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We evaluate the spin-wave spectra for the high-field phases of the frustrated triangular lattice
antiferromagnet with a focus on the observed high-magnetic field phases of CuFeO2. After deter-
mining the appropriate magnetic ground state using a combination of Monte-Carlo simulations and
variational methods for a two-dimensional triangular lattice, we evaluate the spin excitation fre-
quencies and intensities using a rotational Holstein-Primakoff expansion for both the collinear and
non-collinear states. These predictions should help experimentalists to identify the magnetic ground
states of CuFeO2 and other triangular-lattice antiferromagnets using inelastic neutron scattering.

PACS numbers: 78.70.Nx, 75.30.Ds, 75.10.Jm,75.30.Et

I. INTRODUCTION

Motivated by magnetically-induced electric polariza-
tion, a great deal of research has recently been devoted
to understanding the possible ferroelectric/magnetic cou-
pling mechanisms in “improper” multiferroics1–5. The
competing interactions in these materials produce a wide
range of collinear (CL) and non-collinear (NC) magnetic
structures5–10. The ability to transverse those phases
through doping or application of a magnetic field has
provided an essential tool to understand these materials.

CuFeO2 is a frustrated antiferromagnet that contains
stacked triangular lattices11. Below about 7 T, the mag-
netic ground state of pure CuFeO2 is a CL 4-sublattice
(SL) (↑ ↑ ↓ ↓) phase. Above 7 T, it exhibits multiferroic
behavior and is characterized by a complex non-collinear
(CNC) state12. The CNC phase is also produced by Al or
Ga doping, which decreases the easy-axis anisotropy13,14

perpendicular to the hexagonal planes. Characterization
of the CNC phase in Ga-doped CuFeO2 shows that the
magnetic structure is a distorted spiral with alternating
small and large turn angles fluctuating between (19◦-25◦)
and (130◦-140◦)15,16. While both the 4-SL and CNC
phases of CuFeO2 have been extensively investigated, the
high-field phases are not well understood.

At about 13 T, the CNC phase transforms into a 5-
SL phase17, which does not exhibit multiferroic behavior
possibly because it is commensurate. The 5-SL phase
is stable up to about 20 T, above which a canted 3-SL
phase becomes the ground state. At 34 T, the 3-SL phase
smoothly transforms into a conical-type phase. A differ-
ent conical phase appears at about 50 T18–20. Finally,
all spins become aligned and the CL-1 (ferromagnetic)
phase is reached at 70 T22.

For materials like CuFeO2 and CuCrO2, the spin con-
figurations in each hexagonal plane are stacked in an anti-
ferromagnetic (CuFeO2)

11 or ferromagnetic (CuCrO2)
21

manner from one layer to the next. Because the interlayer
interactions are not magnetically frustrated, the impor-
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FIG. 1: (Color Online) (a) The magnetic phase diagram for
the frustrated triangular lattice with J2/|J1|= 0.4 and J3/|J1|
= 0.75 as determined by Ref. [23]. The black line indicates
the proposed trajectory for CuFeO2 with increased field and is
given by h = 36.59-2.15d-255.64d2 . (b) The 2-D interactions
considered for the frustrated triangular lattice consisting of
J1, J2, and J3.

tant behavior of these materials can be predicted based
on a two-dimensional triangular-lattice antiferromagnet.
An added advantage of CuFeO2 is that the large S = 5/2
Fe3+ spins can be treated classically with a small error.

Recently, the magnetic phase diagram of CuFeO2 was
predicted using a combination of variational and Monte-
Carlo computational methods23 on a two-dimensional
lattice. As a function of magnetic field and anisotropy,
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FIG. 2: (Color Online) The simulated spin-wave spectra along
k = (kx, 0) and spin configuration for the (a) CL-1 (d = 0.5
and h = 16.0), (b) SF-1 (d = 0.290 and h = 14.467), (c) CL-7
(d = 0.5 and h = 11.0), and (d) SF-2 (d = 0.30 and h = 12.9)
phases35.

the phase diagram was predicted to contain 14 pos-
sible phases (shown in Fig. 1(a)). The black line
in Fig. 1(a) denotes the predicted trajectory for
CuFeO2 with increasing magnetic field, where anisotropy
is assumed to decrease with magnetic field, as indicated
experimentally18,19.
In this report, we use a rotational Holstein-Primakoff

expansion to evaluate the spin dynamics of the CL and
NC spin structures for the high-field phases of the frus-
trated triangular lattice. In these calculations, we use the
general interaction parameters determined for CuFeO2.
When possible, we follow along the predicted trajectory
for CuFeO2 to help explain the dynamical evolution of
the spin-wave spectra for that material. Our goal and
motivation is to provide experimentalists with a gen-
eral idea of how the spin-wave frequencies and intensi-
ties evolve with magnetic field when investigating either
CuFeO2 or other frustrated triangular lattice materials.

II. 2-D FRUSTRATED TRIANGULAR LATTICE

The frustrated triangular lattice provides multiple in-
terlayer super-exchange pathways (Fig. 1(b))11,23,24. In-
cluding both an external magnetic field and anisotropy,

the Heisenberg Hamiltonian for a triangular lattice can
be written as

H = −1

2

∑

i6=j

JijSi · Sj −D
∑

i

S2
iz − 2µBH

∑

i

Siz , (1)

where Si is the local moment on site i, D is the anisotropy
energy, H is the external magnetic field, and the ex-
change coupling Jij between sites i and j is antiferro-
magnetic when Jij < 0. For convenience, we define d =
D/|J1| and h = 2µBH/|J1|S with all energies in units
of J1. Since all energies are in the units of J1S, the
INS spectra provided may be mapped on to other ma-
terials for a general understanding and identification of
the phase dynamics. For convenience, we set the lattice
constant to 1.
Candidate magnetic states were suggested by Monte-

Carlo simulations on a 60×60 lattice. The precise ground
states and their energies are found using a variational
method on a large lattice. For incommensurate solutions,
the spin state is expanded in harmonics of the ordering
wavevectorQ = Qcx as described in Refs. [23,24]. Based
on the provided magnetic ground state, the spin-wave dy-
namics are evaluated using a Holstein-Primakoff transfor-

mation with the spin operators given by Siz = S − a†iai,

Si+ =
√
2Sai, and Si− =

√
2Sa†i (ai and a†i are bosonic

destruction and creation operators). The local spin op-
erators are obtained from the laboratory spin operators
by applying a rotation matrix25,26. Since higher order
terms corresponding to spin-wave interactions and quan-
tum fluctuations are unimportant at low temperatures
and for small 1/S, they have been ignored in this analy-
sis.
To determine the spin-wave frequencies ωq, the

equations-of-motion are solved for the vectors vq =

[a
(1)
q , a

(1)†
−q

, a
(2)
q , a

(2)†
−q

, ...], which may be written in terms

of the 2N × 2N matrix M(q) as idvq/dt = −
[

H2,vq

]

=
M(q)vq, where N is the number of spin sites in the unit
cell25. The spin-wave frequencies are then determined
from the condition Det[M(q) − ωqI] = 0, where all SW
frequencies must be real and positive and all SW weights
must be positive to assure the local stability of a mag-
netic phase.
The spin-wave intensities are determined by the coef-

ficients of the spin-spin correlation function:

S(q, ω) =
∑

αβ

(δαβ − qαqβ)S
αβ(q, ω), (2)

where α and β are x, y, or z27. A more detailed discus-
sion of this method is contained in Ref. [25]. Notice that
inelastic neutron-scattering (INS) measurements only de-
tect components of the spin fluctuations perpendicular28

to the wavevector q.
The total intensity I(q, ω) for an INS scan at constant

q is given by

I(q, ω) = S(q, ω)F 2
q
exp

(

−(ω − ωq)
2/2δ2

)

, (3)
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FIG. 3: (Color Online) The simulated spin-wave spectra along
k = (kx, 0) and spin configuration for the (a) NC-3i (d = 0.355
and h = 3.61), (b) NC-3ii (d = 0.333 and h = 7.53), (c) CL-3
(d = 0.345 and h = 5.40), and (d) CL-30 (d = 0.5 and h =
7.0) phases35.

where δ is the energy resolution and Fq is the Fe3+

ionic form factor given the interest in CuFeO2
29,30. The

simulated energy resolution is based on a Gaussian dis-
tribution, which is standard for constant q scans on a
triple-axis spectrometer28,31. Other experimental config-
urations may require more complex resolution functions.
It should be noted that the triangular lattice can pro-

duce “twin” branches of the spin state, with propaga-
tion wavevectors rotated by ±60◦ with respect to the
main branch. The excitations of the “twin” branches
will change the inelastic spectra along the kx direction.
However, the “twin” branches can be suppressed through
the application of uniaxial pressure as shown in Ref. [32].
For clarity, the spin-wave dynamics described in this pa-
per does not include the “twin” contributions.

III. PREDICTED SPIN DYNAMICS

Figure 1(a) presents the magnetic phase diagram
for the frustrated triangular lattice with increasing
anisotropy and magnetic field, which was determined us-
ing Monte-Carlo and variational techniques in Ref. [23].
The phase diagram contains multiple CL and NC phases
(Fig. 1(a)) that are produced by the competition of
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FIG. 4: (Color Online) The simulated spin-wave spectra along
k = (kx, 0) and spin configuration for the (a) NC-5i (d = 0.303
and h = 2.12), (b) NC-5ii (d = 0.45 and h = 9.0), (c) CL-5i
(d = 0.359 and h = 2.87), and (d) CL-5ii (d = 0.5 and h =
9.0) phases35.

the three exchange interactions (J1, J2, and J3) as the
anisotropy and external magnetic field are varied.

Generally, Fig. 1(a) indicates that the CL states are
stabilized with increasing anisotropy. For D >> J1, the
spins become Ising-like without any transverse degrees
of freedom. For zero field, the phase diagram of an Ising
system with different exchange interactions J2 and J3 but
J1 < 0 was described evaluated by Takagi and Mekata33.
As the anisotropy decreases, the incommensurate CNC
phase34 appears at low field. With increasing magnetic
field, the CNC phase transforms into multiple NC and
spin flop (SF) phases23. The SF-1 phase (Fig. 2(b)) is a
conical phase with the same canting angle θ on every site
and with a turn angle φ(x) = Q1x that varies linearly
with x. The SF-2 phase (Fig. 2(d)) is more complicated
with 5 sublattices in the x direction and a turn angle
φ(y) = Q2y that increases linearly with y. More details
on these phases are provided in Ref. [23].

In order to help experimentalists to identify these
phases, we have simulated the INS dispersions along the
CuFeO2 trajectory given in Fig. 1(a). For comparison,
phases not on the trajectory are also considered. Al-
though we use the magnetic form factor for Fe3+, the
dispersion curves were evaluated for general S and are
applicable to any material with stacked triangular lat-
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tices.
Generally, the spectra of the NC phases contain gap-

less Goldstone modes due to rotational invariance about
the z axis. These modes would become gapped if we
had also included easy-plane anisotropy, which breaks
the rotational invariance by restricting the spins to the
yz plane. By contrast, the easy-axis anisotropy D and
the magnetic field H , both along the z axis, produce a
spin-wave gap in the CL phases.
Figure 2 shows the INS dispersions along k = (kx, 0)

for the high-field ferromagnetic (a) CL-1 (d = 0.5 and h
= 16.0), (b) SF-1 (d = 0.290 and h = 14.467), (c) CL-7
(d = 0.5 and h = 11.0), and (d) SF-2 (d = 0.30 and h =
12.9) phases35. Since these phases are close to the field-
induced ferromagnetic phase, their excitation spectra are
very similar. Therefore, subtle details in the dispersions
are important. For the SF phases, two dispersive modes
appear. Compared to the CL-1 spectrum, the spectra of
the SF and CL-7 phases all show distinct signatures that
should help to identify them using INS. While the CL-
1 phases presents a smooth continuous dispersion, the
CL-7 and SF-2 phases have “breaks” in their dispersions
around k = (π/2, 0) and the SF-1 phase has two modes
that mirror each other at k = (4π/5, 0).
In Fig. 3, we present the INS dispersions along k =

(kx, 0) for the (a) NC-3i (d = 0.355 and h = 3.61), (b)
NC-3ii (d = 0.333 and h = 7.53), (c) CL-3 (d = 0.345
and h = 5.40), and (d) CL-30 (d = 0.5 and h = 7.0)35.
While the NC 3-SL spectrum exhibits a Goldstone mode
at k = (4π/3,0), the CL-3 and CL-30 spectra are gapped
systems.
Figure 4 shows the INS dispersions along k = (kx, 0)

for the (a) NC-5i (d = 0.303 and h = 2.12), (b) NC-5ii (d
= 0.45 and h = 9.0), (c) CL-5i (d = 0.359 and h = 2.87),
and (d) CL-5ii (d = 0.5 and h = 9.0)35. Similar to the 3-
SL phases, the NC-5i and NC-5ii spectra have Goldstone
modes at k = (4π/5,0), but the spectra of the CL phases
are gapped with minima at the same wavevector as the
NC Goldstone mode.

IV. DISCUSSION

Following the predicted trajectory for CuFeO2, distinct
changes in the spin-wave dispersions are produced by the
competition between the field and anisotropy energies.
Once the CL-4 and CNC phases are passed, the system
enters the NC-5i phase (Fig. 4(a)), which has a Gold-
stone mode at k = (4π/5 ,0). As the field is increased
further, this mode becomes slightly gapped in the CL-5i
phase (Fig. 4(c)). However, the main signatures of the
NC-5i and CL-5i phases remain the same.
The NC-5i phase may be distinguished from the CL-

5i phase by the dependence of the gap on field. Since
the NC phase has a gapless Goldstone mode but the
CL phase does not, INS would observe a decrease in
the Goldstone mode intensity as the field is increased.
The spin-wave gap that appears in the CL-5i phase will

increase linearly with field. Magnetization and diffrac-
tion measurements13,14 strongly suggest that the NC-5i
phase appears above the CNC phase in doped samples:
the wavevector k = (4π/5,0) of the 5-SL phase remains
constant while the magnetization linearly increases with
field. INS measurements can be used to confirm the ap-
pearance of the NC-5i phase in those materials.
It should be noted that the CL-5i phase also has a local

minima at approximately k = (4π/3,0). This provides
a precursor to the NC-3i phase (Fig. 3(a)), since the
spectral weight shifts to the Goldstone mode of the NC-
3i phase at k = (4π/3,0).
As the magnetic field grows larger, the spin-waves be-

comes gapped again in the CL-3 phase (Fig. 3(c)). While
one mode is raised in energy by the magnetic field, a sec-
ond mode is lowered in energy by the reduced anisotropy.
The anisotropy dominates over the magnetic field and re-
stores the Goldstone mode as the system enters the NC-
3ii phase (Fig. 3(b)). As the magnetic field increases
further, the system becomes gapped again as the sys-
tem transforms into the SF-2 phase (Fig. 2(d)). This
phase then smoothly transforms into the SF-1 phase (Fig.
2(b)). The leftmost mode of the SF-1 phase becomes
less intense and disappears as the system enters the CL-
1 phase (Fig. 2(a)). In the fully aligned CL-1 phase, the
dispersion simply increases with field.
An animation of these modes along the CuFeO2 trajec-

tory is provided in the supplementary material36. This
movie visually depicts the changes in the spin-wave fre-
quencies and intensities just described. Specifically, the
movie shows how the intensity of the Goldstone mode in
the NC-5i phase changes with increasing field.
Since the modes of each magnetic phase have specific

characteristic features, INS is a critical tool to distin-
guish between those phases. This is particularly evi-
dent in the case of the 5SL phases of CuFeO2 (NC-5i
- Fig. 4(a) and CL-5i - Fig. 4(c)) since both phases
have the same wavevector and the magnetization pro-
vides only a qualitative distinction between the CL and
NC phase. By probing the local degrees of freedom28,
INS provides a “dynamical fingerprint” of the underly-
ing magnetic structure. Correspondingly, predictions of
the spin-wave dynamics are critical for the interpretation
of INS spectra and the identification of collinear and non-
collinear magnetic phases for magnetic materials.

V. CONCLUSION

In conclusion, we predict the spin-wave dynamics for
the high-field phases of a frustrated triangular lattice
with focus on the parameter space for the multiferroic
CuFeO2 for comparison to future experiments. This cal-
culations were performed using a rotational Holstein-
Primakoff expansion for both the CL and NC phases.
Analysis of the spin-wave spectra for these phases shows
the constant competition between the magnetic field
and the anisotropy energies. It is a goal of this paper
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that these predictions can be used to help experimen-
talists identify the high-field phases for CuFeO2 or the
phases for other triangular-lattice antiferromagnets like
CuCrO2.
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