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We use high-pressure magnetic x-ray diffraction and numerical simulation to determine the low-
temperature magnetic phase diagram of stoichiometric CeFe2. Near 1.5 GPa we find a transition
from ferromagnetism to antiferromagnetism, accompanied by a rhombohedral distortion of the cubic
Laves crystal lattice. By comparing pressure and chemical substitution we find that the phase
transition is controlled by a shift of magnetic frustration from the Ce-Ce to the Fe-Fe sub-lattice.
Notably the dominant Ce-Fe magnetic interaction, which sets the temperature scale for the onset
of long range order, remains satisfied throughout the phase diagram but does not determine the
magnetic ground state. Our results illustrate the complexity of a system with multiple, competing
magnetic energy scales and lead to a general model for magnetism in cubic Laves phase intermetallic
compounds.

PACS numbers: 75.30.Kz, 75.50.Ee, 75.20.En, 75.10.Jm

I. INTRODUCTION

Many materials exhibit multiple magnetic interactions
with a broad range of interaction energies. In such cases
the crystal lattice typically prohibits the formation of an
ordered state in which the magnetic interaction energies
of all possible pairs of ions are simultaneously minimized,
and the system often has to “choose” among compet-
ing configurations, with each carrying a different amount
of frustration. If the dominant interaction is geomet-
rically frustrated, this competition may even result in
a disordered magnetic ground state with no long-range
order. Prominent examples include spin glasses made
of randomly separated magnetic ions1, and spin ices
or liquids on geometrically constrained two-dimensional
kagome and three-dimensional pyrochlore lattices2–4.

Even if the major interaction is satisfied and long range
order is established, frustration can still play a role in de-
termining the magnetic ground state, due to competition
between weaker magnetic interactions. A well known ex-
ample is that of Heisenberg spins on a square lattice with
antiferromagnetic nearest- and next-nearest-neighbor in-
teractions. In this case, the magnetic order depends
on the relative strength of the two magnetic interac-
tions, which can be tuned through a sequence of quan-
tum phase transitions5. Likewise, in the pyrochlore ox-
ides Gd2Sn2O7 and Gd2Ti2O7 the balance between sec-
ond and third nearest-neighbor interactions is responsible
for the emergence of multiple antiferromagnetic phases
with varying magnetic wave vectors6. From a concep-
tual standpoint, geometrical frustration of secondary in-
teractions (i.e. magnetic interactions much weaker than
the primary interaction) is interesting because ostensibly
minor phenomena can play an outsized role in determin-
ing the magnetic ground state. Identifying frustration
and competition among weaker degrees of freedom may

provide a new vantage point for studying the complex
magnetic behavior of interesting and potentially useful
magnetic materials with non-trivial magnetic phase dia-
grams.

Here we focus on the rare earth intermetallic ferromag-
net CeFe2 (Ref. [7–11]), which is a metallic compound
with cubic Laves crystal symmetry, and is related to a
broader class of pyrochlore lattice systems2. The Fe ions
are located on a pyrochlore sub-lattice of corner-sharing
tetrahedra, which can be viewed as a collection of alter-
nating, two dimensional kagome and triangular lattice
planes stacked along the {111} direction2. The triangu-
lar Fe lattices are woven through by Ce ions in a corru-
gated manner. In Fig. 1 we show a perspective stretched
along the 〈111〉 direction for clarity.

Many metallic cubic Laves systems exhibit either ferro-
or antiferromagnetic long range order7–14. Ferromag-
netic CeFe2 is close to a magnetic instability and can be
switched to an antiferromagnet with either chemical dop-
ing or applied pressure. In this work we quantitatively
demonstrate how the competition between two secondary
magnetic interactions determines the magnetic phase dia-
gram of CeFe2. The primary magnetic interaction, which
sets the temperature scale for the onset of long range
order, remains satisfied throughout the phase diagram.
However, this is not sufficient to determine the magnetic
ground state. The ferromagnetic-to-antiferromagnetic
transition is instead driven by the transfer of frustration
between two sets of secondary magnetic interactions.

II. A GENERIC PHASE DIAGRAM FOR CeFe2

There exists extensive literature on chemically doped
CeFe2, with numerous choices of dopants replacing ei-
ther Ce, or Fe, or both15–22. The ferromagnetic ground
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FIG. 1: (color online). (a) Perspective of the cubic Laves
lattice of CeFe2, emphasizing the layered structure and elon-
gated along the axis for clarity. The structure consists of
stacked sheets of 3e-Fe sites in a kagome lattice, alternating
with corrugated sheets of Ce sites and 1b-Fe sites in a trian-
gular lattice. Not all atoms are shown for the sake of clarity.
Solid lines indicate the nearest-neighbor pairing and dashed
lines indicate next-nearest-neighbor pairing. (b-d) Clusters of
twelve nearest-neighbors are shown surrounding each type of
atomic site.

state of CeFe2 undergoes a phase transition to an anti-
ferromagnet with small amounts of chemical doping on
the Fe site by one of many elements including Al, Co,
Ru and Ir15–22. Previous work on stoichiometric CeFe2
found evidence for a new phase at high pressure which,
by comparison with the doped systems, was suggested to
be the antiferromagnetic phase23–25. The proximity of
stoichiometric CeFe2 to an antiferromagnetic instability
is also supported by the observation of antiferromagnetic
fluctuations within the ferromagnetic phase9,10,24.

It is useful to compare the phase diagram of CeFe2 un-
der pressure to the results of doping with Al, Co, Ru
and Ir. We choose specifically these dopants because
they preserve the cubic Laves structure when fully re-
placing Fe in CeFe2 (Ref. [27]). Phase diagrams were
collected from the literature for CeFe2 under pressure
(Ref. [22,23,25]), Ce(Fe1−xCox)2 at both ambient (up
to 16%, Ref. [17,22,25]) and high pressure (for 5, 7,
and 10%, Ref. [22,25]), Ce(Fe1−xAlx)2 (up to 15%,
Ref. [16]), Ce(Fe1−xRux)2 (up to 15%, Ref. [18]),
and Ce(Fe1−xIrx)2 (up to 8%, Ref. [20]). The lat-
tice constants are interpolated from published data for
Ce(Fe1−xCox)2 (Ref. [21]), Ce(Fe1−xAlx)2 (Ref. [15]),
and Ce(Fe1−xRux)2 (Ref. [18]). No lattice constant data
for Ce(Fe1−xIrx)2 is available so we used Vegard’s law to
interpolate between CeFe2 and CeIr2 (Ref. [26]). Lat-
tice constants of CeFe2 under pressure were taken from
our own results. We also assume that the low tempera-
ture compressibility of Ce(Fe1−xCox)2 is the same as our
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FIG. 2: (color online). (a) Compilation of published data on
the magnetic phase behavior of stoichiometric and chemically
doped CeFe2. Magnetic transition temperatures are plotted
as a function of lattice constant a. The paramagnetic (PM),
ferromagnetic (FM), and antiferromagnetic (AF) phases are
indicated. The AF phase can be reached with both decreasing
and increasing lattice constant. (b) A generic phase diagram
for CeFe2 is created by collapsing the phase diagrams shown in
(a) using a tuning parameter η, which is a linear combination
of pressure P (in GPa) and doping x (in %) according to η =
P +Ax. A is a positive, dopant-specific scaling factor with A
= 0.20, 0.65, 0.55, and 0.55 GPa/% for Co, Al, Ru, and Ir,
respectively.

measured value for CeFe2.

The compiled phase diagrams are plotted in Fig. 2a.
We note that although the antiferromagnetic state is con-
sistently reached with chemical doping or applied pres-
sure, the lattice constant does not vary uniformly with
these tuning parameters. Applying pressure and doping
with Co compresses the lattice, while doping with Al, Ru,
or Ir expands the lattice. The apparent insensitivity of
the ferromagnetic-to-antiferromagnetic phase transition
to the lattice spacing shows that the doping phase dia-
gram is not controlled by “chemical pressure”, whereby
the effect of chemical substitution is merely to expand or
contact the lattice. Rather, we show in Fig. 2b that the
pressure and doping phase diagrams can be collapsed into
a single generic phase diagram using a tuning parameter
η which is a linear combination of pressure P (in GPa)
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and doping x (in %): η = P + Ax. Here A is a numeri-
cal factor that is specific to the individual dopant and is
always positive. Importantly, the effective parameter η
scales the horizontal axis but not the temperature axis.
The collapse of the phase diagrams, and in particular
the multi-critical point between the paramagnetic, ferro-
magnetic, and antiferromagnetic phases around 150 K,
suggests that there is a primary magnetic energy scale
which determines the critical temperature for the onset
of long range order. This energy scale is independent of
the tuning parameter η that determines the type of mag-
netic ground state. What Fig. 2a implies is that η should
not have a simple, monotonic dependence on lattice, and
thus is unlikely to be due to a single energy scale.

III. EXPERIMENTAL METHODS

Single crystals of CeFe2 were grown from a Ce-rich
binary melt with initial composition Ce0.6Fe0.4. High
purity Ce (Ames Lab) and Fe were sealed into a three-
cap Ta crucible28 and subsequently sealed into a silica
ampule. The ampule was heated from room temperature
to 1100 oC over 6 hours, cooled to 950 oC over 3 hours
and then slowly cooled to 700 oC over 120 hours. Once
at 700 oC the excess liquid was decanted from the single
crystals28.

With sensitivity to both lattice and magnetic sym-
metry, and compatibility with high-pressure diamond
anvil cells, synchrotron x-ray diffraction is well suited
for studying the pressure-temperature phase diagram of
an antiferromagnet29,30. X-ray diffraction measurements
were performed at beamline 4-ID-D of the Advanced
Photon Source. A double-bounce Si (111) monochroma-
tor and a pair of palladium (with a K-edge at 24.35 keV)
coated mirrors produced a focused beam of 20 keV x-
rays free from contamination by higher harmonics. CeFe2
crystals of typical dimensions 70 × 70 × 40 µm3 were
loaded in the diamond anvil cell in an argon atmosphere
to avoid oxidation. The pressure medium was a 4:1 (vol-
ume) methanol:ethanol mixture. A polycrystalline silver
grain was used as an in-situ manometer30. A helium-
membrane-tuned diamond anvil cell was used to contin-
uously vary pressure at the cryostat base temperature
of 3.5 K. Non-resonant x-ray magnetic diffraction was
carried out in the transmission geometry and within the
vertical scattering plane for high momentum space reso-
lution. The use of 70o full cone Boehler-Almax diamond
anvils allowed access to a wide range of reciprocal space.
A total of four samples were studied under pressure at T
= 3.5 K. The FWHM of the sample mosaic curve never
exceeded 0.10o under pressure. The possibility of con-
tamination by second harmonic x-rays was ruled out by
monitoring a secondary detection channel set to count
40 keV x-rays on the NaI scintillation detector. The null
signal on this secondary channel and the extremely low
intensity of the observed (1/2, 1/2, 1/2)-type peaks (Fig.
4) rule out the charge scattering contribution to the mea-
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FIG. 3: (color online). Evolution of the CeFe2 crystal lattice
with pressure at T = 3.5 K. (a) Longitudinal (θ − 2θ) scans
of the (2, 2, 0) and (3, 1, 1) Bragg peaks at three pressures:
in the low-pressure cubic phase, in the regime of phase coex-
istence, and in the high-pressure rhombohedral phase. The
peak splitting at high pressure is evidence of the rhombohe-
dral distortion. The splitting of the (2, 2, 0) peak at P =
1.8 GPa indicates a regime of phase coexistence; for the (3, 1,
1) reflection at 1.8 GPa the peak from the cubic phase is in-
distinguishable from the rhombohedral (3, 1, -1) peak within
our measurement resolution (we follow the convention that
the rhombohedral distortion compresses the 〈111〉 axis). (b)
Dependence of the lattice constant a and the cell-axis angle
α on pressure. The shaded area marks the phase coexistence
regime. Fits to a(P ) (dashed lines) are based on the one
parameter Birch equation.

sured magnetic diffraction peaks.

IV. DIRECT MEASUREMENTS OF LATTICE
SYMMETRY AND ANTIFERROMAGNETISM

UNDER PRESSURE

We plot in Fig. 3 the response of the crystal lattice
to applied pressure, P , at low temperature. Near P =
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1.5 GPa the lattice undergoes a transition from cubic to
rhombohedral symmetry. The rhombohedral distortion
is a compression along one of the four cubic body diago-
nals, and splits the cubic crystal into four types of rhom-
bohedral crystal domains. Using high-resolution x-ray
diffraction it is possible to index diffraction peaks by their
rhombohedral domain type. The compressibility B0 is
determined by fitting the lattice constant a(P ) to an one-
parameter Birch equation30 with B0 = 90 ± 4 GPa and
105±5 GPa in the low and high pressure phases, respec-
tively. In the high pressure phase the unit cell angle α
deviates from 90o by 0.327o±0.002o. The data also show
clear evidence for a regime of phase coexistence between
1.3 and 1.8 GPa. The presence of a structural phase
transition and a regime of phase coexistence are consis-
tent with magnetic susceptibility studies of CeFe2 under
pressure, which found the ferromagnetic phase boundary
to be difficult to pin down at low temperature25. Note
also that a rhombohedral distortion is known to accom-
pany the ferromagnetic-to-antiferromagnetic phase tran-
sition in Ru-, Al-, and Co-doped CeFe2, with α in the
range 90.2o − 90.31o (Ref. [19]). The discovery that
stoichiometric CeFe2 experiences a similar rhombohedral
distortion supports the notion that the magnetic phase
diagram in Fig. 2 is controlled by symmetry, rather than
by chemical pressure or the effects of disorder.

Using non-resonant magnetic x-ray diffraction we
searched for and found the high pressure antiferromag-
netic phase in the form of (1/2, 1/2, 1/2)-type Bragg
diffraction peaks that are associated with antiferromag-
netic period doubling. The longitudinal magnetic peak
widths are limited by the instrument resolution as shown
in Fig. 4a, meaning that the coherence length of the anti-
ferromagnetic domains is at least 1500 Å. This direct ob-
servation of antiferromagnetic order in compressed, sto-
ichiometric CeFe2, not just in its doped analogues, is
essential justification for positing the generic phase di-
agram drawn in Fig. 2.

We show in Fig. 4b antiferromagnetic reflections at
nine positions in reciprocal space, all corresponding to a
single rhombohedral domain type at P = 3.3 GPa and
T = 3.5 K. The nine positions yielded six measurable
peaks and three null measurements, all of which can be
used to constrain the magnetic structure. The orbital
contributions to the magnetism in CeFe2 are negligible
compared to the spin contribution for both Ce and Fe
(Ref. [7]). The non-resonant magnetic diffraction cross
section is thus dominated by the projection of the spin
onto the direction (Ŝ2) perpendicular to the scattering
plane. The experimentally measured quantity is the ratio
of diffraction intensity from the antiferromagnetic and
the lattice Bragg peaks and is expressed as
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antiferromagnetic period doubling. The summations in
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FIG. 4: (color online). Direct observation of antiferromag-
netism at P = 3.3 GPa and T = 3.5 K. (a) Longitudinal
line scans of magnetic peaks (red) normalized to the lattice

peaks (blue) respectively. (b) Quantity |Σfmeiqr~µ · Ŝ2|2 cal-
culated using Eq. 1 for six measured diffraction peaks (black
solid circles). Also shown are the sensitivity limits of null
measurements at three positions (black error bars with down-
ward arrows). Calculated values (purple line) are given for
the model described in the text.

the numerator and denominator run over all scattering
sites in the magnetic and lattice unit cells, respectively,
and the factor of eight in the denominator accounts for
the difference in size between the magnetic and lattice
unit cells. h̄ω is the x-ray energy, 2θ is the diffraction
angle of (h/2, k/2, l/2), and fm and fe are the magnetic

and atomic form factors7. In Fig. 4b, |Σfmeiqr~µ · Ŝ2|2
is plotted for all nine measured antiferromagnetic reflec-
tions.

V. REFINEMENT OF THE
ANTIFERROMAGNETIC STRUCTURE

In order to constrain the magnetic structure, we resort
to a general treatment of antiferromagnetic order on a
face-centered lattice31,32. The antiferromagnetic order
doubles the unit cell along all three axes in real space. For
a face-centered lattice the basis therefore increases from
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one to eight points, forming a bipartite lattice consisting
of basis points (1, 2, 3, 4) and (1’, 2’, 3’, 4’) (Fig. 5),
with the condition that the primed and unprimed points
are magnetically distinguishable. There is some freedom
in assigning the basis points, and in Fig. 5 we choose
the assignment most natural to a structure layered along
〈111〉. Bear in mind that the Laves basis consists of six
atomic sites (four Fe and two Ce) at each point of the
bipartite lattice.

The antiferromagnetic structure previously proposed
for Ce(Fe1−xCox)2 on the basis of neutron and resonant
x-ray diffraction measurements10,11 consists of ferromag-
netic kagome sheets of 3e-Fe spins (each carrying 1.61
µB) polarized along 〈111〉, with the spins inverted on
adjacent sheets. The Ce spins (0.13 µB) are also paral-
lel to 〈111〉 and are ordered antiferromagnetically within
each (111) plane. The azimuthal dependence of the reso-
nant x-ray diffraction intensity shows that the 1b-Fe mo-
ments (1.12 µB) are not co-linear with the 3e-Fe mo-
ments, and are likely polarized in the (111) plane10. This
is understood as the result of frustration: the 1b-Fe spins
are ferromagnetically coupled to two oppositely polarized
kagome sheets of 3e-Fe spins (Fig. 1d), and therefore are
forced to lie in the (111) plane.

This spin structure models well the published magnetic
diffraction data on Ce(Fe1−xCox)2. However, there re-
mains ambiguity about the orientation of the 1b-Fe spins
in the (111) plane10,11 and the related issue of magnetic
domain degeneracy due to the three-fold symmetry about
the 〈111〉 axis. The spin model proposed by Ref. [10,11]
for Ce(Fe1−xCox)2 assumes that within each triangular
lattice plane the 1b-Fe spins are ferromagnetically polar-
ized along 〈1,−1, 0〉 and that this polarization reverses
direction between subsequent triangular lattice planes
along the 〈111〉 direction. In this model the bipartite
lattice points 1 - 4 (Fig. 5) would have identical spin
orientations, and the spins on points 1’-4’ are inverted
relative to those on 1-4. In addition, degenerate mag-
netic domains with 1b-Fe spins polarized along 〈1, 0,−1〉
and 〈0, 1,−1〉 should also exist as required by symme-
try. It is straightforward to show that this model pro-
duces non-zero antiferromagnetic structure factors only
for magnetic reflections (h/2, k/2, l/2) with those odd
h, k, l indices which simultaneously satisfy the three re-
lations h + k, k + l, h + l = 4n + 2 (Ref.[19,31]). How-
ever, all six of the magnetic reflections that we observe
at high pressure violate this selection rule. Therefore,
symmetry arguments show that the published model for
Ce(Fe1−xCox)2 (Ref. [10,11]) is not directly transferrable
to antiferromagnetic CeFe2 at high pressure.

Nonetheless, this model can be made to agree with
our data with one modification. Notice that the in-
teraction between the 1b-Fe spins and their orientation
within the (111) plane remain undetermined. If this next-
nearest-neighbor interaction is antiferromagnetic, rather
than ferromagnetic as assumed by Ref. [10,11], then the
triangular plaquettes of 1b-Fe sites are magnetically frus-
trated, and the spins would be non-co-linear. This intro-

FIG. 5: (color online). Spin structure of antiferromag-
netic CeFe2. (a) Schematic showing the bipartite sub-lattice
points (1, 2, 3, 4) and (1’, 2’, 3’, 4’) for a face-centered
antiferromagnet31,32. Each sub-lattice point is associated
with a complete Laves basis; the Ce sites for points 1’ - 4’
are omitted for clarity. The magnetic structure on site 1 is
explicitly drawn. The spin orientations on site 1’ are the in-
verse of those on site 1, and likewise for the other pairs. (b)
The kagome sheets consisting of 3e-Fe spins in a given sub-
lattice are ferromagnetically aligned. (c) The 1b-Fe spins have
an effective antiferromagnetic interaction and form a plane of
frustrated triangular plaquettes. The degeneracy associated
with the choice of antiferromagnetic pairs leads to a mag-
netic domain structure; only a single domain is drawn here
for clarity.

duction of non-equivalent spins on the bipartite lattice
points 1-4 produces non-zero structure factors for our
observed reflections.

Considering a (111) plane of triangular plaquettes of
antiferromagnetically coupled 1b-Fe spins, with the mag-
netic moments confined to the plane by the effect of inter-
actions with 3e-Fe spins, we arrive at the model shown in
Fig. 5. Imposing the periodicity of the bipartite lattice
basis points, and summing only over the neighboring 1b-
Fe spin interactions, shows that the minimal semiclassi-
cal energy is obtained if the spins form antiferromagnet-
ically aligned pairs along two independent polarization
axes (such as pairs 1-2 and 3-4 in Fig. 5c). The angle ξ
between these two spin axes only affects the free energy
at higher order, and here we take it to be fixed at ξ = 60o

without loss of generality.

There is degeneracy associated with the choice of these
antiferromagnetically aligned pairs of 1b-Fe spins, giving
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rise to a three-fold magnetic domain structure that is de-
rived from the symmetry about the 〈111〉 axis. For a
given domain some but not all of the reflections shown
in Fig. 4b have non-zero structure factors. We have
no knowledge of the magnetic domain population in our
sample, nor of the possible variation of the angle ϕ be-
tween different domains. Rather than using these quan-
tities as a source of spurious free variables, we constrain
our fit of the experimental data by assuming the simplest
possible domain configuration. We thus consider three
equally populated domains, which differ in their values of
the angle ϕ by 120o between domains, illustrated in Fig.
5c. By optimizing this model to our data we determine
the 1b-Fe moment to be 1.80± 0.04 µB . The diffraction
intensities calculated from this model are within a factor
of two of the observed values shown in Fig. 4b for all
but one of the measured intensities, which span over two
decades in intensity. The three null measurements are
also consistent with the model, which predicts diffraction
intensities well below our sensitivity limits. Given the
assumptions made, the quantitative agreement between
predicted and observed intensities appears satisfactory.
The agreement could be improved by assuming unequal
magnetic domain populations and/or by optimizing the
angles ϕ and ξ, but we feel such an analysis is unjus-
tified given that these quantities are not independently
constrained by data.

VI. COMPETING MAGNETIC INTERACTIONS
AND THE GENERIC PHASE DIAGRAM

We are now able to draw detailed spin structures for
the ferromagnetic and antiferromagnetic phases (Fig. 6).
The physics underlying the generic phase diagram can
be explained by considering a hierarchy of magnetic in-
teractions between different pairs of spins, and the com-
petition between different magnetic configurations that
inevitably leave some interactions frustrated. First we
point out that in both the ferro- and antiferromagnetic
phases, Ce possesses a nearly-constant, non-vanishing
moment8,10,11,33. Thus magnetism of Ce is likely intrin-
sic and not induced by Fe moment. Furthermore, the
Ce spins are always anti-aligned with the majority of
the Fe spins8,10,11. This suggests that an antiferromag-
netic coupling (with exchange energy J1) between the Ce
and Fe spins is the dominant magnetic interaction in this
system. This coupling is expected to arise from the ex-
change interaction between the localized Fe moments and
the itinerant Ce electrons, which are hybridized from Ce
4f and 5d states. Antiferromagnetic exchange between
rare-earth and transition metal ions has been reported
for CeFe2 (Ref. [7]), Laves systems in general12,34, and
other intermetallic compounds35.

The dominant antiferromagnetic Ce-Fe interaction de-
termines the relatively high transition temperature for
both the ferromagnetic and antiferromagnetic phases,
but does not by itself determine the magnetic ground

state. To understand the magnetic phase transition one
has to look to the secondary magnetic interactions. The
bonds between Fe nearest-neighbors are ferromagnetic
with exchange energy J2. We observe that the Ce spins
are antiferromagnetically aligned in the high-pressure
phase. The proximity of the magnetic phase transition
in CeFe2 to ambient pressure, and the insensitivity to
the interatomic distances (Fig. 2), are strong indications
that the magnetic interactions will not be qualitatively
different on opposite sides of the transition. We there-
fore propose that the Ce-Ce interaction is always antifer-
romagnetic (with exchange energy J3). In the ferromag-
netic phase the Fe-Fe interactions are satisfied and the
Ce-Ce interactions are frustrated. In the antiferromag-
netic phase the Fe-Fe interactions are partially frustrated
for those involving 1b-Fe sites, while most of the Ce-Ce
interactions are satisfied. In fact, given the dominant
antiferromagnetic interaction between Ce and Fe spins,
it is impossible to simultaneously satisfy both the anti-
ferromagnetic Ce-Ce and Ce-(1b-Fe) interactions within
each triangular layer. Thus, there always exists some
degree of magnetic frustration in CeFe2. It is the bal-
ance between the antiferromagnetic coupling of the Ce-
Ce neighbors and the ferromagnetic coupling of the 1b-Fe
to the 3e-Fe spins that determines the magnetic ground
state. At the ferromagneticto-antiferromagnetic phase
transition the effective interaction between kagome lay-
ers switches from ferromagnetic and mediated by the 1b-
Fe spins, to antiferromagnetic and mediated by the Ce
spins.

We point out that the next-nearest-neighbor interac-
tion between 1b-Fe spins does not play an important role.
The 1b-Fe spins are frustrated in the antiferromagnetic
phase because of their interaction with 3e-Fe spins in the
kagome layers. This frustration does not constrain 1b-Fe
spins orientation within the (111) plane. Therefore, the
difference in the 1b-Fe spin structure between our model
for CeFe2 under pressure and the published model for
Ce(Fe1−xCox)2 (Ref. [10,11]) can be viewed as a rel-
atively minor refinement due to the availability of new
data. We believe that our understanding of the phase di-
agram as driven by competing and frustrated secondary
magnetic interactions may apply to the entire family of
compounds represented in Fig. 2.

To further test our proposed mechanism for arriv-
ing at a generic phase diagram, we construct a semi-
classical model, taking into account only the interac-
tions J1, J2, and J3 (Fig. 1). We use the Hamiltonian

H =
∑
Jij ~Si · ~Sj , where the site index 〈i, j〉 runs over

all pairs of neighbor spins, both within and between unit
cells, and the spins are treated as classical Ising spins.
Within the mean-field approximation, minimum energy
states with both ferromagnetic and antiferromagnetic ar-
rangements can be identified. The mean-field result is
confirmed by numerically examining the stability of the
uniformly ordered ferromagnetic and antiferromagnetic
spin structures within a classical Monte Carlo routine,
which was carried out on a lattice of 288 unit cells and pe-
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FIG. 6: (color online). Monte Carlo simulation of the generic
magnetic phase diagram. Although the energy scale is set
by the strongest magnetic interaction, J1, the phase diagram
is controlled by competition between the antiferromagnetic
Ce-Ce interaction (exchange strength J3), and the ferromag-
netic Fe-Fe nearest neighbor interaction (J2). The insets show
the spin structure of CeFe2 in both the ferromagnetic (FM)
and antiferromagnetic (AF) phases for the 1b-Fe site and its
twelve nearest neighbors. The FM spin structure is actually
ferrimagnetic, as discussed in Ref. [7]. In the ferromagnetic
phase, the Ce-Ce bonds are frustrated, while the bonds be-
tween 1b-Fe and 3e-Fe become frustrated in the antiferromag-
netic phase.

riodic boundary conditions, with 24 atoms per unit cell.
The resulting phase diagram is shown in Fig. 6. Even at
this level of approximation, the theoretical model clearly
reproduces the qualitative features of the experimental
phase diagram.

The generic nature of the magnetic phase diagram
in Fig. 2b can now be understood, including the phe-
nomenon that doped systems with both expanded and
contracted lattices can be collapsed onto a single plot.
The low temperature, ambient pressure phase of CeFe2
is ferromagnetic, but it sits close to an antiferromagnetic
phase transition and J3/J2 is close to the critical value.
Since Al, Co, Ru and Ir all replace Fe atoms upon be-
ing doped into CeFe2, they affect the Fe-Fe bonds more
strongly than the Ce-Ce bonds. The dopants which end
up on 1b-Fe sites decrease the energetic cost of the an-
tiferromagnetic stacking of 3e-Fe layers and thus effec-
tively increase J3/J2. On the other hand, the application
of pressure mainly affects the interatomic distances, and
therefore affects both the ferromagnetic and the antifer-
romagnetic bonds. The latter is more sensitive to the
changing overlap integrals due to the itinerant character
of the Ce electrons, thus shifting J3/J2 towards higher
values under pressure. The horizontal scaling of the dif-
ferent magnetic phase diagrams for chemical doping and
applied pressure results from the fact that there is only

a single parameter, J3/J2, which controls the transition
between the ferromagnetic and antiferromagnetic phases.
By contrast, the thermal transition into the paramag-
netic phase is controlled by J1, the Ce-Fe spin coupling.
This strong interaction is little affected by either pressure
or doping, and the vertical axes of the different phase di-
agrams thus line up with no additional scaling.

VII. CONCLUSION

The picture that emerges for CeFe2 contains multi-
ple magnetic energy scales which compete in a landscape
of magnetic frustration. The dominant Ce-Fe interac-
tion is satisfied throughout the phase diagram, and ap-
pears to be ”agnostic” with respect to the ferromagnetic-
antiferromagnetic transition. This primary interaction
arises due to hybridization between itinerant Ce states
and localized Fe 3d orbitals, is responsible for the
high transition temperatures of both magnetic phases in
CeFe2, and is typical of intermetallic magnets containing
a rare earth and a transition metal7,12,34,35. This pri-
mary interaction sets the temperature scale for the ther-
mal transition to long-range magnetic order, but does not
select the magnetic ground state. The transition between
ferromagnetism and antiferromagnetism is instead deter-
mined by the competition between the weaker, secondary
interactions. If the coupling between Fe ions wins this
competition then the material is a ferromagnet, and the
antiferromagnetic bonds between neighboring Ce spins
are frustrated. If the coupling between Ce ions wins the
competition then the material is an antiferromagnet, and
the frustration shifts to the Fe sublattice.

Our work underscores the value of collecting concomi-
tant structural and magnetic information in stoichiomet-
ric materials that are free of the influence of chemical
disorder. The high-pressure tuning variable provides
a valuable complement to studies on chemically doped
compounds, allowing us to disentangle the roles played
by lattice spacing, symmetry, disorder, frustration, and
competing interactions in determining the overall phase
diagram. The resulting model of frustration being shifted
between sublattices may serve more generally for under-
standing magnetism in cubic Laves and other pyrochlore-
structured intermetallic magnets.
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