
12.1, 13.1, 9.23, 5.9, 4.3 µA correspondingly (see Sec. V-
c for the additional data). The samples E and F have
relatively low critical currents. This fact leads to the oc-
currence of multi-phase-slip switching events (MPSSE),
manifested by the characteristic drop of σ with increas-
ing T , observed at higher temperatures. Such drop was
already observed on nanowires with relatively low critical
currents (between 1.1 and 6.1 µA) in Refs. 7,20, which
represents an important consistency check for our find-
ings. Here we focus on samples with higher critical cur-
rents, which do not exhibit MPSSE and do not analyze
our samples E and F, which exhibit MPSSE (Fig. 1b).

IV. SUMMARY

In summary, we demonstrate that in nanowires at
moderately high temperatures, T > Tq, the switching
into the normal state at high bias is governed by TAPS.
The corresponding standard deviation of the switching
current follows the Kurkijärvi-type power-law tempera-
ture dependence σ ∝ T 1/b. At low temperatures T <
Tq the dispersion of the switching distribution becomes
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FIG. 4: [Color online] a) The fitting parameter Tesc that de-
fines escape rate in Eq. (1) presented as a function of temper-
ature. b) Temperature dependence of the escape frequency
A = Ω/2π.

temperature-independent. The crossover temperature Tq
from the TAPS to the QPS-dominated regime is propor-
tional the wire’s critical temperature, in agreement with
theoretical arguments. Thus QPS-induced switching is
unambiguously found in amorphous and single-crystal
nanowires.
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V. APPENDIX

a) Escape temperature and attempt frequency.– The fit-
ting parameter Tesc for wire A is shown versus temper-
ature in Fig. 4a. For the reference, the values of Tq,
extracted from the mean switching current and standard
deviation fits, are plotted on both horizontal and vertical
scales as a dotted green lines. One can clearly identify the
regime of thermally-dominated escape Tesc = T (shown
by a black dashed line) above Tq, and the regime of in-
trinsically quantum escape with an effective temperature
Tesc = Tq at low temperatures.

Having measured σ(T ) one can invert Eq. (3) to find
corresponding Tesc and perform the consistency check for
the theoretical model. So found Tesc is plotted in Fig. 4a
as red crosses, which also matches well with the escape
temperature obtained by fitting the rates (shown as blue
circles).

In Fig. 4b we present temperature dependence of the
attempt frequency introduced in Eq. (1). The dashed
line corresponds to the characteristic frequency Ω =
1/
√
LC ≈ 1012 Hz, where L ≈ 1 nH and C ≈ 1 fF

are kinetic inductance and geometrical capacitance of our
wires.

b) Scaling of the activation energy with I.– We use ex-
perimental data for the switching rates Γ(I) from Fig. 2b
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TABLE I: Table of fitting parameters

Wire b IC0 (µA) ISW0 (µA) T ′C (K) TC (K) D Tq (K) σ0 (nA) RN (Ω) L (nm)

A 3/2 11.08 10.25 5.51 5.01 1.095 0.796 40.3 1152 115

B 3/2 12.11 11.33 5.48 4.92 1.226 0.781 38.3 1864 221

C 3/2 13.10 12.22 4.99 4.81 1.184 0.818 42.2 975 100

D 3/2 9.23 8.34 5.09 4.69 0.932 0.860 44.3 1011 94

C (p) 5/4 11.82 10.89 2.60 3.56 0.669 0.575 33.0 426 100

D (p) 5/4 11.81 10.89 2.90 3.58 0.694 0.602 33.4 463 94

E 3/2 5.94 5.34 4.57 4.49 1.074 0.691 30.6 1393 91

F 3/2 4.25 3.82 3.29 3.20 1.094 0.521 22.5 1507 130

D = 1.095 and IC is given by equation (5) and are shown
as solid lines of the same color as their respective data
in figure 4b. These fits are then transformed back into
distributions using the approximation:

P (I) ≈ Γ(I)

İ
exp

(
−∆I

İ

I∑

0

Γ(I)

)
(8)

where İ is the sweep speed [11]. The resulting distribu-
tions are shown as solid lines of the same color as their
respective data in figure 4a. The fitting parameter Tesc
for wire A is plotted versus temperature in figure 4c. For
reference, the Tq from the mean and standard deviation
fit shown in figures 1 and 2 is plotted on both the hori-
zontal and vertical scales as a dotted green line . There is
excellent agreement between thermal dominated escape
Tesc = T (shown by a black dashed line) above Tq and
quantum escape with an effective temperature Tesc = Tq
below Tq. Tesc can also be estimated by combining equa-
tions (2) and (4) to yield:

1

B
=
kTesc
UC

=
1

lnX

(√
6bσ lnX

ICπ

)b

(9)

The estimates from equation (9) are plotted as red x’s
in figure 4c and correspond well with the Tesc arrived at
by fitting the rates (shown as blue circles). The fitting
parameter A for wire A is plotted versus temperature in
figure 4d as blue circles. A compares fairly well with the
estimated value of 1012/2π used for the fits in figures 1
and 2 (shown by the dashed black line) though it appears
this was a slight overestimate.

Figure 5a shows a plot of Tq vs TC (Tq is from the mean
and standard deviation fit and is listed in table I). For
comparison, samples S1 through S5 from Sahu et al. [2]
are plotted on the same graph. There is a fair amount of
overlap between the data shown here and the data from
Sahu et al. except for the case of sample S5 which has a
surprisingly large Tq. The line is the best fit to the data
shown with blue circles. Figure 5b shows a plot of σ
vs d(ln Γ)/dI for base temperature where the derivative
was estimated by doing a linear fit of ln Γ(I) vs I. This
graph includes distributions from pulsed nanowires where
temperature sweeps were not performed. The function

T=300 mK
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b)
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Tq=0.164TC

a)

T q
 (K
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FIG. 5: Comparison of fitting parameters a) Tq vs TC for the
wires A-F are shown as blue circles. The best linear fit to
this data is shown as a green line. The fitting parameters for
samples S1-S5 from Sahu et al. are shown as red crosses. Note
the general dependence Tq ∝ TC holds for all samples except
S5. b) Standard deviation vs d ln Γ/dI at base temperature
where the derivative is determined by a linear fit to ln Γ(I).
The black line is the best fit to the power law shown. The blue
circles are from pulsing wire A, the green diamonds are from
pulsing wire B, the magenta squares are from pulsing wire C,
the grey triangles are from unpulsed wires (including wires
E and F) and the red crosses are from the base temperature
distributions for the 5 samples (S1-S5) which appear in Sahu
et al.

plotted is the best fit to all data. Figure 6 shows a plot
of σ vs 〈ISW 〉 for all samples including pulsed wires where
temperature sweeps were not performed.

IV. DISCUSSION:

For multiple thermally activated phase slips, it has
been theoretically predicted and experimentally observed
that standard deviation decreases as temperature in-
creases [2, 3]. A similar effect has been observed in
Josephson junctions where the decrease in standard de-
viation with increasing temperature is described by mul-
tiple retrapping [22, 23]. At sufficiently low tempera-
tures, this thermally activated multiple phase slip model
ceases to fit well with the data. In this regime, it is
predicted a single phase slip will be sufficient to drive
the nanowire into a Joule heated normal state [2]. The

FIG. 6: Table of fitting parameters.

to check the scaling of activation energy for the escape
on current. The results of such analysis are presented
in Fig. 5. We find linear dependence of semi-logarithmic
plots which become progressively more pronounced at
low temperatures. The best linear fit provides solid justi-
fication for applicability of KG model in quantum regime
which we used for the interpretation of our results.
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FIG. 7: [Color online] Standard deviations and critical cur-
rents versus temperature for wire D before and after pulsing.
The convention for lines follow that explained in the caption
of Fig. 3 in the main text.

c) Fitting parameters.– Table shown in Fig. 6 summa-
rizes all fitting parameters used for the data analysis and
interpretation. The measurements were done for eight
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different wires labeled from A to F. For wires C and D
pulsation was applied, which is indicated in the table by
subscript (p). The value of power exponent b which gave
the best fit for the data is listed for every wire. Note that
for all wires the critical current at zero temperature, Ic0,
is slightly higher that the switching current Icw0 at base
temperature. The critical temperature used to fit the
mean and standard deviation of the switching current T ′c
is relatively close to the critical temperature used to fit
the resistance versus temperature data. R(T ) analysis
was done by using result for TAPS

R(T ) = Rn exp(−∆F (T )/T ), (5)

where Rn is the normal state resistance of the nanowire,
and

∆F (T ) = 0.83
Rq
Rn

L

ξ(0)
Tc(1− (T/Tc)

2)3/2 (6)

is the free energy barrier for phase slips. Here Rq = h/4e2

is the resistance quantum, L is the length of the wire and
ξ(0) is the zero-temperature coherence length. Eqs. (5)-
(6) define so-called Little’s fit. Finally, coefficient D in
the table was introduced for the activation energy of PSJ
model as Uc = D

√
6~Ic/2e.
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FIG. 8: [Color online] Standard deviations and critical cur-
rents versus temperature for wires B and C. The convention
for lines follow that explained in the caption of Fig. 3 in the
main text.

For completeness, we show in Figs. 7-8 additional ex-
perimental data for the measured standard deviations
and corresponding switching currents for the other wires
listed in the table of Fig. 6. All wires consistently show
saturation of the dispersion of the switching current at
low temperatures, where quantum phase slips proliferate.
What is of particular significance is that the saturation of
the dispersion is accompanied by the continued increase
of the mean switching current below the crossover tem-
perature. The theoretical fits are in good agreement with
such observed behavior.
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