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The majority of solid-state deformation and transformation processes involve coupled displacive-
diffusional mechanisms, of which a detailed atomic picture does not exist. We present here, for the
first time, a complete atomistic description of one such process by which an extended edge dislocation
in face centered cubic (FCC) metals may climb at finite temperature under supersaturation of vacan-
cies. We employ a newly developed approach, called Diffusive Molecular Dynamics (DMD), which
can capture diffusional time scale while maintaining atomic resolution by coarse-graining over atomic
vibrations and evolving atomic density clouds. We find that, unlike the Thomson-Balluffi mecha-
nism, if simultaneous displacive and diffusive events are allowed, a coupled displacive-diffusional
pathway exists for extended double jog formation. Along this pathway, the activation energy is
lower than the previous theoretical predictions and on par with the experimental observations.

PACS numbers: 62.20.-x, 62.25.-g, 66.30.-h, 02.70.Ns

I. INTRODUCTION

In most solid-state processes, coupled displacive-diffusional mechanism is a rule rather than an exception. For exam-
ple, structural phase transformations often involve coupled lattice shear, shuffle, and diffusion1. Curvature driven grain
growth may involve coupled tangential (displacive) and normal (diffusional) migration of grain boundaries2. Creep
deformation, the focus of the present study, involves both displacive (conservative) and diffusional (non-conservative)
motion of dislocations3. It is generally accepted that power-law creep, where steady-state creep strain rate ε̇ is pro-
portional to a power of the applied stress σ (ε̇ ∝ σm), is a result of these coupled diffusive-displacive motions4,5. In
pure metals and some alloys, where m ≥ 4.5, the creep rate is believed to be governed primarily by the climb of edge
dislocations6. Because of timescale limitations, conventional molecular dynamics (MD) has been applied to study
mostly dislocation glide in the past thirty years; atomistic modeling of climb has always been a challenging task7.
Here, we employ a novel method called diffusive molecular dynamics (DMD)8 that evolves 5N degrees of freedom:
{Xi, αi, ci}, which are the mean position, the Gaussian width, and the occupation probability or concentration re-
spectively, of N atomic density clouds. Developed in the grand canonical ensemble, DMD is a chemical and kinetic
extension of the Variational Gaussian (VG) method9,10, which coarse-grains over atomic vibrations, but unlike VG,
allows for simultaneous displacive and mass-action dynamics such as lattice diffusion.

Climb of an edge dislocation should occur via climb of individual jogs. This scenario becomes complicated when
dislocations are dissociated (extended) - a natural occurrence in FCC metals. Stroh proposed a mechanism11 that
requires the glissile constriction of the two partial dislocations, hereafter referred to as partials, as a precursor for
the climb of an extended dislocation. In an illustration of the reaction coordinates, Fig. 1, Stroh’s path involves
glissile action first, followed by non-conservative mass action. But mechanisms in the reverse order have also been
suggested12–14. Thomson and Balluffi13 proposed that the first step of climb involves diffusive aggregation of a
prismatic loop on one of the partials. In contrast to the Stroh path, the Thomson-Balluffi (TB) path requires non-
conservative aggregation first, followed by conservative glissile dissociation of the prismatic loop. Grilhé et al.15,16 have
computed, based on continuum elasticity theory, that there exists a critical size nC of the TB prismatic loop (blue circle
in Fig. 1) above which the pure glissile dissociation of the prismatic loop becomes monotonically downhill in energy;
otherwise, the activation energy for purely glissile formation of dissociated double jogs, seen experimentally13,17,18, is
quite large (∼ 101 eV). Here, using DMD method8, we demonstrate that a smaller nC is possible along the TB path by
relieving the constraint of purely glissile relaxation: DMD shows that nC = 3 is sufficient to trigger a monotonically
downhill path in the grand potential, along a coupled diffusive-displacive reaction coordinate as illustrated in Fig. 1.
The coarse-grained activation barrier for this process is only ∼ 0.83eV, on top of a lattice diffusion barrier of ∼ 0.7eV.
Thus, our calculation is on par with experimental observations that double-jog nucleation is an easy process even on
widely extended dislocations under moderate to high driving forces3,19,20.
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II. METHODOLOGY

A. Diffusive Molecular Dynamics

DMD method is described in Ref.8. Here, it may suffice to say that compared to 6N variables in MD, the atomic
positions and the momenta {xi,pi}, for i = 1 . . . N , N being the number of atoms, DMD has 5N degrees of freedom:
{Xi, αi, ci}, which are the mean position, the Gaussian width, and the site-occupation probability or concentration
respectively, of atomic density clouds. The Helmholtz free energy of the system, FDMD, is expressed in terms of
{Xi, αi, ci} as

FDMD =
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2π/mkBT is the deBroglie thermal wavelength, kB is the Boltzmann constant, T is the absolute
temperature, m is the atomic mass, and d is the dimensionality of the system. In the above expression, E is the
embedding function, w is the Gaussian averaged pair potential u, and ψ is the Gaussian averaged density function ρ
of an embedded atom method (EAM) potential
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where ρi =
∑
j 6=i ρ (xij). An exchange chemical potential between an atom and a vacancy for site i is defined as

µi ≡
∂FDMD({Xi, αi, ci})

∂ci

∣∣∣∣
{Xi,αi}

. (3)

Once the site-wise exchange chemical potential is defined, a general master equation21 for diffusion can be invoked on
a network of moving atomic sites.

The VG method has been extended in the grand canonical ensemble earlier by Phillpot10 in the context of sim-
ulated quenching technique22,23, but the resulting free energy does not include the configurational entropy term
(kBT [c ln c+ (1− c) ln (1− c)]), and is coupled with an ansatz Lagrangian to describe the dynamics of a system. On
the other hand, the purely relaxational part of the DMD can be conceptually and formalistically regarded as solving
the Cahn-Hilliard equation1 on a “moving-atoms grid”, taking the regular-solution chemical free energy model with
long-range elastic interactions, short-range coordination interaction and gradient thermodynamics all automatically
included.

During a DMD simulation, each time step is realized in two parts. First, the variables {Xi, αi} are statically
minimized holding {ci} constant. This process of establishing mechanical and vibrational equilibrium is instantaneous
because {Xi} and {αi} change on the inertial (ps) and thermalization (100 ps) time scales respectively, both of
which are much smaller than diffusional time scale determined by τ = r20/4πDV, where r0 is the nearest neighbor
distance, and DV is the vacancy diffusivity. Then in the second part, the {ci} are integrated numerically according
to the chemical potential differences, holding {Xi, αi} constant, in order to approach chemical equilibrium gradually.
Because displacive relaxation of {Xi, αi} is “instantaneous” in DMD, the fundamental “clock” of DMD is controlled
by the value of chemical diffusivity, not by atomic vibration. DMD algorithm has been embedded in the LAMMPS
molecular dynamics code24 by creating a new atom type, enabling us to use its vast resources and parallelization. A
Gaussian-averaged Cu embedded-atom method potential8 was used to represent the pairwise interactions and electron
density in copper for this study. We report time in terms of (dimensionless) reduced time t̃ ≡ t/τ , t being the simulated
time.
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For the calculation of stress tensor, with {αi} instantaneously minimized for an arbitrary {Xi, ci} configuration, it
can be shown that the virial stress formula can be applied to just the first two terms of FDMD to calculate the stress
tensor in DMD, as if it were the normal interatomic potential in MD with Xi replaced by xi, and pretending {αi, ci}
are frozen parameters. So, the atomic level stress for site i in DMD is expressed as

σi =
1

2ω

∑
j 6=i

Xij ⊗
∂FDMD({Xi, αi, ci})

∂Xij
(4)

where ω represents the average atomic volume, and Xij = Xi −Xj .

B. The Nudged Elastic Band Method on DMD Free Energy

The variables {Xi, αi, ci}, i = 1 . . . N , N being the total number of sites in the system, define a 5N dimensional
configuration space in DMD. In order to explore the free energy surface in the grand canonical ensemble, one must
consider the DMD system in contact with an infinitely large reservoir with which the system is in equilibrium and
can exchange mass. Then the appropriate potential to feed into the nudged elastic band (NEB) “machinery” is the
grand potential ΩDMD

25, defined as

ΩDMD (µ, V, T ) =FDMD (N,V, T )− µ0

N∑
i=1

ci, (5)

where µ0 is the constant chemical potential of the reservoir. ΩDMD represents the Legendre-transformed free energy
that accounts for the penalty in any change in the total mass (

∑
i ci) of the system.

In the NEB method26–28, an elastic band with K + 1 replicas or nodes, denoted as [R0,R1,R2, . . .RK ], where R0

and RK correspond to the initial and the final replicas, is considered. In this case, each replica represents a point in
the 5N dimensional configuration space spanned by {Xi, αi, ci}, i = 1 . . . N . The total force acting on any replica is
calculated as the vector sum of the spring force along the local tangent and the true force perpendicular to the local
tangent, expressed as

Fj = Fsj
∣∣
|| + Fpj

∣∣
⊥ , j = 0 . . .K. (6)

The subscripts || and ⊥ stand for the parallel and the perpendicular component of the forces resolved on the local
tangent to the node. The true force Fpj , in the context of DMD, is calculated as

Fpj =

{
∂ΩDMD

∂X
,
∂ΩDMD

∂α
, µ− µ0

}
. (7)

The spring force is an artificial force that depends on the inter-replica distances |Rj −Rj+1|, as26

Fsj
∣∣
|| =kdof (|Rj+1 −Rj | − |Rj −Rj−1|) τ̂j , (8)

where kdof is the spring constant vector with each component corresponding to a particular type of degrees of freedom.
In calculating τj , an improved tangent calculation as per Henkelman and Jónsson26 is adopted to avoid the formation
of kinks on the minimum energy pathway (MEP). The initial chain-of-states is created by linearly interpolating the
two end images. After that, the replicas are relaxed according to the damped dynamics FIRE29 subject to the force
field Fj until the chain converges to the MEP. During the relaxation, the forces on each replica are simultaneously
updated as well. Convergence is ascertained when there is no change in the MEP and the maximum force on any
replica is less than a prescribed tolerance.

III. MODEL SETUP

To study the climb process, a crystal of dimension Lx = 15.09 nm, Ly = 10.62 nm and Lz = 12.52 nm, spanned by
fcc lattice vectors ux = [11̄0], uy = [112̄], uz = [111], was created (Fig. 2(a))30. The cell contained approximately N =
170, 000 atoms with an edge dislocation dipole inside, whose Burgers vectors were ±a2 [11̄0], parallel (or antiparallel)
to ux, a being the lattice parameter. The dislocation lines were oriented along uy with the sense vector ξ taken as
ξ = uy/ |uy|. The two edge dislocations that were two glide planes (2d111) apart were introduced in the same manner
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as Rodney and Martin’s31, where the atoms were displaced in the x and z directions according to the isotropic elasticity
solution for the displacement field of the dislocations3. Such narrow dipole configuration was chosen because in that
limit any elasticity description fails eliminating applicability of many other methods, such as kinetic Monte-Carlo.
The system was then MD static-relaxed at 0 K in an NPT ensemble using LAMMPS molecular dynamics code24 under
periodic boundary conditions (PBC) in all three directions and zero applied stress. After the relaxation, the top (≡
positive edge ⊥) and the bottom edge dislocation dissociated into Shockley partials according to AB = Aδ + δB
and BA = Bδ + δA respectively (Thompson tetrahedron notation adopted), as shown in Fig. 2(a) and (b), and the
dissociation width was found to be 1.82 nm, the cores being located by means of coordination number plot. This
configuration was subsequently taken to 1200 K using equilibrium lattice parameter and equilibrium {αi} for copper
at this temperature8 and was subjected to a constant 0.5% uniaxial compressive strain (∼ 950 MPa, volume averaged
virial in Eq. 4) in ux direction.

At 1200 K, our model predicts an equilibrium vacancy concentration of 6.2 × 10−6 corresponding to the vacancy

formation (free) energy of EfV = 1.24 eV. However, by setting ci = 0.999 for all sites, a higher background vacancy
concentration of 10−3 was assumed. This supersaturation of point defects is observed in many climb environments
such as irradiation damage, severe plastic deformation, and can exceed the equilibrium value by at least four orders
of magnitude32,33. In our system, Lx and Lz determine the total dislocation density ρd by controlling the inter-
dislocation spacing under PBC. Taking L ≈ 15.0 nm, ρd can be anywhere between 1015 m−2 to 1016 m−2, a dislocation
density that is typically observed in heavily deformed metals34. Thus, a supersaturation of two to three orders of
magnitude for this temperature was realistic for such deformed metals. Additionally, a thick layer of sites (∼ 1.6 nm)
at the supercell boundary in the ±uz direction were held at fixed concentration ci = 0.999 to serve as far-field vacancy
sources or sinks that correspond to, in reality, grain boundaries in bulk, etc. This maintained a steady supersaturation
realized under applied stress and temperature35. We report our simulation results in terms of dimensionless time t̃,
as described above.

IV. RESULTS AND DISCUSSION

Due to omission of the noise term in the master equation8, kinetics in DMD is only downhill and therefore, it cannot
capture uphill phenomena in the mass-action space. Hence, to overcome the critical activation energy corresponding
to the nucleation of a loop on a partial, a “3-vacancy roughness” was created on a randomly chosen partial (here
δB) by reassigning ci = 0.001 to three sites in a row at the end of the extra half-plane {220} as shown in the inset
of Fig. 2(a.i) and Fig. 2(b). This was motivated from the realization that at atomic level, the process of climb is
initiated by binding a vacancy to the core (Ref.3 p.583, and36). We note that there are two ways of introducing a
three-vacancy-jog on a {220} half-plane, as shown in the inset of Fig. 2(a). On collapsing by energy minimization, this
3-vacancy roughness formed a vacancy type prismatic loop AB on the partial δB (Ref.3 p.583) as shown in Fig. 4(b).
We refrained from introducing multiple nucleation events so that the current study remains focused on “probing” the
energy landscape in the coupled displacive-diffusional reaction coordinate space7.

Since a DMD system is typically an open system, we track the grand potential ΩDMD of the system as defined in
Eq. 5. The chemical potential of the reservoir, µ0, was estimated to be −4.518 eV for the present case, calculated by
subjecting the reservoir to the same thermodynamic boundary conditions (here same background vacancy concentra-
tion, strain and temperature) as the system. To show that the configuration with the 3-vacancy roughness was past
the activation barrier, ΩDMD was calculated for all four configurations- the 0-vacancy (≡ all sites assigned ci = 0.999
uniformly), the 1-vacancy (≡ only one site at the end of the extra half plane reassigned to ci = 0.001), the 2-vacancy
(≡ two sites in a row reassigned to ci = 0.001) as well as the 3-vacancy configurations, by relaxing {Xi, αi} statically
under the applied strain. Referenced to the grand potential for the 0-vacancy case, Ω0vac

DMD, that for the 1-vacancy,
2-vacancy and 3-vacancy configurations were found to be 0.52 eV (or 5.0kBT ), 0.83 eV (or 8.1kBT ) and 0.80 eV (or
7.7kBT ), respectively. This activation energy barrier of < 1eV is significantly lower than any previous theoretical
estimate15.

Under the uniaxial compression of 0.5%, as the system started evolving, the 3-vacancy roughness underwent a
transformation where one of the end vacant sites was filled up at the cost of one site on the adjacent [11̄0] plane,
resulting in the formation of a zigzag trivacancy configuration. A similar observation was noted for the configuration
in Fig. 2(a.ii) at 0.7% strain, where the topmost vacant site was filled instead. After that, one leg of the zigzag
structure started attracting more vacancies forming a row of close-packed vacancies, which resulted in enlargement of
the prismatic loop AB, the BA part of which interacted with δB to form δA by the reaction δB + BA = δA. The
top part again dissociated by glide as AB = Aδ + δB, creating a dipole Aδ − δA and a partial δB (Fig. 3(a) and
Fig. 4(c)). Until this point of the evolution, the process resulted in climb of a part of the stacking fault area bounded by
curved partial δB and straight partial Aδ. The twisting of the dislocation line is reported and explained elsewhere17

in terms of the osmotic force couple that acts on the loop jogs AB. This process continued until t̃ = 1.01× 104, when
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the loop, containing five vacancies, was large enough so that it created a double jog on the extended dislocation by
glide extension (Fig. 4(c)→(e)). The corresponding atomic structure at t̃ = 1.44 × 104 is shown in Fig. 3(b). This
glide extension happened instantaneously in the DMD time scale. A schematic of this step drawn from the reaction
of the Burgers vectors is shown in Fig. 4(d). During the evolution, the dislocation structure as a whole was found to
glide in the ±ux direction, and to relax accordingly in the surrounding stress field.

It can readily be observed in Fig. 3(b) that the partials Aδ and δB showed different degrees of constriction for the
two jogs, a phenomenon which has been reported by both simulation (MD static minimization)31 and experiments37.
The degree of constriction depends on the line tension of the stair-rod dislocations. Since γδ − δγ Lomer-Cottrell
segments have smaller Burgers vector than that of AB/γδ− γδ/AB stair-rods, and consequently lower line tension,
the jog corresponding to the former remained more extended. However, since the height of the jogs was only one
interplanar spacing in this case, using elastic arguments to comment further on the details, e.g., the asymmetry of the
dissociation width on either side of a jog, may be questionable. It was found that the jog corresponding to AB/γδ
stair-rods had higher chemical potential, and therefore, attracted more vacancies which resulted in its movement in
the uy direction. Fig. 3(c) shows an intermediate configuration at t̃ = 2.22× 104 where almost half of the dislocation
line had climbed. This is more evident from the centrosymmetry plot in Fig. 3(d) when compared with Fig. 2(c). This
process continued until the complete climb of the faulted region by 1d111 at t̃ = 3.96× 104 (≡ 0.14µs). The schematic
diagram in Fig. 4, following Cherns et al.17, describes the whole process (movie in the supplementary material7).

Some comments can be made here by comparing our results with the experimental observations of Cherns, Hirsh
and Saka17. The evolution of dislocation lines in our case closely matches with the interpretations of their high
temperature results for near-edge dislocations for which they speculated the Thomson-Balluffi mechanism to take
place. For pure edge dislocations, however, they considered simultaneous nucleation of loops on both partials, the
repulsion between which forces them to climb separately. Since we have allowed for only one “nucleation event”, our
edge dislocation result, consequently, resembles with their near-edge dislocation one.

An NEB simulation was performed in the extended {Xi, αi, ci} space to calculate the detailed activation pathway,
and the result is shown in Fig. 5(a). The initial configuration as shown in Fig. 2 but without the 3-vacancy roughness
was chosen as the node-1. Prior to the NEB calculation, this configuration was allowed to relax by a DMD run
during which the system equilibrated with the reservoir, the primary event being concentration equilibration. The
other end node was chosen as the configuration right after the extended double jog formation at t̃ = 1.01 × 104.
Although a lower activation (free-)energy of 0.39 eV was found due to the allowance of fractional vacancies, we note
that the NEB generated node-16 is similar to the configuration in Fig. 3(a), indicating that the initial choice of
3-vacancy roughness did not bias the downhill portion of the diffusive-displacive path that the main DMD algorithm
captured. Nodes-2,3 and 4 are translational invariants in energy, and were generated due to the end replicas being
some distance apart by glide on the {111} plane. In Fig. 5(b), we plot ΩDMD along both mass-action and displacive

reaction coordinates, defined respectively as ∆M =
∑N
i=1 ci −M0, M0 being the total mass of the system at t̃ = 0

and ∆X =
√∑N

i=1 ci|Xi −X0
i |2, where X0

i is the mean position of site i at t̃ = 0. The evolution of ΩDMD shows a

downhill process with three distinct regimes. From t̃ = 0 (p0 in the figure) to the instant right before the extended
double jog formation (p1), diffusive accumulation and displacive movements play equally important roles. However,
from p1 to p2, the moment when the extended double jog was formed by glide extension, the decrease in ΩDMD is
almost entirely due to displacive processes. After p2 till the end of the process marked by p3, the evolution is largely
dominated by diffusive processes. During this regime, the rate of diffusive accumulation of vacancies, as well as the
rate of stress relaxation, was found to be enhanced7.

V. CONCLUSION

Though climb of extended edge dislocation has been addressed either by continuum energy calculation or by exper-
iments over the past five decades, an atomistic simulation of the whole process, with detailed atomic configurations
and atomic-level energetics, is shown for the first time. Two features of the simulation are noteworthy: (a) a cou-
pled displacive-diffusional pathway emerges out of the DMD simulation automatically, as shown in Fig. 1, and (b)
along this pathway, the activation energy of 0.83 eV with nC = 3 is lower than the previous theoretical predictions
(∼ 101 eV)15,16. The minimum energy pathway that the system chose on its own under the prescribed boundary
conditions reflects a naturally occurring course that would evolve by a continuous accretion of point defects. It should
be mentioned here that even though this pathway is distinctly different from the one proposed by Thomson and
Balluffi, the evolution of the dislocation lines agrees overall with the TB mechanism. The usefulness of performing
an NEB simulation on the DMD free energy surface should be discussed here. The concept of fractional vacancy
brings in an additional degrees of freedom that may allow the NEB method to find an artificially lower activation
barrier. Nonetheless, it shows how one can get some quick estimate, albeit a rough one, about the activation path
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for a system as complex as dislocation dipole. Also, for the present study the NEB method established that the
initial choice of 3-vacancy roughness did not bias the downhill portion of the diffusive-displacive path that the main
DMD simulation captured. Finally, the real significance of this study is not limited to this particular process, but to
stress the importance of “probing” the energy landscape along coupled diffusive-displacive reaction coordinates for
the whole class of diffusion induced defect processes in materials. It demonstrates a new ability which is currently
absent.
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Glissile dissociation of  
prismatic loop

Displacive coordinate
(conservative)

FIG. 1: (Color online) Schematic representation of the proposed climb processes in the reaction coordinate space.
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FIG. 2: (Color online) Initial configuration at t̃ = 0. (a) A schematic representation of the simulation cell showing the locations
of the {220} extra half-planes corresponding to the partials. In the inset, two different ways of introducing the “3-vacancy
roughness” on {220} are shown. (b) 〈111〉 view of the dislocation lines by coordination plot. Only the non-perfectly coordinated
( 6= 12) sites are shown. The partial δB on the left shows the 3-vacancy roughness indicated by the oblique green arrow. The
Burgers vectors are mentioned as per Thompson’s notation, and the line directions are shown by black arrows. (c) 〈11̄0〉 view
of the centrosymmetry plot of the initial configuration showing that the dipoles are 2d111 apart. For coordination calculation,
sites having c ≤ 0.01 were excluded from the nearest-neighbor calculation.
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FIG. 3: (Color online) (a) Climb of the small stacking fault region by nucleation of prismatic loop AB followed by its growth
and reaction with the partial δB at t̃ = 9.81×103.(b) Dislocation structure showing the double jog on the extended dislocations
at t̃ = 1.44× 104. (c) One jog swept across almost half of the line at t̃ = 2.22× 104. (d) [11̄0] view of the centrosymmetry plot
of the same configuration showing climb by one atomic layer.
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FIG. 4: (Color online) Climb Mechanism for dissociated dislocations. (a) The initial edge dislocation AB dissociates into
partials δB and Aδ. The shaded area shows the stacking fault ribbon. Three vacancies are bound to the core of δB. (b)
Prismatic loop AB nucleates on δB. (c) AB again dissociates to form a partial δB and a dipole Aδ−δA. (d) Glide extension
of the prismatic loop that happens after the prismatic loop attains some critical size. (e) Formation of the extended double
jog.
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FIG. 5: (Color online) (a) DMD-NEB calculation for the proposed climb pathway showing an activation barrier of 0.39 eV
and the corresponding critical nucleus configuration. (b) Grand potential ΩDMD along mass-action and displacive reaction
coordinates. Data markers signify four instants: the start p0 and the end p3 of the process, and the instants right before (p1)
and after (p2) the extended double jog formation.


