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Using a recently developed first-principles approach for determining indentation strength [Phys.
Rev. Lett. 98, 135505 (2007); ibid, 102, 055503 (2009)], we performed calculations of the ideal
strength of hexagonal Re, Re3N, Re2N, Re2C, Re2B and ReB2 in various shear deformation di-
rections beneath the Vickers indentor. Our results show that the normal compressive pressure be-
neath the indentor weakens the strength of these electron-rich rhenium boride, carbide and nitride
compounds which belong to a distinct class of ultra-incompressible and ultrahard materials. The
reduction of indentation strength in these materials stems from lateral bond and volume expansions
driven by the normal compressive pressure mediated by the high-density valence electrons in these
structures. We compare the calculated indentation strength to the Poisson’s ratio, which measures
the lateral structural expansion, for the rhenium boride, carbide and nitride compounds as well as
diamond and cubic boron nitride. Our analysis indicates that although the normal pressure beneath
the indentor generally leads to more significant reduction of indentation strength in materials with
larger Poisson’s ratios, crystal and electronic structures also play important roles in determining the
structural response under indentation. The present study reveals structural deformation modes and
the underlying atomistic mechanisms in transition-metal boride, carbide and nitride compounds
under the Vickers indentation. The results are distinctive from those of the traditional covalent
superhard materials. The insights obtained from this work have important implications for further
exploration and design of ultrahard materials.

PACS numbers: 62.20.-x, 81.40.Jj

I. I. INTRODUCTION

The search for materials with superior mechanical strength or hardness has been one of the long-standing and
most active research fields in materials science. These so-called superhard materials like diamond and cubic boron
nitride (c-BN) are traditionally formed under extremely high-pressure conditions which make their synthesis expensive.
Therefore, recent synthesis of hexagonal rhenium diboride (ReB2) under ambient pressure is considered a breakthrough
and has reignited great interest in the synthesis and study of this class of metallic ultra-incompressible materials
proposed decades ago.1–19 The synthesis of these materials follow the design principle1,2,4 that combines small, light
covalent elements (B, C, N and O) with large, electron-rich transition metals (Ta, W, Re, Os, Ru, Ir, Pt, · · ·),
based on the idea that covalent elements form strong, directional covalent bonds with the transition metals, while
the high density of valence electrons from the transition metals prevent the lattice structures from being squeezed
together, both of which enhance the resistance of the structures against large plastic (bulk and shear) deformations
and lead to increased hardness. So far many transition-metal boride, carbide and nitride compounds have been
successfully synthesized, including OsB2

2,3, ReB2
4–12, RuB2

8, PtN13, IrN2
14, Ta2N3

15, Re2C
16,17, Re2N

18, Re3N
18

and WB4
8,19, to mention a few. Most of them are ultra-incompressible materials with bulk moduli ranging from 360

to 430 GPa,8,14,16,18 which are close to that of diamond (440 GPa). However, their Vickers hardness measured in the
asymptotic region independent of loading forces ranges from 15 to 30 GPa3,8,9,17, which are much lower than that
of diamond (80∼100 GPa). One obvious explanation for the weaker Vickers hardness of the transition-metal boride,
carbide and nitride compounds comparing to that of diamond is that the covalent bonds between the transition metals
and light covalent elements, such as Os-B, Re-B, Re-N, and Ir-N bonds, etc., are weaker than those between light
covalent elements, such as C-C and B-N bonds, etc. There exists, however, another less obvious cause which can
further reduce the shear strengths, and thus the hardness, of these materials. Calculations show that most of the
synthesized transition-metal boride, carbide and nitride compounds have much larger Poisson’s ratios, ranging from
0.2 to 0.419–24, which are several times that of diamond (0.07)25. Under Vickers hardness tests, apart from the shear
deformation, the Vickers indentor also produces a high compressive pressure normal to the loading surface which can
induce large lateral volume expansions in materials with large Poisson’s ratios. These large lateral volume expansions
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will further weaken the atomic bonds in addition to that caused by the shear deformation in the Vickers hardness
tests. An accurate prediction is needed to closely examine the underlying atomistic mechanisms for the structural
and mechanical response under various loading conditions, such as those during the Vickers indentation tests. It has
important implications for further understanding and development of the ultra-incompressible and ultrahard materials
in the broad class of transition-metal boride, carbide and nitride compounds.
To characterize the mechanical properties of the above-mentioned transition-metal boride, carbide and nitride

compounds, we examine their stress-strain responses to establish their deformation modes on the atomic level and
determine their strengths in different hardness testing processes. It is noted that different hardness tests impose
distinct loads on samples. In scratching hardness tests, samples are subject to mainly a shear stress; meanwhile, in
indentation hardness tests, multi-axial stresses exist beneath indenters with predominantly a shear stress component
and a normal compressive pressure that can reach tens or even hundreds of gigapascals.26,27 The limit of structural
stability of the specimen in these hardness tests is closely related to its maximum shear strength, which precedes the
initiation of cracks and dislocations that lead to plastic deformation. Recent advances in computation physics have
made it possible to calculate directly the ideal shear strength of a perfect crystal,28–42 i.e., the lowest shear stress
peak at which a perfect crystal becomes mechanically unstable, that can be compared to the shear strength derived
from nano-indentation measurements.42 These ideal strength calculations, using accurate first-principles methods,
also provide atomistic deformation patterns and full range stress-strain relations which offer key insights into the
mechanisms responsible for the fracture modes at incipient plasticity.43–48 It represents a significant advance in
computational materials research despite that some aspects, such as the load-sensitive hardness or the indentation
size effect, which mainly stems from the generation and propagation of dislocations and cracks under large indentation
loading, are still beyond the available computing capacity. The ideal shear strength calculations can provide an
estimation of the asymptotic (i.e., load independent) hardness by comparing the calculated ideal shear strength
with those of benchmark materials, such as diamond and c-BN whose hardness are well established. However, most
previous ideal shear strength calculations did not consider normal compressive pressure beneath the indenter,28–38,41–48

which makes them appropriate primarily to describe the scratching hardness of materials where normal pressures on
scratching surfaces are not high.
In this paper, we report first-principles calculations of the ideal shear strength of hexagonal rhenium boride, carbide

and nitride compounds (Re, Re3N, Re2N, Re2C, Re2B and ReB2) by fully incorporating the effect of normal com-
pressive pressure beneath the (Vickers) indenter using a recently developed method which provides a more accurate
description for materials under indentation hardness tests.39,40 The high-density valence electrons in these materials
behave like a low-compressibility liquid. It is difficult to compress their volumes by hydrostatic pressure, which results
in their high bulk moduli. However, in indentation hardness tests the uniaxial normal compressive pressure beneath
the indenter can cause a large lateral volume expansion of the valence electrons in these structures as indicated by their
large Poisson’s ratios19–24. We examine how this lateral expansion affects the mechanical strength under indentation
of these compounds with different chemical elements and compositions.

II. II. COMPUTATION METHOD

The ideal shear strength calculations were carried out using the Vienna Ab-initio Simulation Package (VASP)
code,49 adopting the projector augmented wave (PAW) potentials50 and generalized-gradient-approximation (GGA)
for the exchange-correlation energy with a plane-wave basis set. The GGA-PBE exchange-correlation functional
proposed by Perdew, Burke and Ernzerhof51 was used. The total energy of the structure was minimized by relaxing
the structural parameters using a conjugate gradient optimization method.52 The total-energy and stress calculations
used a hexagonal unit cell with space groups P63/mmc for Re, Re2N, Re2C, Re2B, ReB2 and P6m2 for Re3N (see
Fig. 1). A 11×11×7 (and 11×11×9 for Re) Monkhorst-Pack53 k-point grid and a 700 eV energy cutoff were used in
the calculations. The k-point sampling convergence was tested for both 11× 11× 7 and 16× 16× 12 Monkhorst-Pack
k-point grids. The energy convergence of the calculation is on the order of 1 meV per atom, with the residual stresses
in the fully relaxed structures less than 0.1 GPa. The quasistatic ideal indentation strength and relaxed loading path
were determined using a method described previously,39,40 in which the lattice vectors were incrementally deformed
in the direction of applied shear strains, say ǫxz. At each step, the applied shear strain is fixed which determines the
calculated shear stress σxz, while the other five independent components of the strain tensors and all the atoms inside
the unit cell were simultaneously relaxed until (i) the compressive pressure (σzz) beneath the indentor normal to the
chosen shear deformation plane reaches a specified value (i.e. σzz = σxztanΦ, where Φ is the centerline-to-face angle of
the Vickers indenter), (ii) all the other four components (i.e. σxx, σyy, σxy, and σyz) of the Hellmann-Feynman stress
tensor are negligibly small (less than 0.1 GPa), and (iii) the force on each atom becomes negligible (less than 0.001
eV/Å). The shape of the (deformed) unit cell, the positions of the atoms and the relation between the shear stress σxz

and shear strain ǫxz are determined completely at each step by this constrained atomic relaxation, including the effect
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of the normal compressive pressure σzz . The lowest peak stress in all the indentation shear directions determines the
ideal indentation strength of the structure, at which the crystal structure starts to destabilize. If we set Φ = 0 (so
σzz = 0) in the calculation, it is equivalent to require that all the five stress components (except σxz) become negligible
during the structural relaxation, which is the relaxation procedure used in the previous calculations of pure ideal shear
stresses28–38,41–48 that neglect the effects of the normal compressive pressure and geometry (indenter angles) of the
indenter. Our test calculations for the lattice vectors of the equilibrium structure of Re, Re3N, Re2N, Re2C, Re2B
and ReB2, their bulk moduli and Poisson’s ratios are given in Table I, which agree well with the previous calculation
results19,21–24,54,55. The bulk moduli are obtained by fitting the energy-volume curves near the equilibrium structures
to the Murnaghan equation, and the Poisson’s ratios are evaluated from the calculated elastic constants.22

III. III. RESULTS AND DISCUSSIONS

We first present our calculated results by listing in Tables II, III and IV the calculated peak stresses and the
corresponding strains at which the peak stresses appear in various tensile, pure shear and (Vickers) indentation shear
deformation directions for Re, Re3N, Re2N, Re2C, Re2B and ReB2. In Fig. 1, we plot the calculated stress-strain
curves in the weakest direction under (a) tensile, (b) pure shear and (c) (Vickers) indentation shear deformation.
Also shown [in Fig. 1(d)] is a comparison between the stress-strain curves under pure and (Vickers) indentation shear
deformations for ReB2 and Re2C in their weakest indentation shear directions. From these results, it is clear that the
[110] is the weakest tensile direction for all the hexagonal rhenium boride, carbide and nitride compounds studied here,
while their weakest directions under pure shear and (Vickers) indentation shear are either (001)[110] or (110)[001].
The lowest pure shear stress peaks (i.e., the ideal pure shear strength) and the lowest (Vickers) indentation shear stress
peaks (i.e., the ideal indentation strength) of Re3N (16.1 GPa and 15.1 GPa) and Re2N (15.8 GPa and 15.6 GPa)
are about the same, while those of Re2B (19.4 GPa and 16.3 GPa) and ReB2 (35.3 GPa and 27.6 GPa) show large
differences. These results indicate that when the compositions of the light elements (B, C, N) reach a critical level to
form covalent bonds among themselves, the strength of the rhenium boride, carbide and nitride compounds increases
considerably. Otherwise their strengths are not very sensitive to the composition of the light elements, although the
values are much higher than that of pure Re (10.9 GPa and 8.0 GPa). Compared to Re2B and Re2N, Re2C exhibits
much higher ideal pure shear and indentation strength (27.2 GPa and 22.5 GPa). Among all the hexagonal rhenium
boride, carbide and nitride compounds studied in the present work, ReB2 shows the highest ideal pure shear and
indentation strength. For most of the structures, their (Vickers) indentation strengths are much lower than their
ideal pure shear strengths, with the stress peaks appearing at smaller strains [see Fig. 1(d)]. Below we explain the
physical mechanisms for these observations with an emphasis on the effect of normal compressive pressure beneath
the indentor on the shear strength.
In Fig. 2, we compare the calculated total and partial density of stats (DOS) for Re2B, Re2C, and Re2N at the

equilibrium structure. The distributions of these total and partial DOSs are similar with the covalent bonds formed
between the d electrons of Re and p electrons of B, C, and N. A pseudogap appears in all the DOS plots separating the
bonding and anti-bonding states. The Fermi level of Re2B (Re2N) is lowered (pushed) into the bonding (anti-bonding
) states, while the Fermi level of Re2C is localized at the valley of its pseudogap. This shows that the structure of
Re2C is much more stable compared to those of Re2B and Re2N, which explains its high tensile, shear and indentation
strength as shown in Tables II, III, IV and Fig. 1.
In Fig. 3, we compare the electron localization function (ELF), which gives a local measurement of electron paring56,

of Re2B and ReB2 at the equilibrium structures. Both the three-dimensional ELF isosurfaces (with ELF=0.71) and
the two-dimensional ELF plots on a (110) crystalline plane passing through the labeled Re and B atoms show that
covalent bonds between the B atoms in ReB2 are much stronger than those between Re and B in Re2B, which
contributes to the greatly enhanced ideal shear and indentation strengths of the former as shown above.
We now discuss the effect of the normal compressive pressure beneath the (Vickers) indentor on the shear strength

of ReB2 and Re2C, which have the highest ideal pure shear and indentation strength among all the hexagonal rhenium
boride, carbide and nitride compounds studied here. From the results shown in Tables II, III, IV and Fig. 1, we
can see that the pure shear direction (110)[001] of ReB2 is the weakest one, which has the lowest peak stress of
35.3 GPa at the shear strain ǫ=0.19. This peak stress determines the lowest shear stress needed to mechanically
destabilize a perfect ReB2 crystal, that is, its ideal pure shear strength. When the normal compressive pressure
beneath the Vickers indenter is included in the calculation, the weakest direction changes to (001)[110] with it peak
stress reduced from 36.0 GPa to 27.6 GPa, which appears at a smaller shear strain ǫ=0.14 in the shear deformation
process. The results in Fig. 1(d) show obvious weakening of the shear strength and early destabilization of ReB2

structure induced by the normal compressive pressure beneath the indenter. To understand this normal pressure
induced weakening in the indentation strength of ReB2, we plot in Fig. 4 the three-dimensional ELF isosurfaces
(with ELF=0.72) and the two-dimensional ELF plots on a (001) crystalline plane passing through the point at z=0
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for ReB2 at the equilibrium structure (ǫ=0) and at ǫ=0.14 under the pure shear (neglecting the normal compressive
pressure) and (Vickers) indentation shear (including the normal compressive pressure) in the (001)[110] direction, in
which the (Vickers) indentation shear stress of ReB2 reaches its peak at ǫ=0.14 [see Fig. 1(d)]. The B atoms in ReB2

structure form buckled boron layers with opposite buckling directions in the layer at z=0 and z=c/2, respectively
(see Fig. 4). The boron layers in ReB2 are similar to the carbon layers in cubic diamond on its (111) crystalline
planes. The boron layers in ReB2 under the (001)[110] shear will deform like those carbon layers in diamond (111)
planes under the (111)[112] shear. Previous calculations29,40 show that the shear directions (111)[112] and (111)[112]
of diamond are not equivalent, with one direction easy to break the atomic bond in diamond (at the peak stress of
97 GPa) while the opposite direction hard to break these bonds (at the peak stress of 152 GPa). Similarly, here
under the (001)[110] shear, the atomic bonds in ReB2 on the boron layer at z=0 are easy to break, while those on the
boron layer at z=c/2 are hard to break. We focus our attention on the boron layer at z=0 where B atoms are labeled
with numbers 1 through 8. From results in Fig. 4, we see that under the (001)[110] pure shear at ǫ=0.14, the ELF
isosurface with ELF=0.72 still exists in the middle of the atomic bond B2-B3 (and equivalently B5-B6, B1-B7, and
B4-B8), indicating the covalent bonding nature of these bonds despite that the ELF isosurface starts to disperse into
nearby B-Re bonds. While under the Vickers shear deformation in the same direction at the same strain, the ELF
isosurface with ELF=0.72 disappears between atoms B2-B3, indicating the breaking of the covalent bonding between
these atoms. The two-dimensional ELF plots on the (001) crystalline plane passing through the point at z=0 in Fig.
4 also show the same results that the ELF distribution between atoms B2-B3 (and equivalently B5-B6, B1-B7, and
B4-B8) is much lower under Vickers shear than that under pure shear at ǫ=0.14 in the (001)[110] shear direction.
The bond length between atoms B2-B3 is 2.161 Å at ǫ=0.14 in Vickers indentation shear, while in pure shear at
the same strain it is 1.946 Å. The lateral volume expansion caused by the normal compressive pressure beneath the
indentor in indentation tests is responsible for this enhanced stretching of the strong covalent B-B bonds (B2-B3,
B5-B6, B1-B7, and B4-B8), which significantly weakens the buckled hexagonal boron layer (at z=0) that is responsible
for the high structural strength of ReB2, as shown in Fig. 1(d). From results in Fig. 1(d) we also see that for ReB2

at σxz=20 GPa, the stress-strain relations with and without normal pressure start to deviate from each other. The
normal compressive pressure σzz (σzz = σxztanΦ with Φ the centerline-to-face angle of the Vickers indenter) beneath
the Vickers indenter at this stage is about 50 GPa, at which the indentation shear stress of ReB2 starts to decrease
relative to that of the pure ideal shear stress. It should be noted that the pressure distribution beneath the Vickers
indenter is not uniform.57 The maximum normal pressure Pmax beneath the indenter can be several times higher
than the average indentation pressure Pave, which is obtained from the load divided by the indentation area. If we
assume for simplicity that the pressure is linearly proportional to the indentation depth, we obtain Pave=Pmax/3 for
the Vickers indenter. In such a case, the effect of normal compressive pressure on the ideal shear strength of ReB2

would be relatively small when Pave <16.7 GPa (Pmax <50 GPa).
While the shear strength of ReB2 under Vickers indentation decreases in all the shear directions, the indentation

shear strength of Re2C decreases in some directions, but in other directions it increases (see results in Table III and
IV). To analyze these contrasting results, we plot in Fig. 5 the structural snapshots of Re2C (a) under the (110)[001]
shear deformation in which at ǫ=0.125 the (Vickers) indentation shear stress-strain curve suddenly drops to zero [see
Fig.1 (c)]; (b) under the (001)[110] shear deformation in which at ǫ=0.15 the pure shear stress-strain curve suddenly
drops to zero [see Fig.1 (b)]. The compressive pressure beneath the (Vickers) indentor reduces the indentation strength
in the (110)[001] shear deformation but enhances the indentation strength in the (001)[110] shear deformation (see
results in Table III and IV). The effect of the compressive pressure beneath the (Vickers) indentor on the shear strength
of Re2C can be explained by examining the behavior of the four Re atoms labeled 1 through 4 in Fig. 5. Under the
(110)[001] indentation shear deformation, when the strain ǫ ≤0.125, the interatomic distances between Re1−Re4 and
Re2−Re3 change continuously from 3.938 Å and 2.706 Å to 3.346 Å and 3.001 Å, respectively [see Fig.5 (a)]. With
a small further increase in the shear strain (at ǫ=0.13), the normal compressive pressure beneath the indentor in the
[110] direction squeezes the Re1 and Re4 atoms, making them suddenly move closer which pushes the Re2−Re3 bond
apart, forming a new Re1−Re4 bond. The interatomic distances between Re1−Re4 and Re2−Re3 at ǫ=0.13 change
suddenly to 3.026 Å and 3.705 Å, respectively. However, under the (110)[001] pure shear deformation, the Re2−Re3
bond is stable at ǫ=0.13 with a bond length of 2.961 Å which does not break until the shear strain reaches ǫ=0.17
[see Fig.1(c)]. The normal compressive pressure during the Vickers indentation causes an early break down of the
Re2−Re3 bond and a reduction of 22.2% in the stress peak (indentation strength) in the (110)[001] shear deformation.
On the contrary, the effect of the normal compressive pressure beneath the indentor on the shear indentation strength
of Re2C is different in the (001)[110] shear deformation. Under the (001)[110] pure shear deformation, when the strain
ǫ ≤0.15, the interatomic distances between Re1−Re4 and Re2−Re3 change continuously from 3.938 Å and 2.706 Å
to 3.529 Å and 3.142 Å, respectively [see Fig.5 (b)]. With a small further increase in the shear strain (at ǫ=0.155),
the Re2−Re3 bond suddenly breaks apart which pushes Re1 and Re4 atoms moving suddenly closer, forming a new
Re1−Re4 bond. The interatomic distances between Re1−Re4 and Re2−Re3 at ǫ=0.155 change suddenly to 2.789 Å
and 3.932 Å, respectively. However under the (001)[110] (Vickers) indentation shear deformation, the normal pressure
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beneath the indentor in the [001] direction reduces the elongation of the Re2−Re3 bond due to the shear deformation
and prevents it from breaking at ǫ=0.155. Under the (001)[110] (Vickers) indentation shear deformation, when the
strain ǫ ≤0.22, the interatomic distances between Re1−Re4 and Re2−Re3 change continuously from 3.938 Å and
2.706 Å to 3.804 Å and 2.844 Å, respectively [see Fig.5 (b)] with the stress peaks at ǫ=0.15. Under the (001)[110]
Vickers shear deformation, the stress peak (indentation strength) increases by 7.4% compared to that under pure
shear deformation (see results in Table III and IV).
The effect of the normal compressive pressure on the shear strength of the rhenium boride, carbide and nitride

compounds is much stronger compared to that on the traditional superhard materials. In Fig. 6 we plot the calculated
stress-strain relations for the traditional superhard materials diamond and c-BN along their weakest shear directions
under pure shear and Vickers indentation shear deformations. The results (see Fig. 1 and Fig. 6) show that the normal
compressive pressure causes significant reductions in the indentation shear strength relative to the corresponding pure
shear strength for the rhenium compounds (-23% for ReB2 and -22% for Re2C); in contrast, for the traditional
superhard materials, the normal compressive pressure either causes a much smaller reduction in shear strength (-8.8%
for c-BN) or even a slight enhancement (1.4% for diamond). The drastic reduction in indentation strength in the
electron-rich transition metal (rhenium) boride, carbide and nitride compounds is attributed to the distinct bond
deformation modes that include a large lateral volume expansion induced by normal pressure mediated by the high-
density valence electrons in the transition metal (rhenium), which are absent in the traditional superhard materials.
These high-density valence electrons behave like a low-compressibility liquid. It is difficult to compress their volume
by hydrostatic pressures, which results in their high bulk moduli. However, in indentation hardness tests the uniaxial
normal compressive pressure beneath the indentor causes a large lateral volume expansion of the valence electrons
as indicated by their large Poisson’s ratios (0.2 ∼ 0.3), which further weakens the atomic bonds in addition to that
caused by the pure shear deformation. The effect of the normal compressive pressure beneath the indentor on the
shear strength of the traditional superhard materials, such as diamond and c-BN, is much weaker due to their small
Poisson’s ratio (0.07 for diamond and 0.112 for c-BN). For materials with large Poisson’s ratios, their pure ideal
shear strengths (that is, the lowest peak stresses in the stress-strain curves) are expected to be low, as the peak
stresses are generally determined by the initial derivatives (the shear moduli) of the stress-strain curves and it is
already known that large Piooson’s ratios reduce shear moduli.1 The results in Table III show that the pure ideal
strengths of rhenium boride, carbide and nitride compounds are much lower compared to those of diamond and c-BN
given in Fig. 6. Furthermore, the results in Table IV indicate that there exists an additional weakening of the shear
strengths of these rhenium compounds induced by the normal compressive pressures beneath (Vickers) indentors.
The calculated stress-strain curves of ReB2 and Re2C in Fig. 1(d) illustrate that at small strains, the stress-strain
curves are almost identical under both pure shear and (Vickers) indentation shear deformations. The effect of normal
compressive pressures becomes strong only at large strains where the shear stresses and normal compressive pressures
are large. These results indicate that the effect of strength weakening induced by the normal compressive pressures
studied in the present work is not included in any hardness theory which adopts only physical quantities obtained at
small strain limit, such as shear moduli etc. The relation between the reduction of indentation strength relative to
that under pure shear deformations and Poisson’s ratios in the rhenium boride, carbide and nitride compounds are
not monotonic. This is because the Poisson’s ratio describes the lateral expansion of a crystal under normal pressure
near its equilibrium structure, while the indentation strength describes the response of a crystal at large deformation
strains. For instance, although ReB2 has a Poisson’s ratio of 0.18 ∼ 0.20 that is smaller than that (0.292) of Re2N,
the indentation strength reduction of ReB2 (23.2%) is much larger than that of the Re2N (12.5%) (see Table IV).
Even for Re2C, which has a crystal structure very similar to that of Re2N, its Poisson’s ratio (0.252) and indentation
strength reduction (22.2%) are not proportional to those of Re2N. The indentation strength depends sensitively on
the details of the crystal and electronic structures at large strains, which makes it difficult to predict accurately the
indentation hardness from the properties obtained at equilibrium structures.58

IV. IV. CONCLUSIONS

In summary, we have established a comprehensive understanding of the stress-strain relation of several recently
proposed ultra-incompressible hexagonal rhenium boride, carbide and nitride compounds under various loading con-
ditions. Our calculations show that their ideal indentation strength under a Vickers indenter can be about 20%
lower than their pure ideal shear strength. By comparing the calculated ideal indentation strength under the Vickers
indenter among ReB2 (27.6 GPa), Re2C (22.5 GPa), c-BN (64.3 GPa) and diamond (97.6 GPa) (see Fig. 1 and
Fig. 6), we estimate that the (asymptotic) Vickers hardness of ReB2 and Re2C are about 20-30 GPa and 15-25
GPa, respectively, which are consistent with the experimental results.4,8,9,17 This explains the differences between
the measured (asymptotic) Vickers hardness (20-30 GPa) of ReB2 and the previous theoretical hardness predications
(35-50 GPa) in which the normal compressive pressure beneath the indenter are neglected in the calculations.58 The
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higher pure shear ideal strength of ReB2 (35.3 GPa) and Re2C (27.2 GPa) suggests that they are suitable for appli-
cations in abrasive tools and wear-resistant coatings where compressive pressures normal to their scratching surfaces
are not high. The large reduction of indentation strength in the rhenium boride, carbide and nitride compounds via
lateral volume expansion is induced by the normal compressive pressure beneath the indenter. This distinct process
is facilitated by the high-density valence electrons in these compounds that help transfer the normal compression to
a lateral volume expansion. It increases the stretching of the atomic bonds in addition to that induced by the pure
shear deformation and reduces the shear strength. This behavior is fundamentally different from those seen in the
traditional superhard materials formed by light covalent elements (B, C, N) where the normal pressure beneath the
indenter has less influence on their shear strength. The sensitive dependence of the shear strength of rhenium boride,
carbide and nitride compounds on loading conditions also illustrates the difficulties to predict material hardness only
from properties obtained at their equilibrium structures.
This work was supported by DOE Grant No. DE-FC52-06NA26274 at UNLV and NNSF of China Grant No.

11174200 at SJTU. H. Sun also appreciates the support of the Science and Engineering Interdisciplinary Research
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FIG. 1: (Color online) Calculated stress-strain curves in the weakest direction under (a) tensile, (b) pure shear and (c) Vickers
shear deformation for Re, Re3N, Re2N, Re2C, Re2B and ReB2. (d) Comparisons of the stress-strain curves under pure and
Vickers shear deformations for ReB2 and Re2C in the weakest Vickers shear directions.
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TABLE I: The calculated lattice constants (a, c) in Å, bulk moduli (B) in GPa and Poisson’s ratios (ν) for Re, Re3N, Re2N,
Re2C, Re2B and ReB2.

Re Re3N Re2N Re2C Re2B ReB2

a 2.73 2.83 2.86 2.86 2.87 2.91

c 4.41 7.17 9.86 9.90 10.24 7.51

B 373.8 390.2 390.2 402.6 355.8 334.6

ν 0.313 0.284 0.292 0.252 0.271 0.184
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TABLE II: The calculated peak stress (σmax) in GPa and corresponding strain (ǫmax) for Re, Re3N, Re2N, Re2C, Re2B and
ReB2 in various directions under tensile deformation.

Re Re3N Re2N Re2C Re2B ReB2

ǫmax σmax ǫmax σmax ǫmax σmax ǫmax σmax ǫmax σmax ǫmax σmax

[001] 0.200 55.6 0.150 59.5 0.180 58.6 0.130 57.6 0.190 48.8 0.190 94.1

[110] 0.130 23.3 0.120 35.7 0.110 29.3 0.130 43.6 0.140 36.9 0.190 60.3

[11̄0] 0.190 44.0 0.160 50.8 0.130 43.4 0.180 62.6 0.200 52.3 0.160 63.6
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TABLE III: The calculated peak stress (σmax) in GPa and corresponding strain (ǫmax) for Re, Re3N, Re2N, Re2C, Re2B and
ReB2 in various directions under pure shear deformation.

Re Re3N Re2N Re2C Re2B ReB2

ǫmax σmax ǫmax σmax ǫmax σmax ǫmax σmax ǫmax σmax ǫmax σmax

(001)[110] 0.100 12.0 0.185 22.1 0.175 18.1 0.180 31.2 0.130 22.0 0.235 42.3

(001)[11̄0] 0.070 11.1 0.110 16.1 0.195 15.8 0.145 27.2 0.110 19.8 0.185 36.0

(110)[001] 0.110 16.4 0.195 23.7 0.250 23.2 0.200 34.3 0.135 23.3 0.245 43.5

(110)[11̄0] 0.200 20.9 0.195 31.2 0.165 26.5 0.215 40.0 0.240 31.6 0.275 52.4

(11̄0)[001] 0.080 10.9 0.230 17.8 0.220 17.8 0.155 29.0 0.115 19.4 0.190 35.3

(11̄0)[110] 0.185 16.3 0.180 25.4 0.150 22.0 0.195 32.3 0.225 25.3 0.190 35.3
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TABLE IV: The calculated peak stress (σmax) in GPa and corresponding strain (ǫmax) in various directions under Vickers
shear deformation, as well the change of the lowest peak stress under Vickers shear relative to that of pure shear in the same
direction (∆σmax = (σV

max − σp
max)/σ

p
max) for Re, Re3N, Re2N, Re2C, Re2B and ReB2.

Re Re3N Re2N Re2C Re2B ReB2

ǫmax σmax ǫmax σmax ǫmax σmax ǫmax σmax ǫmax σmax ǫmax σmax

(001)[110] 0.095 11.8 0.185 23.5 0.180 21.4 0.180 32.1 0.145 23.6 0.160 29.3

(001)[11̄0] 0.080 8.0 0.145 20.0 0.130 16.8 0.150 29.2 0.115 20.6 0.140 27.6

(110)[001] 0.105 11.6 0.140 17.2 0.160 16.6 0.135 24.5 0.130 16.9 0.170 34.2

(110)[11̄0] 0.130 12.0 0.150 20.2 0.145 18.6 0.160 26.2 0.175 19.2 0.185 32.7

(11̄0)[001] 0.075 9.0 0.105 15.1 0.130 15.6 0.115 22.5 0.105 16.3 0.180 34.8

(11̄0)[110] 0.090 16.8 0.100 31.0 0.090 28.2 0.125 36.4 0.115 24.7 0.175 35.2

∆σmax -27.6% -15.3% -12.5% -22.2% -16.2% -23.2%


