
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Effect of elasticity on torsional oscillator experiments
probing the possible supersolidity of helium

Humphrey J. Maris
Phys. Rev. B 86, 020502 — Published 12 July 2012

DOI: 10.1103/PhysRevB.86.020502

http://dx.doi.org/10.1103/PhysRevB.86.020502


 1

Elasticity and Supersolidity 

 

 

 

Humphrey J. Maris 

 

 

Department of Physics, Brown University, Providence, Rhode Island 02912 

 

 

 

                We consider the effect of elasticity on torsional oscillator experiments to investigate the 

possible supersolidity of helium. We show that in most, and possibly all, torsional oscillators there 

is a significant and hitherto unconsidered contribution to the torsional period from the helium 

elasticity. This effect needs to be carefully considered before it can be concluded that a supersolid 

component is indeed present. 
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1. INTRODUCTION 

 

A torsional oscillator (TO) consists of a torsion rod connecting a sample cell to a fixed base. 

The frequency of the oscillator is given by /K Iω =  where K  is the torsion constant of the 

torsion rod and I  is the moment of inertia of the sample cell plus contents. Such oscillators  have 

been used in many experiments to study the superfluidity of liquid helium.1 At the superfluid 

transition a fraction of the mass of the helium decouples and ceases to move when the sample cell 

rotates. This leads to a frequency shift ΔΩ  from which the superfluid fraction can be estimated.  

In an experiment in 2004, Kim and Chan2 made measurements with a cell containing solid helium 

confined in the pores of Vycor glass. When the temperature was lowered below 200 mK, the 

frequency of the oscillator began to increase. The increase in frequency when the temperature was 

lowered to 30 mK was about 18 ppm.  This increase in frequency was interpreted as a decrease in 
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the moment of inertia of the solid helium and corresponded to a supersolid fraction of 0.25 %.3  

Since this pioneering work, there have been many other torsional oscillator experiments with solid 

helium which have indicated non-classical rotational inertia (NCRI).4,5 However, different 

experiments have yielded substantially different magnitudes of the NCRI . The NCRI has been 

found to vary with 3He concentration and to depend on the procedure for preparing the sample. For 

example, in some cases the NCRI has been reduced substantially after the sample is annealed by 

holding it at a higher temperature, such as 1.5 K, for a long time before making the measurements.  

The NCRI is reduced if the vibration amplitude of the torsional oscillator is increased; one could 

suppose that this is due to the velocity of the superfluid increasing above a critical value.  

However, in an important paper, Day and Beamish6 discovered that the shear modulus of 

solid helium also exhibits anomalous behavior below 200 mK. Their results have been confirmed 

and extended in a series of more recent papers.7 The modulus has been found to increase by as 

much as 25 % when the temperature is lowered to 50 mK. This increase is believed to result from 

the pinning of dislocations by 3He. The temperature dependence of the shear modulus is similar to 

the temperature dependence of the NCRI. In addition, there is a strain amplitude dependence to the 

shear modulus. As a consequence, there has been speculation that there is no true transition to a 

supersolid state and that possibly the effects seen in the torsional oscillator experiments can 

somehow be explained by elasticity. However, it has not yet been shown that the effects of 

elasticity are large enough to explain the apparent NCRI in all experiments. In this paper we 

consider one particular mechanism by which elasticity influences the frequency of a torsional 

oscillator. As far as we know, this mechanism has not hitherto been considered.  

 

2. DIFFERENT ELASTICITY CONTRIBUTIONS 

We begin by considering the effect of elasticity for a TO with the simple geometry  shown 

schematically in Fig. 1. Here, the cell is taken to be a cylindrical volume of inside radius 3r  with 

flat bottom and top plates. The cell is connected to a massive base by a torsion rod of length L¸ 

outer radius 1r  and containing a hole of radius 2r  used for filling the cell with helium. As a starting 

approximation one can imagine the structure to consist of two distinct components, i.e., the torsion 

rod and the cell body. Within this approximation the rod provides the restoring torque when the cell 

body rotates and the cell body and the solid helium provide all of the angular momentum. One can 

consider the following series of improvements to this “simplest model” (SM):  
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1) The torsion constant of a rod of length L¸ outer diameter 1r   and inner diameter 2r  is   

4 4
1 2

rod
( )
2

mc r rK
L

π −=                                                             (1) 

where mc  is the shear modulus.  Reppy et al.8 have noted that this is the static torsion constant and 

that when the rod is being twisted back and forth at a finite frequency the effective torsion constant 

will be modified because each part of the rod has angular momentum. They show that this changes 

the torsion constant by a small amount. But since this change is not affected by any change in the 

elastic properties of the helium, so this change can generally be neglected.  

2)  If the cell is not entirely rigid the effective moment of inertia will depend on frequency ω . 

Reppy et al.8 have discussed this effect. They considered just the cylindrical outer wall of the cell 

and showed that when the finite stiffness is allowed for there is a small increase in the effective 

moment of inertia, giving a small decrease in oscillator frequency.  

3) Beamish et al.9 have considered the effect of the solid helium contained in the fill line of radius 

2r . This changes the effective torsion constant of the rod to  

4 4 4
1 2 He 2

rod
( )
2 2

mc r r c rK
L L

π π−= +�
                                                     

 (2) 

 where Hec   is the shear modulus of the helium. Stiffening of the helium increases the  torsion 

constant and raises the oscillator frequency, giving an apparent NCRI of the helium in the cell. 

Beamish et al. show that while this effect is large enough to explain the NCRI seen in some 

torsional oscillator experiments, there are many experiments in which the effect is much smaller 

than the measured NCRI.  

4) The finite stiffness of the solid helium in the cell modifies the effective moment of inertia of the 

oscillator and results in a frequency shift. It is straightforward to show that an increase in stiffness 

results in an increase in frequency and therefore an apparent decrease in the effective moment of 

inertia. This effect has been analyzed by Maris and Balibar10 and by Reppy et al.8  Maris and 

Balibar used a finite-difference numerical method whereas Reppy et al used an analytical approach. 

The conclusion from these calculations is that the effect of changes in the elasticity of the helium is 

too small to explain the NCRI seen in most of the TO experiments. These papers also give a 

discussion of the effect of helium elasticity in cells in which the helium is confined in an annular 

geometry, rather than within in an open volume of the type shown in Fig. 1. The annular sample 
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space is formed between inner and outer metal cylinders. If the cell is constructed in a way such 

that these cylinders are not strongly connected together, then when the cell vibrates there will be 

relative motion of the cylinders. In this case a change in the shear modulus of the helium can have a 

large effect on the TO frequency and can therefore give a large apparent NCRI.  

 

3. ANOTHER ELASTICITY CONTRIBUTION TO NCRI  

Here we want to point out that there is, in fact, another way in which changes in the shear 

modulus can affect the frequency of a TO. It appears that in some circumstances this can lead to 

larger effects than can the mechanisms previously considered. We first note that most of the 

moment of inertia of the cell comes from the cylindrical outer wall. It follows that the effective 

torsion constant effK  is determined not just by the torsion constant rodK  of the rod but also by the 

torsion constant diskK of the disk forming the bottom of the cell. Since these are in series 

eff rod disk

1 1 1
K K K

= + .                                                                (3) 

But disk rodK K>> , and so  

2
rod

eff rod
disk

KK K
K

≈ − .                                                                     (4) 

A change in diskK  will therefore cause a change δ Ω  in the oscillator frequency given by  

eff rod disk

eff rod disk disk

1
2 2

K K K
K K K K

δ δδ Ω = =
Ω +

.                                                 (5) 

The solid helium inside the cell will provide an additional torsional stiffness to diskK  and so any 

change in the shear modulus will give a frequency shift.   

 To calculate effK  we need to hold the cylindrical outer wall of the cell fixed, and calculate 

the torque needed to rotate the lower end of the torsion rod through a given angle. In principal, we 

could do this using a finite element simulation for the entire cell and helium. However, this 

calculation is a little delicate because we are looking for a very small effect coming from the 

elasticity of the helium. Let us first make a rough estimate of the magnitude of the effect that we 

are considering. As a first approximation, let us define the “disk” as the part of the bottom plate 

which extends from an inner radius of 1r  to an outer radius of 3r  (see Fig. 1).  Define the “torsion 
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rod” to include all of the material inside the radius 1r , so that the length of the rod is L w+ ; we 

discuss this in more detail later. The torsion constant of the disk is then 
2 2

3 1
disk 2 2

3 1

4 mc wr rK
r r

π
=

−
,                                                        (6) 

whereas the constant for the rod is (ignoring the fill line) 
4

1
rod 2( )

mc rK
L w

π=
+

.                                                       (7) 

Thus since normally 3 1r r>>  and L w>>   

    
2

rod 1

disk 8
K r
K Lw

≈ .                                                                       (8) 

As a representative example, we choose the values in Fig. 1 to be 1L =  cm, 1 0.1r =  cm, 3 0.5r =  

cm, and 0.1w =  cm. We will ignore the fill tube. If the torsion rod and cell are made of aluminum, 

the shear modulus is 113.1 10mc = ×  cgs. With these values we find  

7
rod 4.43 10K = ×  cgs             9

disk 4.06 10K = ×  cgs,         (9) 

so that diskK  is larger than rodK  by a factor of the order of 100. Note that the torsion constant of the 

disk, as defined here, is primarily determined by the inner radius 1r .  

The delicate question now is to determine the effect of the helium stiffness on the effective 

torsion constant of the plate. The shear modulus of polycrystalline solid helium (when dislocations 

are not free to move) is 81.15 10×   cgs.11 We could argue that we should add to diskK  the stiffness 

of a disk of helium of the same inner and outer radius. But how thick should this disk be? In fact as 

just noted the torsion constant of the disk is primarily determined by the inner radius; the outer 

radius is irrelevant. It therefore appears likely that the correct thickness of the helium disk must be  

of the order of 1r . Then the effective torsion constant of the disk is increased to the value  

   2 3
disk 1 He 14 4mK c wr c rπ π= +�

,
 
       (10)  

where again we are taking 3 1r r>> . Combining these results, we find that if the shear modulus of 

the helium changes by Hecδ  there is a frequency shift δ Ω  of the oscillator given by  

3
He He1

2
He

~
16 m

c cr
Lw c c

δδ Ω
Ω

.      (11) 
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With the oscillator parameters given above, Eq. 11 gives for the change in frequency resulting from 

a change in the helium shear modulus, the result  

6 He

He

~ 2.3 10 c
c

δδ −Ω ×
Ω

                (12) 

We now turn to a numerical calculation of the helium contribution to the effective stiffness. 

The equation of elasticity for purely torsional motion is 

  
2r z

r

v
t r z r
φ φ φ

φ

σ σ
ρ σ

∂ ∂ ∂
= + +

∂ ∂ ∂
                                              (13) 

where vφ   is the tangential velocity, the stresses rφσ  and zφσ  are related to the tangential 

displacement uφ  by  

2 2r z

u u uc c
r r z
φ φ φ

φ φσ σ
∂ ∂⎛ ⎞

= − =⎜ ⎟∂ ∂⎝ ⎠
 ,                    (14)  

and c is the shear modulus at the point considered. Thus in static equilibrium 
2 2

2 2 2

1 0.
u u u u
r r r r z

φ φ φ φ∂ ∂ ∂
+ − + =

∂ ∂ ∂
                                                 (15) 

In principle, the calculation of effK  could be performed as a finite element or finite 

difference calculation for the entire structure (rod, cell and helium). However, this is a little 

challenging because we are looking for a very small effect due to the helium. We therefore begin 

by performing a simulation for just the rod and the disk. The lower end of the torsion rod (see Fig. 

1) is rotated by a small angle and the outer radius of the disk is held fixed. A finite difference 

relaxation method (FDRM) with 16,000 grid points is used to calculate the equilibrium 

configuration. The torsion constant was found to be 74.52 10×  cgs. This is in reasonable agreement 

with the value of effK  found from Eq. 3 using the values for rodK   and diskK  given in Eq. 9. In Fig. 

2 we show results from the FDRM  for the tangential displacement uφ and rotation angle φ  of the 

top surface of the disk for a unit rotation angle of the lower end of the torsion rod.  It can be seen 

that the center of the top surface of the disk rotates by an angle of 0.011 radians, i.e., by an angle 

which is smaller than the rotation of the bottom of the torsion rod by a factor of 90. This is in 

reasonable agreement with the estimate that rod disk/ 100K K ∼  as given above.  

To investigate more quantitatively the additional torsional stiffness provided by the helium 

we consider the displacement of the helium in the cell that results when the bottom surface of the 
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cell (top surface of the disk) has the tangential displacement uφ  as just calculated from the FDRM 

program.12 The helium at the outer walls of the cell volume is held fixed.   In Fig.3 we show the 

results of this calculation as a contour plot of uφ .  From the result we can find the torque that the 

helium exerts on the top surface of the disk. As a test of the calculation, we have verified that the 

torque exerted on the helium by the top of the disk is equal to torque by the helium on the outer 

wall and top wall of the cell. The result for this torque is 43.0 10τ = ×  cgs. This is for a rotation of 

the bottom of the torsion rod by one radian.   Since the top surface of the disk (at the center) rotates 

by 0.011 radians this means that the torsion constant of the helium is  
4 6

He 3.0 10 / 0.011 2.7 10K = × = ×  cgs.     (16)  

Since the disk and helium are springs connected in parallel, we have that 6
disk 2.7 10Kδ = ×  . We 

can now use this value in Eq. 5 along with the values 7
rod 4.43 10K = ×  cgs and  diskK = 4.06     910×  

cgs, to obtain the final result  

6 He

He

~ 3.6 10 c
c

δδ −Ω ×
Ω

,     (17) 

i.e., about a factor of 1.5 larger than the order of magnitude estimate in Eq. 12. This frequency shift 

is comparable to the frequency shift seen in many experiments and attributed to NCRI.9 

  

4. SUMMARY 

  

 We have not attempted to make quantitative estimates of the magnitude of this effect for the 

many different torsional oscillators which have been used in different laboratories. The 

construction details of most of these TO’s are not available. We can, however, make some general 

comments on how the magnitude of this effect will vary according to the design of the cell.  

1) The effect described here will decrease rapidly as the thickness of the bottom disk of the cell 

increases. Increase of the thickness of the disk makes diskK  larger and decreases δ Ω  (see Eq. 5). In 

addition, if the radius of the torsion rod is small compared to the plate thickness, the top surface of 

the plate will undergo pure rotation without distortion.  

2) If the cell contains porous Vycor glass (or other porous material), the effect considered here 

continues to be important. A change in the shear modulus of the helium in the Vycor will cause a 

change in the shear modulus V-Hec  of the “Vycor plus helium”. The change in V-Hec  should be of the 
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order of the porosity p times the change in Hec 13, The finite porosity of the Vycor makes the 

frequency shift δΩ  due to a change in the helium shear modulus smaller. However, if this change 

in frequency is attributed to the NCRI of the helium, the NCRI fraction will be comparable to the 

value that would be obtained in a helium cell without Vycor. Of course, the temperature-variation 

of the shear modulus of helium within Vycor may be quite different from the temperature-variation 

for bulk solid helium.  
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Fig. 1. Schematic diagram showing the cross section of a typical torsional oscillator.  

Fig. 2. The tangential displacement uφ  and the angular rotation φ   of the top surface of disk as a 

function of the distance r from the axis. These results were obtained using the finite difference  

relaxation method.  

Fig. 3. Contour plot of the tangential displacement uφ  in solid helium resulting from the 

displacement of the top surface of the disk as shown in Fig. 2. In the right hand part of the figure 

the contours are equally spaced between 0.00005 and 0.0006 cm, and in the left hand part of the 

figure between -0.0006 and 0.00005 cm. The magnitude of the displacements are based on a 

rotation of the lower end of the torsion rod of 1 radian.   
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