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We present a three-dimensional acoustic concentrator capable of significantly enhancing 

the sound intensity in the compressive region with scattering cancellation, imaging and 

mirage effects. The concentrator shell is built by isotropic gradient negative-index materials, 

which together with an exterior host medium slab constructs a pair of complementary 

medium. The enhancement factor, which can approach infinity by tuning the geometric 

parameters, is always much higher than that of traditional concentrator made by 

positive-index materials with the same size. The acoustic scattering theory is applied to 

derive the pressure field distribution of the concentrator, which is consistent with the 

numerical full-wave simulations. The inherent acoustic impedance match at the interfaces of 

the shell as well as the inverse processes of “negative refraction – progressive curvature – 

negative refraction” for arbitrary sound rays can exactly cancel the scattering of the 

concentrator. Besides, the concentrator shell can also function as an acoustic spherical 

magnifying superlens, which produces perfect same-shaped image with bigger geometric and 

acoustic parameters located at a shifted position. Then some acoustic mirages are observed 

whereby the waves radiated from (scattered by) an object located in the center region may 
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seem to be radiated from (scattered by) its image. Based on the mirage effect, we further 

propose an intriguing acoustic transformer which can transform the sound scattering pattern 

of one object into another object at will with arbitrary geometric, acoustic and location 

parameters.  
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I. Introduction 

In recent years, there has been an increasing attention in the coordinate-transformation 

method which establishes the correspondence relationship between unprecedented wave 

manipulations and the required material parameters. Based on the invariance of the wave 

equation under coordinate transformations, this powerful conceptual design methodology has 

created a variety of unprecedented effects and functional devices by controlling the 

propagation paths of classic waves such as matter wave1, electromagnetic (EM) wave2-19 and 

acoustic wave20-33 at will. The most intriguing applications enabled by this methodology is 

cloak, which is capable of reducing the scattering and making an object undetectable.2-13,20-33 

The parameters of the ideal cloak are generally anisotropic, and they can also become 

isotropic under conformal mapping.2 With the aid of artificial metamaterials, such cloaks 

have been experimentally demonstrated at microwave7 and recently optical frequencies8,9 in 

the EM wave field, and at ultrasound30 and audio frequencies31 in the acoustic wave field. In 

subsequent studies, Rahm et al. have further proposed the two-dimensional (2D) cylindrical 

EM concentrator with positive-index materials, which makes the power flow of incident 

wave concentrate within the inner compressive region.13 The proposal is expected to have 

potential significance in the applications where high intensity field is required.14-19 Similarly, 

it is of academic and practical significance to study the analogical concentration of acoustic 

waves.  

In this paper, we propose a three-dimensional (3D) spherical acoustic concentrator, which 

is constructed by isotropic gradient negative-index materials.34-37 The key idea in this design 

is complementary medium which consists of the negative-index shell and a host medium slab 
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nearby. With the aid of complementary medium, the proposed transformation compresses a 

bulk of host medium bigger than the concentrator itself into the core region, which finally 

yields a much higher enhancement factor than that of traditional scheme constructed by 

positive-index materials. Theoretical analysis based on acoustic scattering theory derivation 

is performed to demonstrate the concentration and imaging effects of the proposal, which 

agrees well with the full-wave simulations by finite element method (FEM). The inherent 

acoustic impedance match at the interfaces cancels the sound scattering of the concentrator. 

Moreover, the concentrator shell can also perform as an acoustic spherical magnifying 

superlens5,35, in which an object located in the compressive region may produce a perfect 

same-shaped image with bigger geometric and acoustic parameters positioned at a shifted 

location. Then the resulting intriguing acoustic mirages11,38-40 are observed, in which the 

acoustic waves radiated from (or scattered by) one object may seem to be radiated from (or 

scattered by) its image. Combining the imaging and the external cloaking10 effects we further 

propose an acoustic transformer which can acoustically transform one object into another 

object at will with arbitrary geometric, acoustic and location parameters. 

 

II. Modeling 

The transformation acoustics yields that, when a space x' is transformed into another space 

x, the bulk modulus tensor κ(x) and the inverse mass density tensor ρ-1(x) in the new space x 

take the form of κ(x) = det(A)κ'(x') and ρ-1(x) = A[ρ'-1(x')]AT/det(A), where κ'(x') and ρ'-1(x') 

are the modulus tensor and the inverse mass density tensor in the original space x', and A is 

the Jacobian transformation matrix with components ij i jA x x′= ∂ ∂ . For a spherical 
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coordinate transformation from original space x'(r', θ', φ') to physical space x(r, θ, φ), if the 

transformation only occurs in r direction [ ( )r f r′ = , θ θ′ = , ϕ ϕ′ = ], the mass density ρ and 

bulk modulus κ in the physical space can be obtained as  

2 2
0 0 0[ , , ] [ ( ) ( ) , ( ) , ( )]r f r r f r f r f rρ θ ϕ ρ ρ ρ′ ′ ′= , 

2 2
0[ , , ] ( ( ) ( ))r r f r f rκ θ ϕ κ ′= ,                               (1) 

where κ0 and ρ0 are the bulk modulus and mass density of original homogeneous isotropic 

space. Note that in the study of acoustic properties of materials, the term “isotropic” means 

having identical values of elastic modulus and mass density in all directions. It can be noticed 

in Eq. (1) that the three components of bulk modulus κ are equal, which means the bulk 

modulus of transformation medium is isotropic. On contrary, the three components of mass 

density ρ are unequal, which means the mass density of transformation medium is generally 

anisotropic. However, if the r-component of mass density is set to be equal with θ-component 

and φ-component, namely 2 2
0 0( ) ( ) ( )f r r f r f rρ ρ′ ′= , the mass density of transformation 

medium becomes isotropic too. By solving this differential equation, the general solution 

which leads to isotropic transformation medium can be expressed as  

1( )f r tr±= ,                              (2) 

where t is unknown coefficient which can be obtained by the requirement of continuous 

condition of f(r) at boundary.  

Figure 1(a) illustrates the schematic configuration of the proposed 3D acoustic 

concentrator. Its cross section in r-θ plane is shown in Fig. 1(b) due to the spherical symmetry. 

The whole system consists of the compressive region A, the concentrator shell B with inner 

(outer) radius a (b), and the host medium C+D outside the concentrator. As is shown in Fig. 
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1(c), the design begins with a radial mapping in spherical coordinate from virtual space x'(r', 

θ, φ) to physical space x(r, θ, φ):  

2

2 2

,
( ) , .

,

r r b
r f r b r a r b

rb a r a

            >⎧
⎪′ = =       < <⎨
⎪   <⎩

                        (3) 

The general host medium (r > b) is homogeneous isotropic medium such as water and air, and 

is characterized by the bulk modulus κ0 and mass density ρ0. By inserting the transformation 

functions described by Eq. (3) into Eq. (1), we obtain the material parameters (bulk modulus 

κ and mass density ρ) of the proposed system as 

0 0
6 2

0 0

6 2
0 0

[ , ],

[ , ] [ ( ) , ( ) ],

[ ( ) , ( ) ],

r b

r b r b a r b

a b a b r a

κ ρ
κ ρ κ ρ

κ ρ

                           >⎧
⎪= − −   < <⎨
⎪       <⎩

.                (4) 

It can be noticed in Eq. (4) that the acoustic parameters of the concentrator shell (a < r < b) 

are radius-dependent and negative. The acoustic impedance matches at the interfaces, 

resulting in scattering cancellation. At r = b, the bulk modulus of the shell is -κ0 and the mass 

density is -ρ0, which perfectly matches to host medium; at r = a, the modulus is -κ0(a/b)6 and 

the mass density is -ρ0(a/b)6, which matches to the compressive region. The concentrator 

shell is isotropic due to the appropriate transformation function f(r)=b2/r which satisfies the 

type described by Eq. (2), and other functions such as the simple linear function 

f(r)=b-(r-b)(b2/a-b)/(b-a) will yield an anisotropic shell. The compressive region is isotropic 

too since the transformation function f(r)=rb2/a2 also satisfies the type of Eq. (2). Besides, the 

wavelength in the homogeneous compressive region is shorter than that in the host medium 

because of its smaller bulk modulus and mass density. 

The construction of the proposed concentration system can be vividly described as follows. 
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First, a large sphere of host medium with a radius of b2/a in original space [Fig. 2(a)] is 

compressed into a small sphere with a radius of a in physical space [Fig. 2(b)], namely the 

compressive region A. Such compression leads to higher intensity in compressive region, as 

discussed in Section III. Then, we fill the empty region a < r < b2/a in physical space with 

double-layered shell constructed by ordinary medium layer C (b < r < b2/a) and its 

complementary medium layer B (a < r < b) with gradient negative parameters. We further set 

the layer C to be the same as the host medium, and obtain the single-layer concentrator shell 

with gradient negative isotropic acoustic parameters, as shown in Fig. 2(b). The zero phase 

delay12 together with the inherent impedance match under coordinate transformation 

eventually results in the nearly perfect scattering cancellation effect. 

 

III. Acoustic concentration with scattering cancellation effect 

A. Scattering theory derivation 

In order to demonstrate the concentration and scattering cancellation effects of the 

proposed system, we derive the pressure field formulations by using the acoustic scattering 

theory and spherical wave expansion method. The acoustic pressure p0 in host medium, p1 in 

the shell and p2 in the compressive region can be expressed in terms of spherical Bessel 

function ( )mJ kr  and Hankel function of the first kind (1) ( )mH kr : 

(1)

0

[ ( ) ( )] (cos )l lm m l lm m l m
m

p A J k r C H k r P θ
+∞

=

= +∑ ,                 (5) 

where l=1, 2, 3, and lmA , lmC  and lk  are the coefficients of the incident waves, the 

scattered waves and the wave number in the corresponding regions, respectively.  

The pressure field distribution of the system can be easily reconstructed by solving the five 
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coefficients (C2m=0) and substituting them into Eq. (5). The coefficient 0mA  is determined 

by the incident wave. As a concrete example, a plane harmonic pressure wave 

0( cos )
0

i k r t
incp P e θ ω−=  incidents along θ = 0° direction with amplitude P0. Then the coefficient 

0mA  takes the form of 0 0 (2 1) m
mA P m i= + . Determination of other four unknown coefficients 

requires the use of continuous scalar acoustic pressure and radial velocity 

( / )( / )rv i p rωρ= ∂ ∂  at the interfaces of r = a and r = b, which finally yields 

 2 1 0m m mA A A= = , 0 1 0m mC C= = .                      (6) 

We note that C0m=0 in Eq. (6) demonstrates the effect of scattering cancellation in the host 

medium for arbitrary acoustic incident waves. Substituting the coefficients of Eq. (6) into Eq. 

(5), we further obtain 

2 2 2
2 1 0( , ) ( , ) ( , ), 0p r p a r p rb a r aθ θ θ= =     < < .            (7) 

Equation (7) shows that the pressure at (r, θ) in the compressive region is exactly equal to 

that at (a2/r, θ) in the shell and that at (rb2/a2, θ) in the host medium, which directly results in 

the perfect imaging effect of the proposal. The host medium and compressive region are both 

isotropic and homogeneous, so Eq. (7) also yields the same wavefront shape in the 

compressive region and host medium. Identical pressure and smaller acoustic impedance 

produce higher intensity in the compressive region, and the concentration effect is thus 

induced. Suppose the acoustic intensity in the free space is I0, then the intensity in the 

compressive region can be expressed as I2 = (b/a)4I0, namely the intensity enhancement factor 

of the proposal is  

4
2 0 ( )I I b aη = = .                            (8) 

It is worthy to point out that, the proposed scheme can achieve much stronger field 
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intensity with the same radius than the traditional anisotropic positive-index concentrator13. 

The general constructed transformation function of the latter is f1(r), as shown by red line in 

Fig. 1(c): 

1

,
( )( ) , ,

,

r r b
b c b c af r r a r b
b a b a
rc a r a

                           >⎧
⎪ − −⎪= +  < <⎨ − −⎪

                     <⎪⎩

                       (9) 

After the same calculation process based on scattering theory, the intensity enhancement 

factor of the traditional concentrator can be obtained as 

2
1 ( )c aη = .                               (10) 

Since a<c<b, the maximum of η1 is (b/a)2, which is obviously smaller than that of the 

proposed concentrator. The field intensity of the proposal can be further enhanced by 

increasing the ratio b/a. 

B. Concentration and scattering cancellation effect 

In our following study, we carry out full-wave simulations by the use of FEM to 

demonstrate the performance of the proposal. In all numerical simulations, the host medium 

is set as water with 0κ = 2.19 GPa and 0ρ = 998 kg/m3. The acoustic and geometric 

parameters of the shell are 6
1 0 ( / )r bκ κ= − , 2

1 0 ( / )r bρ ρ= −  and a = 1.0 m, b = 1.7 m, 

respectively. The compressive region has the acoustic parameters of 6
2 0 ( / )a bκ κ=  and 

2
2 0 ( / )a bρ ρ= , which significantly mismatch to that of the host medium. Under these 

parameters, the analytical intensity enhancement factor η [Eq. (8)] of the proposal is 

(b/a)4=8.3521. The spatial frequency of the incident wave is k0 = 2π and the corresponding 

wavelength in the host medium is λ = 1 m.  

We first simulate the case of plane wave incident. A uniform plane harmonic pressure wave 
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is incident onto the concentrator along θ = 0° direction. Figure 3(a) illustrates the acoustic 

pressure field distribution of the concentrator in r-θ plane. As observed, there is no scattering 

wave outside the concentrator, and the pressure fields outside and inside the shell maintain 

undisturbed plane wavefronts. The acoustic rays undergo two inverse processes of “negative 

refraction – progressive curvature – negative refraction”, and finally return to their original 

directions, as shown by the white curves in Fig. 3(a). For an exterior observer, the acoustic 

field thus seems to be emitted from the source directly as if there is no concentrator in the 

host medium. Figure 3(c) illustrates the corresponding acoustic intensity field distribution, in 

which the white arrows indicate the directions of the power flow. It can be clearly seen that 

the acoustic waves are concentrated into the compressive region when passing through the 

shell, and the intensity field in the compressive region is spatially uniform and strongly 

enhanced. The arrows in Fig. 3(c) show that there are some energy circulating between the 

shell and the compressive region. Thus the acoustic power flow through the compressive 

region is higher than that flow through the whole shell, and then the higher intensity 

enhancement factor is induced. 

In order to verify the efficiency of the proposal to different wavefronts, we further 

investigate its interaction with acoustic spherical waves. Figures 3(b) and 3(d) depict the 

acoustic pressure field and intensity field distributions in r-θ plane for the concentrator under 

spherical wave irradiation, respectively. Here, a point source is located at (6.0 m, 180°, 0°). It 

is obvious that the spherical wave is undisturbed by the concentrator. The acoustic intensity is 

strongly enhanced in the compressive region by the concentrator, while keeping the 

distribution trend unchanged.  
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In addition, we quantify the concentration performance of the proposal by the acoustic 

intensity distributions along x axis, as plotted in Fig. 4. The types of incident wave and the 

locations of irradiation source in Figs. 4(a) and 4(b) are same with those in Figs. 3(a) and 3(b), 

respectively. The solid and circle curves stand for the cases of with and without concentrator, 

respectively. For the case of plane wave incident, the acoustic intensity is spatially invariable 

and has average value 0.1128 in free space [the circle curve in Fig. 4(a)]. When we put the 

concentrator in free space, the intensity outside the concentrator is unchanged, while the 

intensity in the concentrating shell is smoothly enhanced as the radius decreases. The 

intensity in compressive region is spatially uniform and has average value 0.9426, so the 

intensity enhancement factor is about 8.3563, which agrees well with the analytical factor. In 

contrast, for the case of spherical wave incident, the acoustic intensities both in free space 

and compressive region decrease as the x-location increases, while the intensity in the 

concentrating shell is smoothly enhanced too as the radius decreases. However, the intensity 

in compressive region is still higher than that in the free space. As an example, the intensities 

at (0 m, 0°, 0°) for free space case and concentrator case in Fig. 4(b) are 0.0369 and 0.3081, 

yielding a enhancement factor 8.3496. The simulated enhancement factors for both cases are 

in good agreement with the analytical factor of Eq. (8). The field intensity in the compressive 

region can be further enhanced by increasing the ratio b/a, and the enhancement can 

theoretically diverge to infinity as the radius of the compressive region goes to zero.  

 

IV. Acoustic imaging and mirage effects 

The concentrator can be also regarded as an acoustic spherical magnifying superlens. In 
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this section, we focus on its imaging effect and the associated mirage effect.  

A. Imaging of point source 

Figures 5(a)-5(d) illustrate the transformation function r'=f(r) given by Eq. (1) and the 

physical principle of the imaging effect with different source locations. As shown in Fig. 5(a), 

the transformation maps a point (r', θ', φ') within the folded space of b < r' < b2/a in the 

virtual space to three points in the physical space. The three points correspond to P(r0, θ0, φ0) 

in the compressive region, P''(a2/r0, θ0, φ0) inside the shell and P'(r0b2/a2, θ0, φ0) in the host 

medium. If one point is set as a source then other two points are its real images. According to 

the reciprocity principle, the positions of source and real images can be exchanged, thus we 

only discuss the case of source located at P. Such a perfect acoustic imaging effect is also 

illustrated by the sound rays in the lower panel of Fig. 5(a). The ray equation in the proposed 

concentrator shell is 

2sin( ) er bθ α− = ,                            (11) 

with α and e being two constants determined by the initial conditions. The point source P(r0, 

θ0, φ0) radiates sound rays (red curves) and they first go straight in the compressive region. 

After negative refraction occurs at the inner interface, they travel in plane curves described 

by Eq. (11) and intersect at P''(a2/r0, θ0, φ0) in the shell. Then they undergo the second 

negative refraction at the outer interface, and go straight in the host medium and intersect at 

P'(r0b2/a2, θ0, φ0) at last. As a demonstration, Fig. 5(e) shows the pressure field calculated by 

FEM when a point source P is located at (0.7 m, 0°, 0°). The wave can pass through the shell 

and reach the outside region without changing the wavefront shape. The shell produces the 

first real image P''(1.4298 m, 0°, 0°) inside the shell and the second real image P'(2.0213 m, 
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0°, 0°) in the host medium, which agrees well with the theoretical prediction. Moreover, the 

imaging results in an intriguing mirage effect that the acoustic waves in the shell and in the 

host medium appear to be radiated from the points P'' and P', respectively. If we change the 

position of point source to P'' (P'), then the two real images will appear at P and P' (P and P''). 

It is worth pointing out that the precondition of real imaging is a2/b < r0 < a.  

In contrast, the transformation only maps a point in the virtual space outside the folded 

region into one point source P(r0, θ0, φ0) and a virtual image P'(r0b2/a2, θ0, φ0) in physical 

space. For the case of a3/b2 < r0 < a2/b the virtual image appears inside the concentrator shell, 

while for the case of r0 < a3/b2 the virtual image appears in the compressive region, as 

illustrated in Figs. 5(b) and 5(c), respectively. In the corresponding field distributions shown 

in Figs. 5(f) and 5(g), a point source P is located at (0.4 m, 0°, 0°) and (0.2 m, 0°, 0°). The 

exterior observer may find out that the acoustic waves appear to be radiated from the virtual 

image P'(1.1562 m, 0°, 0°) and P'(0.5781 m, 0°, 0°), respectively. The virtual images 

accurately appear at the locations predicted by the theoretical analysis.  

B. Imaging effects of 2D and 3D cases 

For convenience to present, we describe an object Oj by parameters [Rj, (rj, θj, φj), (κj, ρj)], 

where Rj, (rj, θj, φj) and (κj, ρj) show the geometric size parameter, the position parameters 

and the acoustic parameters (bulk modulus and density), respectively. As discussed above, for 

an exterior observer a point source P(r0, θ0, φ0) in the compressive region always produces an 

image (either a real image or a virtual image) at P'(r0b2/a2, θ0, φ0). Based on the same analysis, 

the imaging effect can be extended to 2D and 3D cases. For an object with parameters [R1, (r1, 

θ1, φ1), (κ1, ρ1)], it always has an image with parameters [R1b2/a2, (r1b2/a2, θ1, φ1), (κ1(b/a)6, 
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ρ1(b/a)2)]. Contrasting the parameters of the image with those of the imaged object, it can be 

found that the image has same shape, bigger geometric size, bigger acoustic parameters and 

shifted location, which confirms the magnifying imaging effect of the concentrator. Now we 

first take a plane source (2D case) as an example. For a circular plane source A with 

parameters [R1, (r1, θ1, φ1)], it has a real image A' with parameters [R1b2/a2, (r1b2/a2, θ1, φ1)] 

when a2/b < r1 < a [as shown in Fig. 5(d)], or a virtual image with parameters [R1b2/a2, 

(r1b2/a2, θ1, φ1)] when r1 < a2/b. In the corresponding FEM simulation shown in Fig. 5(h), a 

plane source A is located at (0.7 m, 0°, 0°) with a radius of 0.3 m, and its real image A' in the 

host medium appears at (2.0364 m, 0°, 0°) with a radius of 0.8549 m, which confirms the 

magnifying imaging effect of the shell. It is noteworthy that the white flecks in Fig. 5(h) 

stand for overvalued pressure fields, which are induced by acoustic surface waves 

propagating along the interface of the left-hand material and right-hand material. The surface 

waves are excited by acoustic evanescent waves, which carry the subwavelength detail of the 

object and decay exponentially in any positive-index medium. 

We further look into the imaging effect of 3D case. Figures 6(a) and 6(b) show the pressure 

field distributions in r-θ plane for a modified concentrator and a bare object under plane wave 

incident, respectively. In Fig. 6(a), a cylinder O1 with a height of 1.3 m, a radius of 0.65 m 

and acoustic parameters (0.0787κ0, 0.3806ρ0) is put in the compressive region at the location 

of (0.05 m, 0°, 0°), while only a bare cylinder O2 with a height of 3.757 m, a radius of 1.8785 

m and acoustic parameters (1.9κ0, 1.1ρ0) is located at (0.1445 m, 0°, 0°) in the host medium 

as shown in Fig. 6(b). It can be found that the pressure field distribution outside the dashed 

circle (r = b2/a) in Fig. 6(a) is same as that in Fig. 6(b). Quantitative analysis is also given in 
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Fig. 7, which plots the acoustic scattered pressures at the circle of r = 5 m in Figs. 6(a) and 

6(b). It is obviously that two curves overlap at most angles, indicating the same scattering 

pattern of these two cases. In other words, because of the magnifying imaging, an observer 

outside the circle r = b2/a may see a same-shaped object located at a shifted position with 

bigger geometric and acoustic parameters rather than the actual one embedded in the 

compressive region.  

C. Acoustic transformer 

By combining the external cloaking effect10 and the imaging effect, we can construct a 

conceptual device, which may be called acoustic transformer, to acoustically transform one 

object into another at will. The transformer is implemented by two-step procedure. To 

completely cancel an object O3 with parameters [R3, (r3, θ3, φ3), (κ3, ρ3)] in acoustics, we first 

embed an anti-object O4 with parameters [b2/R3, (b2/r3, θ3, φ3), (-κ3(r/b)6, -ρ3(r/b)2)] into the 

concentrator shell. In this way, the scattering of object O3 is completely cancelled by the 

concentrator and its anti-object O4. The object O3, anti-object O4 and the concentrator can be 

also regarded as a complex superlens. Next we embed an arbitrary object O5 with parameters 

[R5, (r5, θ5, φ5), (κ5, ρ5)] into the compressive region, then the modified concentrator 

(concentrator with O3, O4 and O5) will acoustically look like another object O6, which is the 

perfect magnifying imaging of O5 with parameters [R5b2/a2, (r5b2/a2, θ5, φ5), (κ5(b/a)6, 

ρ5(b/a)2)]. It is worthy to emphasize that the choice of objects O3 and O5 is arbitrary, 

indicating that the transformer can acoustically transform arbitrary object into another object 

with arbitrary geometric, acoustic and position parameters as long as it is located inside the 

boundary r = b2/a.  
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We also give FEM simulations to demonstrate how the transformer works. Figure 8 shows 

the acoustic pressure field distributions while Fig. 9 plots the acoustic scattered pressures at 

the circle of r = 5 m. In Fig. 8(a), a curved sheet O3 of a thickness of 0.4 m with acoustic 

parameters (3κ0, 1.5ρ0) to be transformed is positioned between 2.1 m<r<2.5 m and 

-20°<θ<20°. As observed, the plane wave is disturbed by O3, which results in backward 

reflection and shadow. The green square curve in Fig. 9 represents its scattering at r = 5 m. In 

order to make O3 acoustically invisible, we modify the concentrator by embedding an 

anti-object O4 with acoustic parameters [-3κ0(r/b)6, -1.5ρ0(r/b)2] between 1.156 m<r<1.3762 

m and -20°<θ<20° into the shell. In Fig. 8(b) we show the calculated pressure field, and the 

absence of scattering clearly demonstrates the external cloaking effect, which is also 

confirmed by the blue triangle curve (nearly zero at all angles) in Fig. 9. Then we put the 

object O1 whose parameters are same as those used in Fig. 6(a) in the compressive region, 

and the simulation result is shown in Fig. 8(c). The pressure field shown in Fig. 8(c) is 

obviously different with that shown in Fig. 8(a). In contrast, the pressure field outside the 

dashed circle (r = b2/a) shown in Fig. 8(c) is nearly same as that shown in Fig. 6(b), which 

indicates that the transformer succeeds in making O3 acoustically look like O2. The overlap of 

the red circle curve and black solid curve at most angles as shown in Fig. 9 also confirms the 

successful transforming. 

 

V. Conclusion 

We have presented a 3D acoustic concentrator scheme based on coordinate transformations 

with gradient negative-refraction material. The key idea in our design is complementary 
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medium which consists of a host medium slab and the gradient negative-index shell. The 

consistent analytical derivations and numerical simulations show that the shell can produce 

much stronger intensity field in the compressive region without scattering and the 

enhancement factor is obviously bigger than that of traditional concentrator constructed by 

positive-index materials. Moreover, the negative-index shell can be also regarded as an 

acoustic superlens, which can produce magnifying image with bigger geometric and acoustic 

parameters located at a shifted position, resulting in some intriguing acoustic mirages. Based 

on the imaging effect, we further propose an acoustic transformer which can transform the 

sound scattering pattern of one object into another. The proposal may have potential 

applications in acoustics such as harnessing, cloaking, imaging and camouflage.  
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Figure caption 

FIG. 1. (Color online) Acoustic concentrator with gradient negative material: (a) 3D cutaway 

view; (b) cross section in r-θ plane. A, B and C+D are the compressive region, the 

concentrator shell, and the host medium, respectively. B and C construct complementary 

medium. (c) The transformation function f(r) of the proposed concentrator and f1(r) of 

traditional one. 

 

FIG. 2. (Color online) Cross section in r-θ plane of spatial coordinate transformation 

expressed in Eq. (3) for the designed spherical concentrator: (a) original (virtual) space; (b) 

transformed (physical) space.   

 

FIG. 3. (Color online) Acoustic [(a), (b)] pressure field and [(c), (d)] intensity field 

distributions in r-θ plane of the concentrator under the wave incident from [(a), (c)] plane 

source and [(b), (d)] point source located at (6.0 m, 180°, 0°). The white curves in (a)-(b) are 

acoustic rays while the white arrows in (c)-(d) indicate the direction of the power flow. 

 

FIG. 4. (Color online) Acoustic intensity distributions along x axis of free space and 

concentrator under the wave incident from (a) plane source and (b) point source located at 

(6.0 m, 180°, 0°). 

 

FIG. 5. (Color online) The imaging principle of the concentrator shell: a point source locates 

inside the region (a) a2/b < r0 < a, (b) a3/b2 < r0 < a2/b and (c) r0 < a3/b2; and (d) a circular 
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plane source locates inside the region a2/b < r0 < a. The corresponding demonstration of 

pressure field distributions in r-θ plane: for waves incident from a point source P located at (e) 

(0.7 m, 0°, 0°), (f) (0.4 m, 0°, 0°), (g) (0.2 m, 0°, 0°) and (h) a circular plane source A located 

at (0.7 m, 0°, 0°) with a radius of 0.3 m. 

 

FIG. 6. (Color online) Acoustic pressure field distributions in r-θ plane of (a) the concentrator 

with object O1, and (b) the bare object O2 under plane wave incidence. 

 

FIG. 7. (Color online) Angle-dependence of the scattered pressure for the concentrator with 

object O1 and the bare object O2 under plane wave incidence. 

 

FIG. 8. (Color online) The working principle of the transformer: acoustic pressure field 

distributions in r-θ plane of (a) the bare object O3, (b) the concentrator with object O3 and 

anti-object O4, and (c) the concentrator with object O3 and anti-object O4 and object O1 under 

plane wave incidence. 

 

FIG. 9. (Color online) Angle-dependence of the scattered pressure for the bare object O3, the 

concentrator with object O3 and anti-object O4, the concentrator with object O3 and 

anti-object O4 and object O1 , and the bare object O2 under plane wave incidence. 

 




















