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Abstract

(Sr1−xCax)3Ru2O7 is characterized by complex magnetic states, spanning from a long-range

antiferromagnetically ordered state over an unusual heavy-mass nearly ferromagnetic (NFM) state

to an itinerant metamagnetic (IMM) state. The NFM state, which occurs in the 0.4 > x >

0.08 composition range, freezes into a cluster-spin-glass (CSG) phase at low temperatures [Z. Qu

et al., Phys. Rev. B 78, 180407(R) (2008)]. In this article, we present the scaling analyses of

magnetization and the specific heat for (Sr1−xCax)3Ru2O7 in the 0.4 > x > 0.08 composition

range. We find that in a temperature region immediately above the spin freezing temperature

Tf , the isothermal magnetization M(H) and the temperature dependence of electronic specific

heat Ce(T ) exhibit anomalous power-law singularities; both quantities are controlled by a single

exponent. The temperature dependence of magnetization M(T ) also displays a power-law behavior,

but its exponent differs remarkably from that derived from M(H) and Ce(T ). Our analyses further

reveal that the magnetization data M(H,T ) obey a phenomenological scaling law of M(H,T ) ∝

Hαf(H/T δ) in a temperature region between the spin freezing temperature Tf and the scaling

temperature Tscaling. Tscaling systematically decreases with the decease of Ca content. This scaling

law breaks down near the critical concentration x = 0.1 where a CSG-to-IMM phase transition

occurs. We discussed these behaviors in term of the effect of disorder on the quantum phase

transition.

PACS numbers: 71.27.+a,74.70.Pq,74.62.En,75.30.Kz
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How phase transition is affected by disorder is an important problem extensively studied

in condensed matter physics. For a classical phase transition, the system behaves as a clean

system at large length scales if the clean correlation length exponent ν satisfies the criterion

dν ≤ 2 (known as the Harris criterion), where d is the space dimensionality.1 If this criterion

is violated, the system will remain inhomogeneous at all length scales, with the relative

strength of the inhomogeneities either remaining finite at all length scales or diverging under

coarse graining. Specifically, in addition to these behaviors based on the averaged disorder

strength, rare strong fluctuations have been demonstrated to play an important role. In a

disordered magnetic system, it is always possible to find ”rare regions” which are devoid of

any impurities and can locally have a magnetic ordered state even if the bulk system is still

in a magnetic disordered phase. Because these rare regions have finite sizes, no true static

order can develop and the fluctuations of order parameters are slow. Griffiths2 showed that

strong fluctuations of these rare regions lead to a singular free energy, which is now known

as the Griffiths singularity. In generic classical systems this is a weak effect.

In recent years the focus in this area has shifted to studies of the effect of disorder

on quantum phase transitions (QPTs), since the physical properties of many systems of

current interest, such as unconventional forms of superconductivity and magnetism, and

anomalous non-Fermi-liquid (NFL) behavior, are thought to be controlled over wide ther-

modynamic ranges by QPTs.3–14 Near QPTs order-parameter fluctuates both in space and

time. Since the quenched disorder is perfectly correlated in imaginary time direction, rare

regions become extended objects, resulting in even slower dynamics and enhancing the Grif-

fiths singularity.15–17 In this scenario, thermodynamics quantities are expected to display

”anomalous” power-law singularities controlled by a single continuously varying exponent,

e.g. the specific heat C(T ) ∝ T λ, the magnetic susceptibility χ(T ) ∝ T λ−1 and the zero-

temperature isothermal magnetization M(H) ∝ Hλ where λ is a non-universal Griffiths

exponent and ranges from 0 to 1.18,19

In many itinerant systems close to QPTs, various behaviors reminiscent of the quan-

tum Griffiths singularities have been observed, and their underlying physics is still under

debate.15–17 Theoretically it has been suggested that itinerant systems should show quantum

Griffiths phenomena similar to those in insulating magnets.18,19 However, further theoretical

studies suggest that perturbations in itinerant systems could significantly modify this sce-

nario. For example, Landau damping was argued to prevent the tunneling of the rare regions
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and suppress the Griffiths singularities at low temperatures.20,21 Moreover, it has also been

proposed that for the Ising case the QPT is fundamentally modified by the overdamping22

while in Heisenberg system the standard quantum critical point (QCP) scenario should hold

and the power-law quantum Griffiths singularities could be retained23. The recent work

by Dobrosavljevic̀ and Miranda considered the correlation among individual rare regions

in itinerant systems and pointed out that such correlations destabilize quantum Griffiths

phase, leading to a generic formation of a cluster-spin-glass (CSG) phase preceding uniform

ordering.24 In the meantime, considerate efforts have been devoted to experimentally study

the effect of disorder on QPTs. Many experimental results associated with the quantum

Griffiths phases have been reported in itinerant systems such as magnetic semiconductors

Fe1−xCoxS2,
25 heavy fermion system CePd1−xRhx

26 and metal alloy Ni1−xVx
27. However,

the effect of disorder on QPTs was rarely investigated in the transition metal oxides (TMOs).

Here we focus on the double layered ruthenates (Sr1−xCax)3Ru2O7. The end member

Ca3Ru2O7 (x = 1) is an antiferromagnet with TN = 56 K, whose ground state consists of

ferromagnetic (FM) bilayers stacked antiferromagnetically along c-axis.28–31 Sr substitution

for Ca continuously suppresses the TN , from 56 K for x = 1 to 30 K for x = 0.4, and

eventually results in the collapse of the AFM order for x < 0.4.32–35 For 0.4 > x > 0.08, an

unusual heavy-mass nearly ferromagnetic (NFM) state is observed, which is characterized

by an extremely large Wilson ratio RW (e.g. Rw ∼ 700 for x = 0.2).34 Despite considerably

strong FM correlations, the system does not develop a long-range order at low temperatures,

but freezes into a CSG phase due to the close proximity to a 2D FM instability.34,35 When

Ca content is decreased below 0.08, the system enters an itinerant metamagnetic (IMM)

state.34 Angle-resolved photoemission spectra of (Sr1−xCax)3Ru2O7 measured at 20 K re-

veal a qualitative change of electronic properties near x ∼ 0.3 − 0.4, which is suggested to

be associated with a QPT.36 Specific heat and resistivity measurements down to 0.3 K have

proved the existence of non-Fermi-liquid (NFL) behavior near x = 0.1,34,37 corroborating

with the existence of a QPT in this system. Since the system is tuned via chemical substi-

tution, strong disorder is introduced into the system, making the double layered ruthenates

(Sr1−xCax)3Ru2O7 a good candidate to explore the effect of disorder on QPT in TMOs.

In this article, we present the scaling analyses of magnetization and the specific heat for

(Sr1−xCax)3Ru2O7 in the 0.4 > x > 0.08 composition range. We find that in a temperature

region immediately above the spin freezing temperature Tf , the isothermal magnetization
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M(H) and the temperature dependence of electronic specific heat Ce(T ) exhibit anomalous

power-law singularities; both quantities are controlled by a single exponent. The tempera-

ture dependence of magnetization M(T ) also displays a power-law behavior but its exponent

differs remarkably from that derived from M(H) and Ce(T ). Moreover, the magnetization

data M(H, T ) are found to obey a phenomenological scaling law of M(H, T ) ∝ Hαf(H/T δ)

in a temperature region immediately above Tf . The scaling temperature Tscaling below which

the scaling equation holds systematically decreases with the decease of Ca content. This

scaling law breaks down near the critical concentration x = 0.1 where a CSG-to-IMM phase

transition occurs. We discussed these behaviors in term of the effect of disorder on QPTs.

High quality single crystalline samples of (Sr1−xCax)3Ru2O7 were grown using a floating-

zone technique. Magnetization measurements were performed using a commercial SQUID

magnetometer (Quantum Design) with the magnetic field applied in the basal plane. The

specific heat was measured using a thermal relaxation method in a Quantum Design PPMS.

The experiments were performed on single crystals that had been characterized in our early

works.34,37–39

Figure 1 shows the temperature dependence of magnetization M(T ) taken under an

applied field of 0.005 T with field cooling (FC) and zero field cooling (ZFC) histories for

typical samples (The data for x = 0.3 and 0.1 are quoted from our earlier works34,39). The

samples freeze into a CSG phase below Tf . This is evidenced by i) the irreversibility of M(T )

curves between ZFC and FC histories below Tf (shown in Fig. 1 (a)-(d)), and ii) a frequency

dependence of the peak temperature in the real part of AC susceptibility (e.g. see the data

for x = 0.3 in Fig. 1(a)). For x = 0.1, Tf decreases to ∼ 1 K,34 which could not be detected

in present measurements. However, distinct irreversibility is observed inM(T ) between ZFC

and FC histories below ∼ 10 K (shown in Fig. 1 (e)). Given that ferromagnetic correlations

are still considerably strong for x = 0.1, as manifested in the large wilson ratio (∼ 110 at 2

K) and that quantum fluctuations are significantly enhanced34, the irreversible characteristic

of M(T ) below 10 K may imply formation of ferromagnetic clusters with dynamic nature.

Further investigation is needed to demonstrate this point of view. Additionally, we note that

all samples with 0.4 > x > 0.08 show power-law singularities both in DC magnetization and

AC susceptibility, i.e. ∝ T−β, in a temperature region immediately above Tf . Those dashed

lines in Fig. 1 represent power-law fitting and the power-law exponents derived from fittings

are shown in Fig. 4a.
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Figure 2 shows isothermal magnetization on log-log scales for x = 0.1 - 0.3. The data

have been offset for various temperatures. Apparently, for each sample, M(H) exhibits a

liner dependence in a low field region, but a power-law dependence in a high field region, for

a given temperature. We have conducted power-law fitting for the data in high-field region,

separately, for each temperature. The upper insets in Fig. 2a-2e show the temperature

dependence of the power-law exponent α. α decreases with decreasing temperature and

approaches a constant value (∼ 0.33 - 0.39) at low temperature for all of the samples. This

suggests that M(H) follows a similar power-law behavior at low temperatures for different

samples. Furthermore, the high field region showing the power-law behavior broadens with

decreasing temperature.

We have also defined a crossover field H∗ to illustrate the transformation from the linear

to power-law dependence in M(H). As shown in Fig. 2a-2e, H∗ is determined as the

intersection field between the liner extrapolations of the linear field dependent behavior in

the low field region and the power-law field dependence in the high field region (indicated by

arrows). For all samples H∗ decreases with decreasing temperature, following a power-law

manner i.e. H∗
∝ T δ (see lower insets to Fig. 2). This means that M(H) is approaching

the power-law dependence upon cooling, suggesting that the system develops toward the

criticality. Power-law singularity is also found in the specific heat. The electronic specific

heat data were obtained by subtracting the phonon contribution from the total specific

heat.34,37 As shown in Fig. 3, Ce/T shows a power-law temperature dependence for x =

0.15, 0.2, 0.25, and 0.3, i.e. Ce/T ∝ T γ−1, in a temperature region right above the freezing

temperature of the CSG phase. In contrast, the x = 0.1 sample does not exhibit a similar

power-law behavior in Ce/T vs. T .34

Figure 4(a) summarizes the exponents α, β and γ extracted from M(H), M(T ) and

Ce(T ) as described above. It is interesting that the exponent γ approximately equals to the

exponent α and falls into the range of 0 to 1, for x = 0.15 - 0.3. This power-law singularity

appears to be consistent with the prediction of the quantum Griffiths model.18,19 However,

several deviations from the prediction of the quantum Griffiths model are noticed. The

exponent β derived from M(T ) is apparently larger than the exponents α and γ, and does

not fall into the expected range of 0 to 1 (see Fig. 4 (a)). Meanwhile, the anomalous power-

law behaviors do not persist down to the lowest temperature, but are intervened by the

formation of the CSG phase. Both deviations suggest that the standard quantum Griffiths
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model may not be adequate to describe our system.

Such inconsistency might be due to the simplicity of the quantum Griffiths model. As

discussed before, only dynamics in a single droplet (rare region) is considered in the standard

quantum Griffiths model. However, in a real itinerant system, magnetic moments among

droplets are known to interact with each other through the RKKY interaction. The recent

theory by Dobrosavljevic̀ and Miranda shows that this effect can lead the droplets to freeze

in itinerant systems close to QPTs, and gives rise to the generic formation of a CSG phase

preceding any uniform ordering.24 Moreover, they pointed out that while a CSG phase

generically emerges at the lowest temperature, the anomalous power-law behavior related

to the quantum Griffiths phase should be observable in a temperature window above the

freezing temperature of the CSG phase.24 This theory can explain the observation of the

anomalous power-law singularities at temperatures right above the spin freezing temperature

of the CSG phase for 0.4 > x ≥ 0.15.

The inconsistency between the exponents α, β and γ can also be understood in light of

the interaction between the droplets. In the present system, there is extremely strong FM

fluctuations in the composition range of 0.4 > x > 0.08 as manifested in the large Wilson

ratios.34 The interactions between magnetic droplets are then expected to be FM. Therefore

the magnetization of the system should grow faster than isolated droplets upon cooling;

this leads to a super-Curie temperature dependence, resulting in a power-law behavior with

the exponent larger than 1. If this is the case, the evolution of the exponent β determined

from M(T ) should follow the same trend as that of the FM fluctuations, which are exactly

observed here. For example, at temperature immediately above Tf , the FM fluctuations

revealed by the Wilson ratio for x = 0.3 are apparently much weaker than those for x = 0.2

and 0.25,34 and the β for x = 0.2 and 0.25 are strikingly larger than that for x = 0.3 (see

Fig. 4 (b)). In the high field region, spin fluctuations are suppressed. Thus the exponent α

extracted fromM(H) does not equal to the exponent β derived fromM(T ). The consistency

of the exponent γ with α indicates that the electronic specific heat is dominated by the slow

dynamics of droplets as expected in the quantum Griffiths model, but less sensitive to the

interaction between droplets.

To further reveal the underlying physics of the anomalous power-law behaviors above Tf ,

we have performed the phenomenological scaling analyses of magnetization using the data

discussed above. Given that M(H) shows a linear-to-power-law crossover at a crossover
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field H∗, analytically we have χ(T )H = AHα at H = H∗, where A is a constant. Based on

this equation, we propose a phenomenological scaling equation M(H, T ) ∝ HαF (x) where

F (x = H/H∗(T )) is the scaling function. As discussed above, χ = M/H is proportional to

T−β. Therefore, it can be shown that H∗
∝ T δ with δ = β/(1−α). As shown in Fig. 4 (b),

it is noticed that the values of δ experimentally determined from H∗(T ) (see insets to Fig.

2) approximately equal to those calculated with the equation δ = β/(1− α), suggesting the

self-consistency of the proposed phenomenological scaling law.

The validity of this phenomenological scaling expression is demonstrated in the scaling

plots shown in Fig. 5 where M/Hα is plotted as a function of H/T δ. The magnetization

data amazingly collapse into a single curve in a temperature range immediately above Tf for

the samples with x = 0.3, 0.25, 0.2, and 0.15. The characteristic temperature below which

the scaling behavior occurs is defined as the scaling temperature Tscaling. At temperatures

above Tscaling, the M(H, T ) data deviate from the universal curvature on the M/Hα vs.

H/T δ scaling plot. We present an example for the x = 0.3 sample in the inset of Fig. 5a,

where the M(H, T ) data clearly do not collapse into a universal curve for T > Tscaling = 13

K. Tscaling systematically decreases with the decease of Ca content. When the Ca content x

decreases to 0.1 near which a CSG-to-IMM phase transition occurs, the scaling law breaks

down and the magnetization data clearly does not collapse into a single curve (shown in

Fig. 5 (e)). The breakdown of the phenomenological scaling behavior at x = 0.1, as well as

the absence of the anomalous power-law behavior of electronic specific heat in this sample,

suggest that the underlying physics near this critical composition might be different. We

have added Tscaling to the magnetic phase diagram of (Sr1−xCax)3Ru2O7, as shown in Fig.

6. Interestingly, Tscaling(x) appears to follow the extrapolation of Néel temperature TN(x),

implying that the phenomenological scaling behavior reported here might be a fingerprint

of some energy scale in a disordered itinerant system close to a quantum phase transition.

In summary, we have conducted the scaling analyses of magnetization and electronic spe-

cific heat for the NFM states in (Sr1−xCax)3Ru2O7. For 0.4 > x ≥ 0.15, the isothermal

magnetization and the electronic specific heat exhibit anomalous power-law singularity that

are controlled by a single exponent in a temperature region immediately above Tf . M(T )

also follows a power-law behavior. However, the extremely strong FM fluctuations lead its

exponent to be different than those derived from the isothermal magnetization and the elec-

tronic specific heat. The magnetization data M(H, T ) are found to obey a phenomenological
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scaling law of M(H, T ) ∝ Hαf(H/T δ) also in a temperature region immediately above Tf .

The scaling temperature Tscaling systematically decreases with the decease of Ca content.

This scaling law, as well as the anomalous power-law behavior, break down near the critical

concentration x = 0.1 where a CSG-to-IMM phase transition occurs. These results demon-

strate the existence of the slow dynamics of rare regions arising from the effect of disorder

on QPT in (Sr1−xCax)3Ru2O7. The finding of the M(H, T ) scaling law implies novel physics

associated with the slow dynamics of rare regions. Further theoretical work is needed to

reveal its nature.
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FIG. 1: (Color online) The temperature dependence of magnetization M(T ) under an applied

field of 0.005 T with field-cooling (filled symbols) and zero-field-cooling (open symbols) histories

for (Sr1−xCax)3Ru2O7 with x = 0.3 (a), 0.25 (b), 0.2 (c), 0.15 (d) and 0.1 (e). The temperature

dependence of AC susceptibility measured at 10Hz, 100Hz, 1kHz, and 10kHz for x = 0.3 and 0.1

are also shown in (a) and (e). The magnetic field is applied perpendicular to the c-axis. Tf (arrow)

marks the freezing temperature of the CSG phase. The dash lines represent fittings to T−β. The

data for x = 0.3 and 0.1 are quoted from from our early works.34,39
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FIG. 2: (Color online) Isothermal magnetization M(H) measured at typical temperatures for x =

0.3 (a), 0.25 (b), 0.2 (c), 0.15 (d) and 0.1 (e). The magnetic field is applied perpendicular to the

c-axis. The data are vertically shifted on log-log scale. Solid lines represent the fitting to linear

field dependence in low field region or power-law field dependence Hα in high field region. H∗

denotes the crossover field. Upper insets show the temperature dependence of the exponent α

determined from the power-law fittings. Lower Insets display the temperature dependence of H∗

in log-log scale. The solid lines represent fittings to T−δ.
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FIG. 3: (Color online) The electronic specific heat divided by the temperature Ce/T as a function

of temperature T for x = 0.3 (a), 0.25 (b), 0.2 (c), and 0.15 (d). The solid lines represent fittings

to T−γ . The data for x = 0.3 are quoted from from our early work.34
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nents δ experimentally determined (see lower insets to Fig. 2) and calculated using the equation

δ = β/(1 − α) as a function of Ca content x.
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FIG. 5: (Color online) Scaling plots of M/Hα vs. H/T δ for the samples with x = 0.3 (a), 0.25

(b), 0.2 (c), 0.15 (d) and 0.1 (e). Inset to (a) shows the gradual deviation from the universal curve

when the temperature exceeds the scaling temperature Tscaling.
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FIG. 6: (Color online) The updated magnetic phase diagram of (Sr1−xCax)3Ru2O7.
34 AFM: anti-

ferromagnetic; TN: the Néel temperature; TMIT: the metal-insulator transition temperature; The

closed and open circles represent first and second order transition respectively; TM: the temper-

ature of the peak in the susceptibility, below which the metamagnetic transition occurs; Tf: the

freezing temperature of the CG phase; Tscaling: the temperature below which the phenomenological

scaling law holds; Metamag.: itinerant metamagnetic; PM: paramagnetic. The dashed lines are

for the guide to the eyes.
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