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The recent paper by V. G. Kogan and J. Schmalian Phys. Rev. B 83, 054515 (2011) argues
that the widely used two-component Ginzburg-Landau (GL) models are not correct, and further
concludes that in the regime which is described by a GL theory there could be no disparity in the
coherence lengths of two superconducting components. This would in particular imply that (in
contrast to U(1)× U(1) superconductors), there could be no “type-1.5” superconducting regime in
U(1) multiband systems for any finite interband coupling strength. We point out that these claims
are incorrect and based on an erroneous scheme of reduction of a two-component GL theory.

I. INTRODUCTION

The recent works Refs. 1 and 2 claim that the two-
component Ginzburg-Landau (TCGL) theories can not
be used to address any properties of two-component su-
perconductors which involve disparity of density varia-
tions, in particular to describe type-1.5 superconducting
state where ξ1 <

√
2λ < ξ2

3–18. Here we point out sev-
eral crucial errors in the analysis1,2 thus demonstrating
that the following main points in Ref.1 are incorrect,

• attempts to employ the GL functionals, on the one
hand, and to assume different length scales, on the
other, cannot be justified.

• the idea of 1.5-type superconductivity is not war-
ranted by the GL theory

• ∆1(r, T )/∆2(r, T ) = const, ... this ratio remains
the same at any T in the GL domain

First let us note that Refs. 1 and 2 fail to distin-
guish between two classes of systems where the type-
1.5 state was previously discussed (i) U(1) × U(1) and
(ii) two-band superconductors where interband coupling
explicitly breaks symmetry down to U(1). Namely the
Refs. 1 and 2 mix up various aspects of physics specific to
U(1)×U(1)3 (such as the very definition of the coherence
lengths) with the different in several respects physics of
U(1) systems. The definitions of coherence lengths and
type-1.5 regime in systems with non-zero interband cou-
pling were explicitly discussed in detail in Ref. 6, long
before the appearance of Refs. 1 and 2. Thus claims
in Refs. 1 and 2 that this coupling was neglected in
works on type-1.5 superconductivity are factually incor-
rect. Note that U(1)×U(1) symmetry is also possible in
superconductors19,20 which represents the most straight-
forward example of systems which cannot be character-
ized by a single universal GL parameter (physical exam-
ples can be found in Refs.3 and 10). However in what
follows we focus exclusively on U(1) two-band supercon-
ductors.
Two-component GL (TCGL) model were derived mi-

croscopically in Refs. 21–23. However indeed the con-

ditions under which two-component GL expansions for
two-band superconductors are formally justified, were
not known (to the best of our knowledge) at the time
of publication of Refs.1 and 2 but were rigorously estab-
lished recently15. Therefore the aforementioned claim
that TCGL expansion is injustifiable1,2 is incorrect. In
this comment we discuss which incorrect assumptions
and technical errors led the authors of Refs.1 and 2 to
opposite conclusions.

II. DEFINITIONS OF THE GL REGIME IN

APPLICATION TO U(1) MULTIBAND SYSTEMS.

Let us start with definitions. The Refs. 1 and 2
defines “GL theory” as the free energy proportional to
τ2 and the modules of the fields varying as τ1/2 where
τ = (1− T/Tc). Such simplistic definition indeed can be
encountered in books on superconductivity which con-
sider simplest single-component systems. However un-
fortunately such a definition does not work in general.
The Ginzburg-Landau theory is a more general concept
of a classical field theory description of a system, which in
many physical cases does not necessarily appears in the
leading order τ -expansion. In particular such a definition
contradicts all existing literature on multicomponent GL
theories in two band superconductors, which in contrast
adopts the more general definition of GL expansion of
the free energy by powers of gap amplitudes and spa-
tial gradients21–23,25. It should be noted that it most
obviously follows from the U(1) symmetry of two-band
superconductors, that the leading order expansion in the
parameter τ yields a single order parameter field charac-
terized by a single coherence length by construction (see
e.g. a standard textbook Ref.34). The works21–23, as
well as more recent paper15 use more general expansion
in powers of gradients and amplitudes of two gap func-
tions, which most obviously yields a more complicated
temperature dependence, and cannot be expected to be
obtainable in leading order expansion in τ . The TCGL
expansion for two-band superconductor is thus an exam-
ple of an expansion in several small parameters (small
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gaps and gradients). However this fact does not make it
unjustifiable as claimed1. Indeed recently it was justified
on formal grounds for a wide range of parameters15 (see
also remark28).

III. COHERENCE LENGTHS IN TCGL MODEL

AND REDUCTION TO THE SINGLE

COMPONENT GL THEORY IN THE T → Tc

LIMIT.

A. The reduction argument in Ref. 1

As we discussed above in two band superconductors
the broken symmetry is only U(1)29 thus, by symme-
try, in the limit T → Tc, TCGL expansion should be
reduced to the conventional text-book single-component
GL theory. However the reduction derivation presented
in1 is principally incorrect. The crux of the argument
presented in Ref. 1 is that, the TCGL field equations
[Eqs. (3,4) in Ref.1]

a1∆1 + b1∆1|∆1|2 − γ∆2 −K1Π
2∆1 = 0 (1)

a2∆2 + b2∆2|∆2|2 − γ∆1 −K2Π
2∆2 = 0

∇2A−∇(∇ ·A)

+
16π2

φ0

∑

ν=1,2

Kν(∆
∗

νΠ∆ν −∆ν(Π∆ν)
∗) = 0 (2)

are generically, i.e. irrespectively of intercomponent cou-
pling strength γ are well-approximated near Tc by the
simpler system describing condensates with equal coher-
ence length coupled only by a vector potential [Eqs. (7)
and (8) in Ref.1]

ατ∆1 + β1∆1|∆1|2 −KΠ2∆1 = 0 (3)

ατ∆2 + β2∆2|∆2|2 −KΠ2∆2 = 0

∇2A−∇(∇ · A)

+
16π2

φ0

∑

ν=1,2

Kν(∆
∗

νΠ∆ν −∆ν(Π∆ν)
∗) = 0, (4)

where Π = ∇ − ieA and the new parameters α,K, βν

are related to the coefficients in starting Eqs.(1) and GL
parameter τ .
Below we present a generic argument that this re-

sult and therefore the reduction procedure are incorrect
at any temperatures. First we comment that the ob-
tained reduced system of Eqs.(3) contradicts the princi-
ples of Landau theory. That is, the initial set of equa-
tions corresponds to the system with broken U(1) sym-
metry. Equations from the second set (3) are coupled
only through A and thus corresponds to independently
conserved condensates. Thus Eqs.(3) are the field equa-
tions corresponding to a free energy functional with spon-
taneously broken U(1)× U(1) symmetry. Note that the
interband Josephson coupling in the initial set of equa-
tions breaks the symmetry of the system down to U(1)
symmetry, but no phase locking terms are present in the

reduced system of equations. Therefore the reduced the-
ory fails to account to this effect and is wrong already
on symmetry grounds. Furthermore Landau theory for
U(1) systems dictates that there is only one diverging
coherence length in the limit T → Tc associated with a
single complex field (but not two degenerate coherence
lengths associated with two fields coupled by vector po-
tential only).

B. Coherence lengths in two-band superconductors

The work 1 (and the recent follow up cited therein 27)
claim that the gap fields ∆1,2 have two independently
diverging in the limit T → Tc coherence lengths, which
become degenerate in “GL domain” at small τ , where
the system is claimed to be described by two equations
coupled only by vector potential.
Such incorrect conclusion regarding the evolution of

the length scales in the T → Tc limit is based on mis-
understanding of how coherence lengths are defined in
two-band systems. The erroneous claim that two coher-
ence lengths are attributed directly to ∆1,2 and that they
become identical near Tc) originates in the attempt2 to
assess coherence lengths though a comparison of the gap
function profiles in the 1D boundary problem. From the
observation that the overall profiles become identical in
the T → Tc limit the authors of Refs.1 and 2 concluded
that the two gap functions are characterized by the simi-
lar coherence lengths. Such approach is technically incor-
rect because one cannot extract information of coherence
length from a naive inspection of an overall density pro-
files in a nonlinear theory. Instead the correct analysis of
coherence lengths in two-band superconductor requires
an accurate consideration of the asymptotic solutions of
linearized field equations for the gap functions10,14. As
shown10,14,15 in the wide range of parameters for finite
interband Josephson coupling there exist two asymptot-
ical normal modes with different coherence lengths (or
inverse masses of the normal modes). The two distinct
coherence lengths appear as a result of hybridization of
the superconducting gap fields, and cannot be directly
attributed to the ∆1,2 fields at any finite Josephson cou-
pling and at any temperature. Instead normal modes are
associated with linear combinations of ∆1,2 and thus co-
herence lengths are hybridized6,10,14,15. Moreover one
of the two coherence lengths does not diverge in the limit
τ → 0.
The overall gap function profiles are determined by

nonlinearities and thus not only by masses of the nor-
mal modes but also by their amplitudes15. Therefore it
is not possible to extract the information about the co-
herence lengths just analyzing the overall profile of the
gap functions2. The correct reduction of TCGL model
to single-component GL theory takes place because in
the limit T → Tc the mode with a non-diverging coher-
ence length looses its amplitude15, but not because two
coherence lengths gradually become degenerate.
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IV. MISCONCEPTIONS

i For unclear reasons, the Ref. 1 criticises previous
works on type-1.5 superconductivity for “assumption of

two different penetration lengths λ1,2”. We are not aware
of any papers on two-band superconductivity where such
assumptions were made. As far as we know the notations
λ1,2 were used in literature on type-1.5 superconductiv-
ity only as characteristic constants, parameterizing GL
free energy while the physical magnetic field penetration
length was always determined self-consistently.
ii In contrast to what was claimed in Ref.2 no assump-

tions of having zero interband coupling but equal Tc for
all components in two-band systems were made3,6,10,14.
iii The work Ref.1 claims that it is not possible to

obtain fractional vortices in multicomponent supercon-
ductors discussed in the Refs.32. Obviously in the limit

T → Tc in two-band systems fractional vortex excitations
are suppressed. However fractional vortices can exist in
U(1) × U(1) systems and in two-band U(1) theories at
finite-τ . The authors of Ref.1 missed that the papers in
Ref.32 deal with fractional vortex solutions not in the
T → Tc limit and not even in the GL model but exclu-
sively in the London theory. In fact in a GL model the
fractional vortex solutions are quite different (see corre-
sponding discussion for U(1)× U(1) systems in Ref.31).
Moreover Refs. 32 primarily focuses on the U(1)× U(1)
systems. Thus the results in Ref.32 are entirely unrelated
to the arguments on T → Tc limit in two-band systems.
However we mention that occurrence of fractional vor-
tices in two-component GL models with intercomponent
Josephson coupling in mesoscopic samples was investi-
gated by other groups33.
iiii The work1 also contains mutually exclusive claims.

On one hand from the incorrect derivation of Eqs.(3) it
would follow that in the limit T → Tc the U(1) TCGL
theory is reduced to the U(1) × U(1) theory when the
gap functions are coupled only by the vector potential
(and not by phase-locking terms). On the other hand
Ref.1 claims that in two-band superconductors the GL
theory can only describe the gap functions having the
same phase. If the former of these claims contradicts
the Landau theory (see the discussion above), the lat-
ter statement also yields unreasonable conclusions negat-
ing for example the existence of the phase difference
excitations30. At finite-τ when two-band GL theory is
well justified, the appearance of the gradients of the
phase difference between component at finite τ is in fact
a quite generic effect11 because the mass of the phase-
difference mode does not diverge in the T → Tc limit15.

V. CONCLUSIONS

We discussed the errors in the treatment of T → Tc

limit in two-component superconductors in Ref.1, which
led to the incorrect (at any temperatures) system of field
equations (3) for the gap fields and incorrect conclusions

on the behavior of coherence lengths. We also pointed
out that contrary to the claims in Ref.1 TCGL expan-
sion is justified and can be used to describe systems with
disparity in coherence lengths as was demonstrated on
formal grounds in15 and does allow type-1.5 regimes.
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