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Collapse of a skyrmion due to the discreteness of a crystal lattice in isotropic two-dimensional
ferro- and antiferromagnets has been studied analytically and by numerical solution of equations
of motion for up to 2000×2000 classical spins on a square lattice coupled via Heisenberg exchange
interaction. Excellent agreement between analytical and numerical results has been achieved. The
lifetime of the skyrmion scales with its initial size, λ0, as (λ0/a)

5 in ferromagnets and as (λ0/a)
2.15

in antiferromagnets, with a being the lattice parameter. This makes antiferromagnetic skyrmions
significantly shorter lived than ferromagnetic skyrmions.

PACS numbers: 75.50.Ee, 12.39.Dc, 74.72.-h

Skyrmions1,2 are topologically stable configurations of
a fixed-length three-component vector field n(r) in the
coordinate space of two dimensions. Due to the con-
straint n2 = 1 the n-field has two independent compo-
nents. This permits unique mappings of n = (nx, ny, nz)
onto r = (x, y), described by classes of homotopy3. Each
homotopy class corresponds to a non-trivial field config-
uration characterized by a conserved topological charge.
The emergence of a conserved charge from a continuous
field theory prompted numerous studies of skyrmions in
problems of high-energy and condensed matter physics4.
They include cosmology5, Bose-Enstein condensates6,
quantum Hall effect7,9 and anomalous Hall effect8, liq-
uid crystals10.

The interest to skyrmions in ordered spin systems
had received much attention soon after the discov-
ery of high-temperature superconductivity in copper
oxides11–13,15–18, and further explored recently19–22. It
is related to the fact that superconductivity in copper
oxides occurs in doped CuO2 layers that, when undoped,
are square lattices of antiferromagnetically ordered spins.
Initially there was some hope that interaction of elec-
trons and holes with skyrmions could play some role in
Cooper pairing but this was never successfully demon-
strated. Some indirect evidence of skyrmions in the mag-
netoresistence of lanthanum copper oxide has been re-
cently reported23 but direct observation of skyrmions in
2d antiferromagnetic lattices is still lacking.

In a continuous field model like, e.g., the non-linear
σ-model, the ground-state energy of the skyrmion does
not depend on its size, λ. This follows from the invari-
ance of the model with respect to the scale transforma-
tion r → kr, where k is an arbitrary constant. If the
skyrmion lives on a lattice, however, the scale invariance
becomes broken due to the presence of a lattice param-
eter a. Thus the energy of the skyrmion depends on its
size. This, in general, must lead to the collapse or expan-
sion of the skyrmion, making it unstable. The nature of
the exchange interaction on a lattice makes the skyrmion
energy decreasing with its size, that leads to skyrmion
collapse. A number of authors looked for interactions
that could stabilize skyrmions in 2d ferromagnets24–26.

It was argued that anisotropic crystal field added to the
isotropic exchange model may, in principle, dynamically
stabilize the skyrmion. In reality, however, anisotropic
interactions are of relativistic origin, while the lattice
effect that leads to the collapse of the skyrmion is of
the exchange origin and thus much greater. Same is
true about magnetic dipole-dipole interactions. In fer-
romagnets macroscopic skyrmions could, in principle, be
a part of a stable domain structure. This, however, would
not apply to microscopic skyrmions. In antiferromagnets
long-range dipole-dipole interactions are negligible and
they cannot stabilize skyrmions of any size. Therefore, it
is important first to understand what is the mechanism
of skyrmion collapse in a generic exchange model.

In this paper we study the dynamics of skyrmions
and the dependence of their collapse time tc on their
initial size in a 2d square lattice of classical spins cou-
pled via Heisenberg ferromagnetic (FM) or antiferromag-
netic (AFM) exchange interaction. The accuracy of the
continuous approximation increases with the size of the
skyrmion, λ. One should, therefore, expect that the lat-
tice skyrmion becomes stable in the limit of λ→∞. We
find that tc of the AFM skyrmion scales as tc ∝ (λ0/a)

2.15

with its initial size λ0. We compute the dynamics of the
collapse using both the analytical field model for the Neel
vector and a direct numerical calculation on lattices of
up to 2000×2000 exchange-coupled spins. The two ap-
proaches show excellent agreement with each other. For a
2d ferromagnet we obtain (up to logarithmic corrections)
the (λ0/a)5 scaling of the lifetime. This makes skyrmions
significantly shorter lived in a 2d AFM than in a 2d FM.

We begin with an antiferromagnet described by the
Hamiltonian for the Néel vector L:

H0 =
1

2
JS2

ˆ
dxdy

[
1

c2
L̇2 + (∇L)2

]
. (1)

Here L is normalized as L2 = 1, (∇L)2 ≡ (∂xL)
2 +

(∂yL)
2, JS2 > 0 is the exchange energy associated with

the interaction of spins of length S, and c is the speed of
AFM spin waves that equals 2

√
2Ja/~ in a square lattice.

The term with L̇2 can be understood as a kinetic energy
responsible for the inertia of antiferromagnets.
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The absolute minimum of the energy corresponds to
the uniform AFM background, L = const. Non-uniform
configurations of L are characterized by the topological
charge

Q =
1

4πa2

ˆ
dxdyL · (∂xL× ∂yL) (2)

that takes values Q = 0,±1,±2, . . .. Within, e.g., the
homotopy class Q = −1 the minimum energy, static con-
figuration is a skyrmion given by

L =

(
2λx

r2 + λ2
,

2λy

r2 + λ2
,
r2 − λ2

r2 + λ2

)
, (3)

where r2 = x2 + y2. Its energy, E = 4πJS2, is indepen-
dent of λ.

Equation (1) can be derived from the Heisenberg
exchange interaction between nearest-neighbor classical
spins

∣∣sA∣∣ = ∣∣sB∣∣ = 1,

H = S2
∑
ij

Jijs
A
i ·sBj = −S

2

∑
i⊂A

sAi ·H
A
i −

S

2

∑
j⊂B

sBj ·H
B
j ,

(4)
where A and B denote AFM sublattices and HA,B

i =

−δH/δ(SsB,A
i ) = −S

∑
j Jijs

B,A
j are the effective fields

acting on the spins. As spins in each sublattice rotate
smoothly through space, one can expand the effective
fields as

HA
i = −JS

[
4sBi + a2∇2sBi +

a4

12

(
∂4x + ∂4y

)
sBi + . . .

]
(5)

and similar for HB
i . This allows one to go over to

the continuum description in which there are two spin
fields sA and sB . Switching to the magnetization M =(
sA + sB

)
/2 and the Néel vector L =

(
sA − sB

)
/2, sat-

isfying M2 + L2 = 1 and M · L = 0, with the help of
equations of motion ~ṡA,B =

[
sA,B ×HA,B

]
one obtains

H = H0 −
1

24
JS2a2

ˆ
dxdy

[(
∂2xL

)2
+
(
∂2yL

)2]
, (6)

which differs from Eq. (1) by the second term due to the
discreteness of the lattice. If the size of the skyrmion
λ is large compared to a, this term can be treated as a
perturbation. Using the "rigid" skyrmion profile of Eq.
(3), one obtains the energy due to this term

Ediscr = −(2πJS2/3)(a/λ)2 (7)

that violates the scale invariance of the skyrmion. Eq.
(7) can be interpreted as a potential energy responsible
for the skyrmion collapse. During the collapse it is trans-
formed into the kinetic energy defined by the integral of
L̇2 = 4r2

(
r2 + λ2

)−2
λ̇2. With account of energy conser-

vation, Eq. (6) gives

3

c2

(
ln
r2max + λ2

λ2
− r2max

r2max + λ2

)
λ̇2 =

(a
λ

)2
−
(
a

λ0

)2

,

(8)

Figure 1: Collapse of antiferromagnetic skyrmions as de-
scribed by the numerical solution of Eq. (8).

where λ0 is the initial size of the skyrmion and rmax has
been introduced because of the logarithmic divergence of
the integral in the kinetic energy. The natural choice is
rmax = λ0+ct, which describes a front of AFM spin waves
propagating away from the collapsing skyrmion. This
is confirmed by direct numerical calculations, see Fig. 4
below. The logarithmic terms with time-dependent rmax

require numerical integration of Eq. (8). The resulting
collapse curves are shown in Fig. 1.

We now turn to the direct numerical solution of
the dynamics of the skyrmion provided by the micro-
scopic Hamiltonian (4). The dynamics is determined
by the coupled equations of motion for spins, ~ṡi =
− [si × δH/δ(Ssi)]. We chose initial state as a staggered
skyrmion texture, sst, given by Eq. (3) for the A sublat-
tice and by the same formula but with a minus sign for
the B sublattice. The size of the skyrmion numerically
can be defined as λ2m = (m − 1)(2mπ)−1

∑
i (1− sstzi)

m,
where m > 1 is an integer. If one replaces summation by
integration over dxdy/a2 and uses the skyrmion texture
(3) for sstz , this formula becomes an identity, λm = λ. The
results presented below have been obtained with m = 4.
Other options make little difference.

As the dynamics of the skyrmion is entirely due to
small terms arising from the lattice discreteness, the
time dependence is slow and sufficient accuracy can be
achieved even for a large time step of integration. In-
creasing the step is limited by stability rather then by
required accuracy. The challenge of the numerical solu-
tion is the 1/r decay of the skyrmion profile that requires
rather big lattice sizes even for moderate values of λ/a.
Free or periodic boundary conditions introduce spurious
λ-dependent energies that compete with the small energy
due to the lattice discreteness, leading to the expansion
of the skyrmion instead of collapse. To make boundary
conditions more resembling an infinite lattice, we have
included the missing outside neighbors of the bound-
ary spins with the values approximated by the second-
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Figure 2: Skyrmion collapse in an antiferromagnet. Whereas
the skyrmion size λ is decreasing continuously, the topological
charge Q decays only during a short final stage of the collapse.

Figure 3: Skyrmion collapse in an antiferromagnet for differ-
ent initial skyrmion sizes.

order extrapolation from the inside of the working re-
gion. Still, the lattice size has to be large: 1000×1000
for λ0/a up to 16 and 2000 × 2000 for λ0/a = 18 and
20. The program was implemented in Wolfram Mathe-
matica with a compiled vectorized fixed-step fourth-order
Runge-Kutta routine. One AFM skyrmion-collapse event
required about one hour computer time.

The collapse of an AFM skyrmion with λ0/a = 15 is
shown in Fig. 2. Whereas the skyrmion size λ is decreas-
ing continuously, the topological invariantQ changes only
during a short final stage of the collapse when the contin-
uous approximation fails. Fig. 3 shows skyrmion collapse
curves for different values of λ0/a. For λ0/a = 18 the lat-
tice size of one million spins is too small and computation
with four millions of spins is needed. For λ0/a = 16 these
both lattice sizes yield the same collapse curve. These re-
sults compare very well with the semi-analytical results
shown in Fig. 1. The collapse time can be fitted as
tc ∝ λ2.150 in this range of λ0. The considerable deviation

Figure 4: The front propagating from the center of antiferro-
magnetic skyrmion at the beginning of its collapse.

Figure 5: Skyrmion collapse in a ferromagnet. The collapse
time scales as tc ∝ λ5

0.

from the square law can be traced back to the logarith-
mic term in Eq. (8). Fig. 4 shows |dL/dt| in an anti-
ferromagnetic skyrmion at different times. The region of
skyrmion motion where |dL/dt| > 0 is expanding with
the speed of antiferromagnetic spin waves c. The reason
for this is that the lattice-discreteness terms that drive
the skyrmion collapse are very short ranged while the
skyrmion itself is long-ranged. The action of the former
is transferred to the whole skyrmion with a speed c in
accordance with the causality. The front position can be
estimated as rmax = λ0+ ct, as was argued after Eq. (8).

Along the same lines we have numerically studied the
dynamics of ferromagnetic skyrmions. It turns out to be
much slower than the collapse of AFM skyrmions, so that
up to one day of computations is needed for one collapse
event. Fig. 5 shows time dependences of the size of FM
skyrmions during the collapse. The collapse time scales
as tc ∝ λ50.

The λ50 scaling of the collapse time of the FM skyrmion
can be qualitatively understood as follows. The exchange
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interaction conserves the total spin of the system. The
infinitesimal increase of the (negative) skyrmion spin in
the course of its collapse is

dS = S

ˆ
d2r

a2
dsz
dλ

dλ = −8πS λdλ
a2

ln
R

λ
, dλ > 0.

(9)
Here we used sz in the skyrmion form given by Eq. (3)
and introduced the long range cut-off R. Because of
the conservation of the total spin, the increase of the
skyrmion spin by dS generates dS magnons. Since in
this process the spin is being carried by large distances,
the skyrmion collapse is very slow. The average energy
of emitted magnons can be estimated as ~ω ∼ −~λ̇/a.
This yields the emitted magnon power

P = ~ω
dS
dt

= 8π~S
λλ̇2

a3
ln
R

λ
. (10)

On the other hand, the rate of change of the energy (7)
due to discreteness of the lattice is Ėdiscr ∝ λ̇. From the
energy conservation, Ėdiscr + P = 0, one obtains

dλ

dt
= −JSa

5

6~
· 1

λ4 ln(R/λ)
, (11)

yielding the collapse time

tc =
6~
5JS

(
λ0
a

)5

ln

(
R

λ0

)
. (12)

The condition ~ω � SJ for the energy of the magnons
translates to 5(λ/a)4 ln(R/λ)� 1, which is well satisfied
during the collapse.

In conclusion, we have studied the collapse of
skyrmions due to the discreteness of the lattice in generic
models of isotropic 2d ferro- and antiferromagnets with
Heisenberg exchange interaction. The results obtained
within continuous field model are in excellent agreement
with the direct numerical calculation on lattices of up to
2000×2000 coupled spins. The collapse time of antiferro-
magnetic skyrmions obtained by both methods scales as
(λ0/a)

2.15. For ferromagnetic skyrmions, the numerical
calculation gives the (λ0/a)5 scaling of the collapse time.
It is explained by the emission of magnons. Thus, AFM
skyrmions are much shorter lived than FM skyrmions.
This can be understood in the following terms. The col-
lapse of an AFM skyrmion occurs via transformation of
its potential energy due to the discreteness of the lattice
into the kinetic energy defined by L̇2. The FM skyrmion
does not possess such a kinetic energy, so that its poten-
tial energy has to be dissipated into magnons, which is
a much slower process. In the expression for tc the time
constant in front of the power of the ratio λ0/a is of or-
der ~/(JS). For, e.g., JS ∼ 100K and λ0 ∼ 10a, this
gives tc ∼ 10ns for the lifetime of the skyrmion in a ferro-
magnet and tc ∼ 10ps in an antiferromagnet. Skyrmions
of size exceeding one thousand lattice spacings would be
practically stable in a ferromagnet. In antiferromagnets,

however, even macroscopic skyrmions would decay rather
fast.

An interesting question is whether a skyrmion can be
stabilized by the exchange interaction with an itinerant
electron or a hole. If such interaction is stronger than the
exchange interaction between magnetic atoms in a 2d lat-
tice, the electron polarizes the background and the prob-
lem becomes one of the magnetic polaron. Only when
the exchange interaction of the electron with the back-
ground is weak it can be considered as a perturbation
of the skyrmion problem. In the case of a ferromagnet
the energy of the electron in the uniform ferromagnetic
background at infinity would always be lower than its
energy in the vicinity of the skyrmion, thus ruling out
the stability of any bound state. For an antiferromagnet,
the discreteness of the lattice generates small uncompen-
sated spin of the skyrmion. The electron can, in principle,
couple to that spin by the exchange interaction. Our pre-
liminary study shows, however, that this cannot prevent
skyrmion from collapsing. Full analysis of this problem
will be presented elsewhere.
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