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Abstract 
 

We report measurements of the elastic moduli as a function of temperature (5-

300) K and magnetic field (0-2 T) for the Zintl ferromagnet Yb14MnSb11, which is 

believed to be a rare example of an under-screened Kondo lattice. The elastic moduli 

measured below the Curie temperature in this complex ferromagnet exhibit unusual 

lattice stiffening that is independent of the magnetic field and can be adequately modeled 

using the Landau theory. 

 
Introduction 
 

The soft Zintl ferromagnet Yb14MnSb11 belongs to the family of “14-1-11” 

compounds, which are known to exhibit a wide range of unusual magnetic and electronic 

transport properties [1 ,2 ,3 ,4]. Isostructural to the Zintl compounds Ca14AlSb11 and 

Ca14MnB11, [5,6] Yb14MnSb11 crystallizes in a tetragonal lattice of the space group 

I41/acd with 208 atoms per unit cell. The complex structure combined with the large 
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number of atoms per unit cell and the heavy atomic masses of Yb and Sb leads to a 

relatively low thermal conductivity and the compound has recently attracted attention for 

its potential as a p-type thermoelectric material at high temperatures [7]. In addition, 

Yb14MnSb11 displays highly unusual magnetism, an understanding of which is expected 

to provide insights into the complex physics of ferromagnetic semiconductors, the key 

components of spintronic devices [8,9,10]. It has been suggested that the Yb14MnSb11 is a 

rare example of an under-screened Kondo lattice. [8, 11 , 12 ] The Yb2+ ions in the 

Yb14MnSb11 are non-magnetic due to their filled 4f shells (4f14), and X-ray magnetic 

circular dichroism measurements (XMCD) indicate a divalent Mn+2 (d5) configuration. 

[13] The magnetic Mn atoms in the Yb14MnSb11 are found to be located at unique 

crystallographic sites within the MnSb4 tetrahedra which results in a nearest neighbor 

Mn-Mn distance of approximately 10 Å. [1, 8] Hence, the ferromagnetic order in the 

Yb14MnSb11, whose onset temperature is Tc = 53 K, is attributed to RKKY interaction 

between the localized Mn 3d moments mediated via conduction holes from the Sb 5p 

bands. [14,15]  

In this paper, we present and discuss the temperature dependence of the elastic 

moduli of Yb14MnSb11 below Tc.  Changes in Young’s modulus with magnetization have 

been recognized over one hundred years ago in materials such as iron and nickel. These 

materials show a sudden drop in the elastic modulus below Tc, which is referred to as the 

“delta-E effect” (ΔE effect). This strongly field-dependent change in the elastic moduli 

occurs because of domain wall motion under stress [16]. In contrast, the temperature- and 

field dependence of the elastic moduli obtained on Yb14MnSb11, a soft ferromagnet, show 

no significant ΔE effect below the Curie temperature. Instead, a lattice stiffening is 
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observed below Tc, similar to the temperature dependence of the elastic moduli of the 

ferromagnetic Mott insulator YTiO3 [17]. The classical Landau theory [18,19,20] is 

utilized to model the thermodynamics of this second order magnetic phase transition.  

 

Experimental technique 

Yb14MnSb11 polycrystals and single crystals were synthesized at Oak Ridge National 

Laboratory, using a molten metal flux as first reported by Fisher et al. [2].  Resonant 

Ultrasound Spectroscopy (RUS) was used to measure the elastic moduli as a function of 

temperature and magnetic field. RUS is based on the measurement of the resonances of a 

freely vibrating body [21,22,23]. The mechanical resonances can be calculated for a 

sample with known dimensions, density, and elastic tensor. In a RUS experiment, the 

mechanical resonances of a freely vibrating solid of known shape are measured, and a 

nonlinear optimization procedure is used to model the measured lines with the calculated 

spectrum. The RUS data reported here were carried out as a function of temperature (5-

300 K) and magnetic field (0-2 Tesla) on two polycrystalline rectangular parallelepipeds 

of approximately 2 x 2 x 5 mm3, using a custom designed probe that can be inserted in a 

commercial Quantum Design Physical Properties Measurement System (PPMS). In 

addition, RUS data have been collected for a shard of single crystalline Yb14MnSb11. The 

shape and size of this single crystal did not allow us to cut an oriented parallelepiped (i.e. 

a parallelepiped with all faces perpendicular on the tetragonal crystal axes), which is 

essential to obtain quantitative values of the single crystalline moduli. However, RUS 

measurements can give important information even when it is not possible to obtain an 

absolute value for the elastic constants: anomalous thermodynamic behavior will be 

reflected in the temperature-dependence of the resonant frequencies, and these can be 
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measured regardless of sample shape or symmetry. The magnetization data used in the 

Landau analysis were obtained through standard susceptibility measurements in a 

Quantum Design Magnetic Properties Measurement System (MPMS).  

Results and Discussion 

 Figure 1 shows the elastic moduli vs. temperature for polycrystalline Yb14MnSb11 

measured for B = 0T and B = 2T. If untextured, polycrystalline materials are elastically 

isotropic, and have only two independent elastic moduli, the longitudinal modulus c11 

(Figure 1(a)), and the shear modulus c44 (Figure 1(b)), which are related to respectively 

the longitudinal and transverse sound velocity in the material. Normal elastic behavior 

can be modeled with the so-called Varshni function [24], which shows a gradual increase 

of c11 with decreasing temperature, leveling off at low temperatures.  The elastic response 

of Yb14MnSb11 clearly deviates from Varshni behavior: whereas both the longitudinal and 

shear modulus increase with decreasing temperature, a rather abrupt stiffening is 

observed below the Curie temperature (Tc = 53 K), which is not affected by the 

application of a magnetic field.   A similar behavior is observed in single crystalline 

Yb14MnSb11, as shown by the temperature-dependence of a resonant frequency measured 

for a shard of single crystalline Yb14MnSb11 (Figure 2).  Since the square of the resonant 

frequencies is directly proportional to the elastic moduli, the substantial increase in 

frequency observed below Tc reflects a stiffening of the elastic moduli, and confirms the 

observations for the polycrystal. The mean velocity of sound vm can be calculated from 

the measured values of the polycrystalline moduli c11 and c44 using vL =  and vT =   

and 1/3
3 3

1 2 1( [ ])
3m

T L

v
v v

−= + [25]. The values of vm calculated from the longitudinal and 



5 
 

transverse components of the elastic moduli varies from 1920 m/sec at 300K to 1942 

m/sec at 10 K, resulting in a 1% increase in the mean velocity of sound in polycrystalline 

Yb14MnSb11 at temperatures below Tc. The Debye temperature (ΘD) calculated from the 

mean velocity of sound is ΘD ≈ 186 K at room temperature, using 

1
33

4D m
B

h qN v
k M

ρ
π

⎡ ⎤Θ = ⎢ ⎥⎣ ⎦
[25] in fair agreement with estimates from specific heat 

measurements which yielded ΘD ≈ (160 ± 10) K. [1]  

We track the temperature dependence of the elastic constants by calculating them 

as the second derivatives of the free energy with respect to strain at constant temperature. 

Although the RUS frequencies used in the experiment probe the adiabatic elastic 

constants, nominally obtained as second order derivatives of the internal energy in 

respect with the strain, from general thermodynamic considerations one can show that the 

ratio of the two sets of coefficients is proportional with the ratio of the heat capacities of 

the material measured at constant strain and constant force respectively (generalized 

Reech relation), which in a solid is close to unity.  

In a magnetic system, however, the temperature-dependence of the elastic moduli 

is expected to be sensitive to changes in the magnetization of a material, because a 

change in the alignment of magnetic moments with changing temperature will affect the 

magnetic contribution to the free energy. We incorporate these aspects in a theoretical 

model based on the phenomenological Landau theory of phase transitions [18,19, 20] 

which permits an analysis of the temperature dependence of the elastic moduli in the 

presence of ferromagnetic ordering.  
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In this approach, the free energy F of a ferromagnet is written as a sum of terms 

that depend only on the order parameter, which is the spontaneous magnetization M, 

contributions from the elastic strain e, independent of M, and a contribution from the 

coupling between the order parameter M and the elastic strain e. In a crystal with 

tetragonal symmetry, the free energy thus constituted is written as: 

2 4

2 2 2 2 2 2
11 12 13 33 44 66

2 2 2 2 2 2 2
1 2 3 4 5 6 7

8

2 4
1 1 1 1( ) ( ) ( )
2 2 2 2

[ ( ) ( ) ( )

( )] (1)

xx yy xx yy xx zz yy zz zz yz xz xy

xx yy xx yy zz xx yy zz yz zx xy zz

xx yy

a bF M M

c e e c e e c e e e e c e c e e c e

M d e e d e e d e e e d e d e e d e d e

d e e

= − +

+ + + + + + + + +

+ + + + + + + + + +

+ +

  

The above expression for the free energy includes only even powers of M to reflect the 

invariance under time reversal. The easy direction of spontaneous magnetization is the c 

axis in this case, which belongs to the point group A2g representation of 4/mmm. The 

latter terms result in the development of a strain under magnetization, preserving the 

tetragonal symmetry. 

To simplify the calculation, we use a reduced generic version of Eq. 1, written as: 

2 4 2( , ) ( , )
2 4 i j i j
a bF M M H e e M G e e= − + + +    (2) 

 
The first two terms in equation (2) represent the pure magnetic contribution to the free 

energy. In the vicinity of the critical temperature, the phenomenological parameter a 

assumes a temperature dependence of the form 0( ) ( )ca T a T T= − , with a0 a temperature 

independent constant. The second phenomenological parameter b is also temperature 

independent. 
61( , )

2i j ij i j
ij

H e e c e e= ∑  describes the elastic part with the strain in the 
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absence of M.  The components  of the strain tensor are indexed by i, j =1 to 6 such that  

1 ≡ xx; 2 ≡ yy; 3 ≡ zz; 4 ≡ yz; 5 ≡ zx; 6 ≡ xy [26]. Finally, G(ei, ej) results from the 

coupling between elastic strain and the magnetization, with di the magnetoelastic 

coupling constants. Following the Slonczewski-Thomas model, [27] the magnetization is 

assumed to vary quasi-statically as a function of the deformation, such that it maintains 

its equilibrium value. This is obtained by differentiating the free energy in respect to the 

magnetization. Therefore,  

 0F
M

∂ =
∂

          (3) 

which leads to: 

 3 2 0aM bM GM− + + =         (4) 

The non-trivial solution for magnetization is: 

 2
0

2a GM
b

−=           (5) 

We note that on account of the explicit temperature dependence assumed for a, as 

discussed above, the equilibrium magnetization acquires, in a first order approximation 

where the contribution from the elastic deformation is neglected, the same behavior.  

When Eq. (5) is substituted back in F, the free energy becomes a function of ei , ej. The 

dependence is explicit and also implicit through M. This new form of the free energy is 

labeled F̂ following the Slonczewski-Thomas notation. The elastic coefficients are 

calculated as the second derivative with respect to a certain displacement of F̂ . Using our 

simplified expression, Eq. (2), the elastic constants are:      

c11 = ∂2F̂ / ∂e1
2 = ∂

∂e1

∂F̂
∂e1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= ∂

∂e1

[(−aM 0 + bM 0
3 + 2M 0G )

∂M 0

∂e1

+ ∂H
∂e1

+ M 0
2 ∂G

∂e1

]  (6) 
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Using the equilibrium condition of magnetization from equation (4),  

c11 = ∂
∂e1

[∂H
∂e1

+ M0
2 ∂G

∂e1

] = ∂2H
∂e1

2 + 2M0 (∂M0

∂e1

)∂G
∂e1

+ M0
2 ∂2G

∂e1
2     (7)  

The first term in equation (7) 
2

0
112

1

H c
e

∂ =
∂

, is recognized as the elastic coefficient in the 

absence of magnetization.  

 Further, from Eq. (5), 0
0

1 1

22 M GM
e b e

∂ ∂= −
∂ ∂

 leading to  

0

1 0 1

1M G
e bM e

∂ ∂= −
∂ ∂

         (8) 

Using equations (5) and (8) in (6), we obtain, 

2
0 2 2

11 11 0 2
1 1

2 ( )G Gc c M
b e e

∂ ∂= − +
∂ ∂

        (9) 

When M0
2 is considered from Eq. (5), it is easily obtained that, 

2
0 2

11 11 2
1 1

2 ( )G a Gc c
b e b e

∂ ∂= − +
∂ ∂

        (10) 

where second order contributions from the elastic part of the free energy were neglected.  

Clearly, the temperature dependence of c11 originates in the coupling with the equilibrium 

magnetization, through its proportionality with a(T), expressed in the last term of the Eq. 

(10). Using the complete form of the free energy, Eq. (1), the six elastic moduli for a 

single crystal with tetragonal structure are: 

0 2 0 2 2
11 11 8 1 11 8 1 0

2 2 2 2ac c d d c d d M
b b b

= − + = − +       (11) 

Similarly, 
2 2

2 2 2 0 20
44 2 0 0 44 5 02 2

2 2 2 2

ˆ / 2 ( ) 2MH G Gc F e M M c d M
e e e e

∂∂ ∂ ∂= ∂ ∂ = + + = +
∂ ∂ ∂ ∂

 (12) 

0 2 2
33 33 7 4 0

2 2c c d d M
b

= − +         (13) 
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0 2
66 66 6 02c c d M= +          (14)  

For mixed coefficients, 
2 2

0 2 2
12 12 8 2 0

1 2 1 2 1 2

2 2( )( )H G G a Gc c d d M
e e b e e b e e b
∂ ∂ ∂ ∂= − + = − +

∂ ∂ ∂ ∂ ∂ ∂
 (15) 

Similarly, 0 2
13 13 7 8 3 0

2c c d d d M
b

= − +        (16) 

 
Whereas the above calculations yield expressions for the elastic moduli of single crystals, 

the elastic moduli for isotropic polycrystals can be estimated using the Voigt averaging 

scheme, which provides an upper limit for the shear and bulk modulus of a 

polycrystalline solid under the assumption that the stress is uniform everywhere within 

the sample [28]. The general expressions for the Voigt approximation for the bulk 

modulus K and shear modulus S are given by: 

 11 22 33 12 23 13
1 2( ) ( )
9 9

K c c c c c c= + + + + +            (17)            

11 22 33 12 23 13 44 55 66
1 1 1( ) ( ) ( )

15 15 5
S c c c c c c c c c= + + − + + + + +             (18) 

For a tetragonal lattice, the elastic constants satisfy c11=c22, c13=c23, c44=c55, and other 

elements other than c12 and c66 are zero. With all elastic moduli cij having an M2 

dependence, it is clear that the Voigt average for the polycrystalline bulk and shear 

modulus will display an M2 dependence as well. Figures 3 and 4 illustrate the model 

calculations for the polycrystalline moduli c44 (= S) and c11 (= K + 4S/3), using 

0 2
ij ij ij ijc c D M A= + +  where Dij and Aij are constants comprising of the Landau 

coefficients b and dl, where l=1 to 8 obtained from equations (11-16). 

Using the equilibrium value of M2 = a/b, the values of the Landau coefficients 

corresponding to c11, i.e., D11 ~ 0.34 GPa/emu2, and A11 ~ -0.29 GPa are estimated from 

the slope and intercept of Δc11 vs. M2 in the temperature range (10-50) K below Tc as 
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shown in figure 3(a), where Δc11 = c11 −c11
0 . The Landau coefficient for c44 i.e., D44 ~ 

0.105 GPa, and A44 ~ -0.02 GPa are estimated from the slope of Δc44 vs. M2 in the 

temperature range (10-50) K below Tc as shown in figure 4(a). c11
0 and c44

0 were 

estimated assuming a temperature-independent (Varshni-like) behavior of the elastic 

moduli in the absence of magnetization. The Landau coefficients used to model the 

elastic moduli are tabulated below:  

Elastic moduli 
Landau 
coefficients 
(GPa/emu2) 

Landau 
coefficients 
(GPa) 

c11 
 

D11 = 0.34 
 

A11 = -0.29 

c44 
 

D44 = 0.105 A44 = -0.02 
As shown in figures 3(b) and 4(b), using the above values of the Landau coefficients, 

excellent agreement is found between the measured elastic moduli c11 and c44 below Tc 

and the Landau model derived for the polycrystalline Yb14MnSb11. A quadratic coupling 

of elastic strain and the spontaneous magnetization, which is the order parameter here, 

provides an accurate model for the stiffening of the elastic constants in the Yb14MnSb11 

below Tc. The elastic properties of the rare earth ferromagnet Gd also exhibit similar 

lattice stiffening below the ferromagnetic ordering temperature (Tc ~ 293.5 K), and the 

spontaneous magnetic contribution to the Young's modulus in the metal is found to be 

proportional to the squared magnetization. [29] This may indicate that the Yb14MnSb11 

behaves more like a rare earth ferromagnet, with no direct overlap of magnetic orbitals, 

owing to the distance between the magnetic Mn2+ ions. Despite the complex nature of 

ferromagnetism in the Yb14MnSb11, the Landau theory of ferromagnetism based on the 

simple mean-field theory can successfully model the temperature dependence of the 

elastic moduli near and below the magnetic ordering temperature Tc.  
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Conclusions 

The elastic moduli of the Zintl ferromagnet Yb14MnSb11 have been investigated 

as a function of temperature and magnetic fields, using resonant ultrasound spectroscopy 

(RUS). The two elastic constants c11 and c44 for the polycrystalline Yb14MnSb11 show 

unusual stiffening below the ferromagnetic ordering temperature, Tc ≈ 53 K that 

corresponds to a 1% increase in the longitudinal and transverse velocities of sound. A 

similar behavior is observed in the temperature dependence of the resonant frequencies 

measured for crystallographically unoriented single crystals of Yb14MnSb11. The 

observed stiffening in the Yb14MnSb11 below Tc is found to be independent of applied 

magnetic fields, B=0-2T. A simple model based on Landau theory for ferromagnetism, 

using a quadratic coupling between the elastic strain and the ferromagnetic order 

parameter, successfully models the stiffening of the elastic moduli of the Yb14MnSb11 

below Tc.  
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List of Figures: 
 
Figure 1:  Elastic moduli vs. temperature for polycrystalline  Yb14MnSb11 in zero and two  
Tesla magnetic field: (a) Longitudinal Modulus c11; (b) Shear modulus c44 
 

Figure 2: Resonant frequency vs. temperature for a single crystal of Yb14MnSb11 
 

Figure 3(a): Δc11 vs. M 
2  

(b) Landau model for change in longitudinal elastic moduli Δc11 
below the magnetic phase transition, using values of slope and intercept from (a). See text 
for details of the model calculation.   
 

Figure 4(a): Δc44 vs. M 
2 
(b) Landau model for change in shear moduli Δc44 below the 

magnetic phase transition using value of slope from (a). See text for more details.  
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Figure 2: Resonant frequency vs. temperature of a 
single crystal of Yb14MnSb11
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