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We simulate the dc magnetic response of the diluted dipolar-coupled Ising magnet
LiHo0.045Y0.955F4 in a transverse field, using exact diagonalization of a two-spin Hamiltonian av-
eraged over nearest-neighbour configurations. The pairwise model, incorporating hyperfine interac-
tions, accounts for the observed drop-off in the longitudinal (c-axis) susceptibility with increasing
transverse field; with the inclusion of a small tilt in the transverse field, it also accounts for the
behavior of the off-diagonal magnetic susceptibility. The hyperfine interactions do not appear to
lead to qualitative changes in the pair susecptibilities, although they do renormalize the crossover
fields between different regimes. Comparison with experiment indicates that antiferromagnetic cor-
relations are more important than anticipated based on simple pair statistics and our first-principles
calculations of the pair response. This means that larger clusters will be needed for a full description
of the reduction in the diagonal response at small transverse fields.
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I. INTRODUCTION

The dipolar rare-earth magnetic salt LiHoF4 orders at 1.53 K1,2 to form an Ising-like ferromagnet with long,
needle-shaped domains oriented along the Ising c-axis3. This system, and the dilution series LiHoxY1−xF4 with the
magnetic Ho3+ ions replaced by non-magnetic Y3+, have been studied for more than three decades4–18. The appeal
of LiHoxY1−xF4 lies in its unique combination of interesting quantum as well as classical properties and detailed
knowledge of the underlying Hamiltonian, including single-ion crystal-field and nuclear-hyperfine interaction terms
and intersite dipolar couplings. For example, the pure (x = 1) compound displays an archetypical electronic quantum
phase transition strongly influenced by the nuclear spin bath1,19. For moderate dilution (x > 30%) the system
continues to behave as an Ising ferromagnet with a critical temperature suppressed in direct proportion to x1,4,5,12;
for smaller x it was reported to form a spin glass at low temperatures17. At x = 4.5% there is an accumulation of
evidence for a novel antiglass6 in which the scaled distribution of relaxation times loses its low-frequency tail as the
sample cools. In this phase the material was found to exhibit macroscopically long-lived magnetic excitations8 and a
novel combination of strong features in the specific heat with a featureless magnetic susceptibility which could only
explained by positing long-range spin entanglement9. Other recent experiments report contrasting results—notably a
featureless specific heat from x = 1.8% to x = 8%13 and no narrowing of the absorption peak on the low-temperature
side as the temperature lowers20, suggesting that the conventional spin glass may persist to lower concentrations. Yet
a third view has also been suggested: magnetization measurements by Jonsson et al. failed to find evidence for a
spin-glass transition at either x = 4.5% or x = 16.5%14. The interpretation of all these experiments is complicated
by the need to work at extremely low frequencies and to achieve proper thermal equilibration; this has led to some
controversy about the interpretation, with recent results supporting the original assigment of a spin-glass at x = 16.7%
and x = 19.8%21.

The differing interpretations on the experimental side have been accompanied by some confusion about the theory,
with a number of classical Monte Carlo studies failing to find evidence of the expected spin-glass transition in a
three-dimensional disordered dipolar Ising system22,23. Most recently convincing numerical evidence of this transition
has finally emerged24 through finite-size scaling analysis of the spin-glass correlation length. But there is also dispute
about whether the dipolar terms in the Hamiltonian are sufficient to describe the material even in zero transverse field,
with some authors arguing that the role of transverse fields25 that are key for entanglement effects9 and nuclear levels
coupled by hyperfine interactions11,26 have been underestimated. Reference 27 is a recent review which concludes
that further experiments are required, and that the inclusion of quantum effects and the role of hyperfine interactions
(both originally delineated by 1) remain significant theoretical issues.

The dynamics in the dilute phases are particularly interesting and could be the key both to understanding these
seemingly contradictory experiments and to determining the correct theoretical model. As well as the long-lived
magnetic oscillations revealed by hole-burning experiments at x = 4.5%8, cotunnelling of the electronic and nuclear
moments on pairs of neighboring Ho3+ ions has been observed at the highest dilutions (x = 0.1%)10 through its effect
on the low-frequency zero-field susceptibility. It is appropriate to revisit the low-frequency susceptibility for several
reasons. First, LiHoxY1−xF4 is expected to be a model for a wide class of transverse-field dipolar systems. Second, the
observation of long decoherence times and signatures of long-range entanglement suggest the possibility of exploiting
the Ho3+ ions as magnetic qubits. Finally, one would like to understand the precise role of the competition between
the collective dipolar interaction, the nuclear spin bath and other decoherence pathways in determining the dynamics
of the system19. Here we combine an experimental study of the magnetic response of the dilute system as we tilt
the moment away from the Ising axis under large transverse fields with a theoretical analysis in which we average
over all possible pairs. Our purpose is to establish—quantitatively—the extent to which collective (i.e. beyond-pair)
effects are important for the behavior of the x = 4.5% compound by doing the most precise possible calculations of
the pair susceptibility contribution at equilibrium. The outcome is that even for this relatively high level of dilution,
the collective effects are important at low transverse fields.

We presented the experimental results and a short summary of the theoretical argument in Ref. 18. This paper gives
full details of the model and is structured as follows. Section II summarizes the experimental techniques employed
and captures briefly the relevant results; Section III describes the techniques employed in our calculations; Section
IV sets out the computational results, comparing the susceptibilities with and without hyperfine interactions to each
other and to the measured values; and Section V presents our conclusions. The Appendix presents details of the
construction of a two-state model of the lowest crystal fields states of the Ho3+ ion, which is essential for making the
sampling of a large number of pairs with hyperfine interactions compoutationally tractable.
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FIG. 1. (Color online) Schematic of the ac vector susceptometer used in the experiments. The sample sits inside nested pickup
coils A and B, sensitive to magnetic response in the transverse and Ising directions, respectively. An ac magnetic field along
the Ising axis is supplied by solenoid C; the sample is thermally sunk to the cryostat cold finger via sapphire rods D and copper
wires E. A superconducting 3-axis Helmholtz coil F and an 8T solenoid magnet G supply dc magnetic fields. G is almost, but
not perfectly, aligned transverse to the c-axis of the sample.

II. SUSCEPTIBILITY MEASUREMENTS

A single (5 × 5 × 10) mm3 crystal of LiHo0.045Y0.955F4 was characterized using ac magnetic susceptibility in a
helium dilution refrigerator. The magnetic response along the Ising axis and in the transverse plane was measured
using a specially devised multi-axis ac susceptometer, as shown in Fig. 1. The sample was probed for a 101 Hz
2 µT ac magnetic field parallel to the Ising axis. A pair of nested inductive pickup coils allowed for simultaneous
determination of the magnetic response parallel to and transverse to the Ising axis of the crystal. The crystal was
thermally linked to the cold finger of the refrigerator via sapphire rods and heavy copper wires. A multi-axis set
of 100 mT Helmholtz coils and an 8 T solenoid provided dc magnetic fields Hdc parallel to and almost transverse
to the Ising axis respectively; however, because of the difficulty in precisely aligning the crystal, we cannot exclude
the possibility of a misalignment of the solenoid from the transverse axis occurring in a given experiment. For the
experiments quoted here, the misalignment was measured as 0.6◦. The effect on the predicted properties is discussed
in §IVD below.
The measurement probes the diagonal and off-diagonal components respectively of the linear susceptibility tensor,

but evaluated at the non-zero reference field Hdc:

χzz =
∂Mz

∂Hz

∣

∣

∣

∣

H=Hdc

; (1)

χxz =
∂Mx

∂Hz

∣

∣

∣

∣

H=Hdc

. (2)

(3)

Fig 2 shows our results for the real part of the longitudinal and transverse susceptibilities χzz and χxz as functions
of Hdc

18. These experimental results will be compared in section IVD to the predictions derived from the spin-pair
model developed in the following sections. The off-diagonal linear susceptibility vanishes in the limit where Hdc is
exactly perpendicular to the Ising axis; as we shall see, a small component along z enables χxz to capture some of the
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FIG. 2. (Color online) Measured longitudinal (top) and transverse (bottom) real susceptibility at 70, 110, and 150 mK (blue).
(Adapted from Ref. 18)

non-linear dependence of M on H and hence to give information about clustering and correlation effects, as expected
from previous work12.

For ease of comparison with the literature, all computed and measured susceptibilities in this paper are reported
in units of emu per mole of Ho3+ ions (1emumol−1 corresponds to a susceptibility of 4π × 10−6m3mol−1 in SI
units). Note that because of the low concentration of Ho3+, the quoted molar susceptibilities correspond to relatively
small volume susceptibilities (of the order of 0.5 in SI units, or 0.04 emu cm−3 in the case of χzz , and 2.6 × 10−3

in SI or 2 × 10−4 emu cm−3 for χxz), and the samples are needle-shaped and elongated along the c-axis; therefore
demagnetization corrections to the measured susceptibilities are negligible.

The choice of 101 Hz as the measurement frequency involves a compromise between the difficulty of performing
accurate low-frequency measurements, and the desire to approach the static limit for the real part of χ as closely as
possible. In assessing this the relevant comparison is with the characteristic frequency f0 corresponding to onset of
the sample’s dissipative response; this slows dramatically as either field or temperature is reduced, but comparison
with the previously published data17,21 shows that it lies well above 100Hz even for temperatures as low as 60mK
provided that the transverse field exceeds about 3 kOe (0.3T).

The imaginary part of the magnetic response was also measured18. Unlike the real part this remains strongly fre-
quency dependent and, since the frequencies involved are small compared with all the energy scales of the microscopic
Hamiltonian, a theoretical treatment depends on an understanding of the low-frequency relaxation dynamics of the
Ho3+ ions and is not considered in the present paper.

III. HO3+ PAIR MODEL

To construct a model for the susceptibility of Ho3+ pairs, we start with the complete microscopic Hamiltonian. The
low-lying states of this Hamiltonian are then used to construct an effective 2-stateH , which can be readily diagonalized
for two interacting ions. If the hyperfine interactions from the microscopic single-ion Hamiltonian are added to this
2-state picture, the resulting H has 16 states, and the pair Hamiltonians are still numerically tractable. Finally, a
weighting scheme is implemented that incorporates contributions for pairs beyond immediate nearest-neighbors.
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FIG. 3. Single-ion energy levels as a function of longitudinal magnetic field. (a) Lowest eight electronic crystal-field levels of
the 5I8 ground term as a function of field Bz parallel to the Ising axis. (b) Splitting of the two lowest electronic levels by the
hyperfine interaction.

A. Microscopic Hamiltonian

The electronic Hamiltonian of a single Ho3+ ion in a magnetic field is

H1 = Hcf −m ·B
= Hcf − µBgLj ·B ,

(4)

where gL = 5
4 is the Landé g factor. Hcf is the crystal field Hamiltonian, which splits the 17-fold degenerate 5I8

ground term state of Ho, and is given by

Hcf =
∑

l=2,4,6

B0
l O

0
l +

∑

l=4,6

B4
l (c)O

4
l (c) +B4

l (s)O
4
l (s) , (5)

where Om
l are Stevens’ operators28. We follow Ref. 29 in taking the following values for the crystal-field parameters:

B0
2 = −0.06 meV, B0

4 = 3.5× 10−4 meV, B4
4 = 3.6 × 10−3 meV, B0

6 = 4 × 10−7 meV, B4
6(c) = 7.0 × 10−5 meV and

B4
6(s) = 9.8× 10−6 meV. (Note that despite the apparent smallness of the higher-order crystal field parameters, the

normalization of the crystal-field parameters means that all these terms in fact make significant contributions to the
spectrum.) The resulting electronic energy levels are shown in Figs. 3a and 4a as a function of fields parallel and
transverse to the Ising axis.

The isotropic hyperfine coupling to the local I = 7
2 Ho3+ nuclear spin can be included explicitly by defining

Hhf = Hcf ⊗ IN +AJ · I+ µBgLJ ·B+ µNI ·B, (6)

with Jα = jα ⊗ IN and A/kB = 0.039K or A = 3.4µeV. Figs. 3b and 4b show the effect of the hyperfine splitting
on the lowest two crystal-field states (but computed using the entire single-ion Hamiltonian (6)). As emphasized
by Ronnow et. al.19 and Schechter and Stamp11,26, although A is small compared with the characteristic intra-ion
electronic energy scales, it is comparable to the inter-ion dipolar coupling (see §IVC). Its effect is to suppress the
mixings between the two terms of the lowest electronic doublet at low temperatures, because the lowest electro-nuclear
spin state in each branch has the nuclear and electronic moments anti-aligned and the nuclear moments cannot be
reversed at low orders by any of the terms in equation (6).

The state-space required to correctly describe the 5I8 ground term of Ho3+ in the presence of hyperfine splitting is
then (2× 8+ 1)× (2× 7

2 +1) = 136. The full Hilbert space on an ion pair therefore has dimensionality 1362 = 18496,
which is inconveniently large for the repeated exact diagonalizations required to treat a range of pair geometries and
fields. We therefore proceed by truncating the model to a smaller state space while preserving the essential behavior.
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FIG. 4. Single-ion energy levels as a function of transverse magnetic field. (a) Lowest three electronic crystal-field levels in the
presence of a field Bx transverse to the Ising axis. (b) Splitting of the two lowest electronic levels by the hyperfine interaction.

B. The electronic two-state system

Following Chakraborty et al.2, we note the large (9.5 K) gap between the ground state doublet and the first excited
crystal-field level (Fig.4a). We therefore construct a Hamiltonian describing the low-energy behavior of the ion on
a two-dimensional electronic Hilbert space, covering only these states. This is a parameterized model in which the
inter-level repulsion shown in Fig. 4a is included explicitly as described below.
For a given value of transverse field Bx the following two-state Hamiltonian is defined:

H(2) ≡ E0(Bx)I2 +
1

2
∆(Bx)σx + µBgLjeff .B

′ . (7)

Here I2 is the identity operator in two dimensions and σx is a spin-half Pauli operator. E0(Bx) is the mid-point
of the lowest two energy levels and ∆(Bx) their splitting in that transverse field. The effective angular momentum
operators jeff are chosen to reproduce the correct physical angular momentum matrix elements for the two states;
their decomposition into Pauli operators is discussed in Ref. 2. Finally, the field B has been replaced with the effective
field B′ ≡ B−Bx̂i, from which the x-component (now represented by the splitting ∆(Bx)) has been removed. Further
details of the two-state reduction, and a quantitative comparison of its spectrum with that of the full Hamiltonian,
are given in Appendix A.
Note that at first sight one might expect that it would also be possible to construct a three-state model, including

the two-fold degenerate ground state as well as the first excited state, which are relatively well separated from
the rest of the spectrum (see Figure 3). However it turns out that level repulsion from the rest of the spectrum
becomes significant at modest external fields2, and for this reason it is preferable to parameterize a two-state effective
Hamiltonian operator for every value of transverse field in order to incorporate all these effects.
In the presence of the I = 7

2 hyperfine interaction, the two-state model becomes

H
(2)
hf ≡ E0(Bx)I16 +

1

2
∆(Bx)σx ⊗ I8 + µBgLJeff ·B′ + µNI ·B+AJeff · I , (8)

with Jeff ≡ jeff ⊗ IN. This has a dimensionality of 16, and thus the Hamiltonian of a pair of spins will have a
numerically tractable dimensionality of 256. In this paper we therefore retain the full nuclear Hilbert space when
considering the hyperfine interaction, rather than restricting the model further to the lowest electro-nuclear doublet
as in Ref. 26.

C. Intra-ion coupling

We neglect the small exchange interactions between the Ho3+ ions, so in our model pairs are coupled only by the
magnetic dipole interaction. Angular momentum operators are constructed for each spin in a direct product Hilbert
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space. The dipole coupling between spins at R1 and R2 is then

H12 =
µ0(µBgL)

2

R3
12

∑

αβ

(

δαβ − 3Rα
12R

β
12

R2
12

)

J (1)
α J

(2)
β , (9)

where R12 ≡ R2 −R1 and J
(i)
α is component α of the total angular momentum of ion i. The total Hamiltonian of

the pair is

Hpair = H1 +H2 +H12. (10)

Note that for a given pair, the spin J
(2)
β at site 2 gives rise to a pair interaction H12 containing an effective field at

site 1

B
(1)
eff,α =

µ0(µBgL)

R3
12

∑

β

(

δαβ − 3Rα
12R

β
12

R2
12

)

J
(2)
β , (11)

which in general contains a transverse component. Strictly, therefore, the field-dependent parameters in equation (7)
should be computed incorporating this component. However, in practice this dependence is negligible for the applied
fields of interest because the characteristic scale of B(1) is at most µ0µBgL|J (2)|/a3 = 29mT, while the experimental
variation of χ is on the scale of fields that can mix the Ising doublet, of order 1T (see Figures 2 and 4).

D. Computing the susceptibility

The isothermal susceptibility is defined as

χαβ ≡ 1

V

(

∂ 〈mα〉
∂Hβ

)

T

, (12)

where m is the total magnetic moment and V is the sample volume. We apply this by computing the field-dependent
eigenstates of the pair Hamiltonian (10) and computing

χαβ = − 1

kBTZV

∑

i

exp(−Ei/kBT ) 〈i|∆m̂α|i〉 〈i|∆m̂β |i〉

+
1

ZV

∑

i

exp(−Ei/kBT )
∑

j

′

2ℜ
[〈i|m̂α|j〉 〈j|m̂β |i〉

Ei − Ej

]

= χLangevin + χVan Vleck ,

(13)

where the primed sum goes over all states i and j such that Ei 6= Ej , ℜ denotes the real part, and ∆mα ≡ mα−〈mα〉.
Matrix elements between degenerate states have been made to vanish by a choice of basis such that m̂β is diagonal
in each degenerate subspace. Numerically we assume states i and j are degenerate if Ej − Ei < ε, a small value
chosen such that the susceptibility is not sensitive to variations in ε; in these results we used ε = 10−7meV. Note
that in applying equation (12) we assume that the Ho3+ ions remain in thermal equilibrium over the timescales of the
experiment, i.e. that all thermalizing relaxation processes operate on a timescale fast compared to the measurement.

E. A pair-ensemble weighting scheme

We wish not only to examine the behavior of specific pairs of spins, but also to calculate the average response for
a distribution of spin pairs corresponding to the physical LiHo0.045Y0.955F4 crystal. We proceed by assuming that
at this dilute concentration the behavior of each spin is affected only by the closest spin and compute a weighted
susceptibility. This is determined by computing the susceptibility of an exhaustive sample of pairs of spins up to some
cutoff distance rc and weighting each term by the probability that in a randomly populated set of sites in a lattice
with mean fractional occupancy x, the chosen spin s2 would be the nearest occupied site to the reference spin s1. If
all the sites were at different distances, this would be given by the probability that no sites nearer to s1 than s2 are
occupied, while the site s2 itself is occupied. The weighting for a site sj would then be

wj = x(1 − x)Nj , (14)
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where Nj is the number of sites closer to s1 than sj . However in practice the sites s2 occur in ‘shells’ with equal
distance from s1; if there are nj sites in shell j, we ascribe a weighting to each site which is a fraction 1/nj of the
probability that there is at least one neighboring spin anywhere in the shell:

wj =

[

1− (1− x)nj

nj

]

(1− x)Nj . (15)

The cutoff distance rc is always chosen such that the probability of the nearest occupied site s2 being more than
rc from s1 does not significantly exceed 10−3; the required rc therefore increases as x falls. For the calculations
presented here we included 22 shells of neighbors containing 146 ions, corresponding to rc = 2.58 a = 13.4 Å. At the
experimental spin concentration (x = 0.045) the probability that the pair separation exceeds rc is then 1.20× 10−3.

IV. RESULTS

A. Contributions of individual pairs

The magnetic response of a pair of Ho spins depends strongly on their separation and orientation. Fig 5 shows the
Ising-axis and transverse response of all pairs that make a significant contribution to the cluster ensemble. Although
these plots are of illustrative value in demonstrating the wide range of behaviors arising from spin pairs, it is more
useful to examine how these different responses contribute to the ensemble average. Fig 6 shows these averages by
plotting the susceptibilities of each pair using the weighting wi as a color map. Susceptibility bands appear in this
weighted map due to particular closely neighboring spin pairs. It can also be seen that for every pair of spins with
a transverse susceptibility χxz(Bx) = f(Bx), there exists a pair with χxz(Bx) = −f(Bx). It thus follows that an
ensemble average as defined in Sec. III E will give a zero value of χxz for all values of field Bx. As discussed below, the
measured response is well described by a small (0.6◦) tilt of Bx, producing a polarizing field along the Ising axis. A
comparison of the weighted susceptibilities with and without the incorporation of hyperfine effects suggests that the
primary effect of the hyperfine term is to renormalize the transverse field; this behavior is discussed in more detail in
Section IVC below.

B. Pair orientation and response

Depending on relative orientation, the dipole coupling can be either ferromagnetic or antiferromagnetic. A fer-
romagnetic pair has a susceptibility χzz which diverges in the limit of low temperatures and zero transverse field,
whereas an antiferromagnetically coupled pair has vanishing susceptibility in the same limit. As can be seen from
Fig. 2, antiferromagnetic behavior dictates the measured response of the sample of LiHo0.045Y0.955F4, and as shown in
Fig 5 certain pairs show a qualitatively similar magnetic response. As we shall see below, however, their contribution
to the ensemble average used in this paper is not sufficient to make the overall average susceptibility agree with the
measured one.
The relation of this behavior to the crystal structure can be understood from Fig. 7, showing the zero-field suscep-

tibility at T = 70mK of a pair of Ho3+ ions separated by a distance r in the a–b plane and z on the c-axis. The
crossover between the ferromagnetic and antiferromagnetic couplings occurs along the line z/r = 1/

√
2; the strongly

antiferromagnetic pairs are located in-plane at (1, 0, 0) and (2, 0, 0) and the most strongly ferromagnetic pair is the
nearest-neighbor pair at (12 , 0,

1
4 ). Note that the on-axis pair (0, 0, 1) is more weakly ferromagnetic at this temperature,

owing to the larger spatial separation.

C. The effect of the hyperfine interaction

We now examine the role that hyperfine interactions play in determining the behavior of the system. It is important
to understand whether these effects produce a qualitative change in the behavior, as expansion of this model to n = 3
and larger clusters of spins becomes numerically impractical if the hyperfine splittings are essential. Fig. 8 shows
susceptibilities for high-weight spin pairs both with and without hyperfine effects. (Note that pairs such as (12 , 0,

1
4 )

and (0, 1
2 ,

1
4 ), which are equivalent at zero field, become inequivalent for non-zero fields, except when the field lies along

symmetry directions such as (1, 1, 0).) We see that the primary role of the hyperfine interactions is to renormalize the
applied transverse field, rather than to introduce fundamentally different behavior. This in turn suggests that useful
insights may be derived from considering larger spin clusters in the absence of the hyperfine splittings. It should be



9

FIG. 5. Computed susceptibilities (in emumol−1) for all pairs of spins at T=70 mK, with hyperfine interactions included. (a)
Diagonal response χzz. (b) Off-diagonal response χxz.

noted, however, that the strongly ferromagnetic (12 , 0,
1
4 ) pair does not show this renormalization when it is oriented

so that the projection of the separation vector into the ab-plane lies along the transverse field direction.

D. The ensemble-averaged susceptibilities

Fig. 9 shows the experimental and ensemble-averaged longitudinal susceptibility χzz. The left panel shows computed
and experimental results at temperatures of 70, 110 and 150 mK. Computed results include the effect of the hyperfine
response, but omit in this panel the effect of tilting the field Bx. The model captures the overall temperature
dependence of the data, but it cannot account for the low-field suppression of the susceptibility because the average
is dominated by the contributions of ferromagnetic and effectively uncoupled pairs.
The right panel of Fig. 9 shows the effects of varying the parameters of the model at a constant T=70 mK. The

dashed curves show the result of removing the hyperfine terms; for most of the field range, the renormalization seen
in the individual pair susceptibilities is visible. At low field, the strongly ferromagnetic (12 , 0,

1
4 ) pairing dominates,

and no renormalization is seen. The dotted curve shows the result of keeping the hyperfine effects and adding a 0.6◦

tilt to the applied field, with the attendant slight polarization along the Ising axis. We can see that this improves the
match between the high-field behavior of the model and the experiment.
Fig. 10 displays similar information for χxz. Note that owing to the symmetry observed in Fig. 5(b), the ensemble

average of χxz vanishes in the absence of a polarizing field. Thus, the only appropriate comparison is between the
tilted-field computation and the measured value, as shown in the left pane of Fig. 10 for both single-ion and ensemble-
pair-average computations. It is clear that the tilt is responsible for the measured effect, with the pair average
providing a better match to the measured susceptibility than a single-ion calculation. The effect of the hyperfine
response is the same renormalization of the field seen in the longitudinal response. The right pane of this figure shows
the effect of temperature on both the measured and the pairwise average χxz.
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FIG. 6. (Color online) Contribution of the various pairs to the ensemble-averaged functions χxz(Bx) (top) and χzz(Bx)
(bottom). The colour scale shows the total weighted contribution of all pairs to a given susceptibility at a given field. Left and
right plots, respectively, show the effects of omitting and including the hyperfine term in the Hamiltonian. The temperature
was T = 70mk and the field was applied along (1, 0, 0). Susceptibilities are given in emumol−1.

V. CONCLUSIONS

We have developed a spin-pair model for understanding the behavior of dilute LiHoxY1−xF4. A weighted ensemble
average of all spin pairs reproduces the high-transverse-field experimental susceptibility, but not the low-field anti-
ferromagnetic character of the data. Nonetheless, the rise in the longitudinal susceptibility at a transverse field of
around 1T, which looks like a signature of a spin gap, does correspond to the calculated susceptibility for certain
antiferromagnetic pairs. This suggests that a full understanding of the system requires either the treatment of larger
clusters, an extension which should be numerically feasible because of the observation that the primary effect of the
hyperfine splitting in the dc susceptibility is to renormalize the transverse field. This will allow extension of the
model to larger clusters of spins using the simplified 2-state description for individual spins rather than a full 16-state
description. Ultimately, to reach the thermodynamic limit, it would still be necessary to generalize a scaling approach,
such as the real-space renormalization group of Ref. 9, to include finite transverse fields.

Recent theoretical studies of the pure material (x = 1), in which a two-state reduced Ising model on a lattice
is studied by classical Monte Carlo approches2,16, are complementary to the approach presented here because they
include long-range dipolar physics missed by our cluster expansion, but at the cost of ignoring quantum corrections to
the behaviour of individual pairs. It is interesting that these classical calculations disagree with experiment in some
significant respects, especially at low transverse fields30. It is still not clear whether this disagreement originates within
the classical approximations made or in the underlying crystal-field model16; a scaling extension to our method, which
should be most rapidly convergent in the high-dilution limit, could give additional insight in this problem. Such an
extension would also sample somewhat different regions of the cluster configuration space, since Fig. 7 shows that the
antiferromagnetic region extends considerably farther in distance than does the ferromagnetic region. This space is
not sampled significantly in the pairwise model, owing to the rapid fall-off of the weighting function wi with distance,
but larger clusters can sample this interaction region far more extensively.

Additionally, it would be useful to consider the dynamics of the magnetic response at the lowest fields, where its
characteristic timescale exceeds that of the experiments, in order to improve the agreement between experiment and
theory in that region.
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(a) (b)

FIG. 7. (Color online) (a) The effect of geometry on χzz, computed in ithe absence of hyperfine interactions with zero transverse
field and temperature T = 70mK. Response is plotted for a pair of spins with axial separation z and in-plane seperation r

(units of lattice parameter a) with the marked points showing the locations of various near neighbors. The susceptibility is
shown in units of emu/mol Ho. (b) View of the structure showing pairs marked in (a).

FIG. 8. (Color online) The magnetic response at T = 70mK of certain important spin pairs, using a Hamiltonian which
incorporates hyperfine effects (solid) and which omits these effects (dotted). The primary effect of adding the hyperfine
splitting is to impose an effective renormalization of the transverse field scale. The transverse field is applied along the (1, 0, 0)
direction.
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FIG. 9. (Color online) Measured and computed χzz (in units of emu/mol Ho). (left) Computed (heavy, red curves) and measured
(blue, light) susceptibility. Solid, dotted and dashed curves are T=70 mK, 110 mK and 150 mK respectively. (Right) The effect
of tilting the transverse field (dotted curve), and of omitting the hyperfine interaction (dashed), at T=70 mK. Unbroken red
(heavy) and blue (light) curves, again show the computed (with hyperfine, no tilting) and measured susceptibilities respectively.
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FIG. 10. (Color online) The apparent transverse susceptibility (in emumol−1) resulting from a transverse field tilted by 0.6◦.
(Left) Measured susceptibility (blue, thin, solid curve) is contrasted with the susceptibility of a single ion in a tilted field
(dashed curves), and the pairwise average susceptibility (dotted). The heavy, red curves include hyperfine effects. The thin,
grey curves do not. (Right) The effect of temperature. Measurements are shown as light, blue curves; calculations as heavy,
red curves. Temperatures are 70 mK (solid curve), 110 mK (dotted) and 150 mK (dashed).
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FIG. 11. Comparison of expectation values of electronic spin operators from a two-level fit and from a full crystal-field
calculation, as a function of transverse field. (a) 〈Jz〉 in the basis state |↑〉 (and hence also the off-diagonal matrix element of
Jz between the states of the doublet); (b) expectation value of Jx in the lower state of the doublet; (c) expectation value of Jx

in the upper state of the doublet. In all cases solid points are the full results and the lines are the two-level fits.

Appendix A: The two-state reduction

The presciption for the construction of the low-energy subspace is similar to that described in Ref. 2. The mean
energy E0(Bx) and the splitting ∆(Bx) are tabulated as a function of Bx. The eigenstates |↑〉 and |↓〉 of the two-state
pseudospin operator σz are then taken as

|↑〉 = 1√
2

(

|0〉+ eiθ |1〉
)

; |↓〉 = 1√
2

(

|0〉 − eiθ |1〉
)

, (A1)

with the phase θ chosen to ensure that |↑〉 and |↓〉 also diagonalize the physical operator Jz (so the representation of
Jz within this subspace corresponds to a mutiple of the Pauli operator σz). The single-ion electronic Hamiltonian is
then given by equation (7). Figure 11 shows how the matrix elements of the spin operators are reproduced in the fit.
By construction this two-level model gives an accurate description of a single ion at temperatures well below about

10K (where excitations outside the ground-state doublet become important). We now need to check that it also gives
an adequate representation of pairs, where the field on each ion contains a contribution from the other spin as well
as from the external field. Figure 12 shows the lowest energy levels computed from a full electronic calculation and
from the two-level system, both with and without the coupling to the nuclear spins; it can be seen that the splittings
arising from the dipolar interactions of the pair are accurately reproduced.
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FIG. 12. Comparison between the full eigenvalue spectrum (left) for an ion pair separated by (a, 0, 0) and the two-state
reduction (right). The upper row (parts (a) and (b)) shows the four lowest electronic states only; the lower row (parts (c) and
(d)) includes the hyperfine interaction with the nuclear states, showing the 256 corresponding hyperfine levels.
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