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In this paper, we explore the effects of misfit strain fields on both heterogeneous nucleation be-
havior and anisotropic growth of islands at submonolayer coverages and compositional patterning at
complete monolayer coverage via simulations of a phase-field crystal model. In particular, deposition
on top of a herringbone structure and quasicrystalline (QC) substrate are considered, the former
representing a system with spatially periodic misfit strain fields arising from the presence of surface
dislocations, while the latter representing a system which inherently possesses a wide range of local,
aperiodic misfit patterns. In the case of single component systems, we demonstrate that misfit strain
fields lead to heterogeneous nucleation behavior and anisotropic island growth. In the case of QC
substrate, a wide range of morphologies, such as coexistence of locally hexagonally ordered atomic
clusters within a larger scale arrangement with overall QC symmetry and so-called “starfish” aggre-
gates, is observed in pure system at sub-monolayer coverages when the adlayer-substrate interaction
strength and lattice mismatch are tuned. In the case of bulk-immiscible binary systems at complete
monolayer coverage, strain-stabilized compositional domains emerge at low line tension values for
both substrates. Interestingly, the compositional domains on the QC substrate inherit their symme-
tries at sufficiently low line tension values, while at larger line tension values, the domain structure
begins to resemble the classical spinodal microstructure. Such domain structures should be readily
observable in colloidal systems in which attractive inter-particle and particle-substrate interactions
can be tuned.

PACS numbers: 68.55.A-,68.35.Md,68.35.Dv



2

I. INTRODUCTION

It is well known that ordered surface nanostructures can be exploited in a wide range of applications, including
catalysis1,2, magnetic storage devices3, and optical tweezers4. The efficiency and functional properties of these systems
critically depend on a number of factors, such as typical feature size and polydispersity, local composition, defect
structure, and interfacial stresses1,3. As the feature size decreases below ∼ 100nm, however, standard top-down
fabrication methods (such as electron beam lithography) become ineffective5. As an alternative, bottom-up approaches
involving direct self-assembly driven by misfit strains between different layers during heteroepitaxial growth have
rapidly gained popularity5–7. Here, the resultant strain relaxation often leads to the formation of ordered surface
defect structures, such as herringbone, moire patterns, stripes, and trigons8–12, which can then be used as templates
for further deposition of ordered clusters of atoms or alloys3,13. In particular, the effective periodicity of the substrate
is transferred “bottom-up” to the subsequent growth layers5–7.

Recently, a more exotic system, which has been gaining interest as a possible template for self-organized thin
film growth, is provided by the surface of a quasicrystal (QC)14–19. QCs are structures which possess long-range
orientational order but are not periodic, and which thus possess adsorption sites and associated local misfit patterns
arranged in an aperiodic manner. This lack of periodicity leads to interesting possibilities for epitaxy involving QC
substrates. In this regard, one of the most commonly studied system is the deposition on the five-fold surface of an
icosahedral quasicrystal. In particular, the interplay between the local, ordered structure favored by the depositing
adatoms and the aperiodic arrangement favored by the QC substrate may give rise to intriguing thin film morphologies.

From a theoretical perspective, a quantitative model to investigate self-assembly in such epitaxial systems must
incorporate elastic deformations, misfit strains, formation of defects (such as dislocations and stacking faults), and
compositional patterning resulting from any heterogeneous redistribution of constituent atoms in multicomponent sys-
tems at nanometer length scales. While some atomistically detailed models are capable of incorporating dislocations
and other defects (such as stacking faults), they are largely restricted to modeling one-dimensional single-component
or binary systems20; extension of such methods to spatially-extended, two component systems, while incorporat-
ing defect formation and compositional patterning on an equal footing, is highly non-trivial. Previously, detailed
models for compositional patterning assuming pseudomorphic behavior have been developed by Asta, Ozolins and
co-workers21,22, while the effect of substrate defects was phenomenologically incorporated by Yang et al.23 by intro-
ducing an externally applied, symmetry breaking surface potential. Interestingly, Yang et al.23 demonstrated that
such a symmetry breaking external potential indeed can induce the formation of compositional domains within addi-
tional layers. A more accurate description of the adatom-substrate interaction, however, is required to investigate the
nucleation and growth of islands at submonolayer coverages on substrates with regular dislocation strain patterns2,13.

To this end, in this work we demonstrate that the phase-field crystal (PFC) model introduced in Ref.24 for ultrathin
films, which overcomes the obstacles discussed above, can be further developed to investigate growth of multi-layer,
ordered, self-assembled heteroepitaxial systems. The model is employed to investigate growth of pure and binary
systems on substrates which possess a regular arrangement of misfit dislocations and substrates with QC symmetry.
First, we demonstrate that the model can quantitatively capture the formation of regular misfit dislocation patterns in
the case of Ag deposited on Ru(0001). Then, we turn to a more generic study of single component and binary systems.
In particular, we demonstrate that periodic misfit dislocation strain fields control both the nucleation behavior of
islands at submonolayer coverages in pure systems and formation of spatially periodic compositional domains in
misfitting bulk-immiscible binary systems. In the case of the QC substrate, on the other hand, a wide range of
morphologies, such as coexistence of locally hexagonally ordered atomic clusters within a larger scale arrangement
with overall QC symmetry and so-called “starfish” aggregates, is observed in pure system at submonolayer coverages
when the adlayer-substrate interaction strength and lattice mismatch are tuned. Finally, a misfitting binary system
deposited on the QC substrate displays compositional patterning with QC symmetry at low compositional line tension
values. Such domain structures should be readily observable in colloidal systems in which attractive inter-particle
and particle-substrate interactions can be tuned.

The rest of this manuscript is organized as follows. In Sec. II we briefly review the continuum phase-field crystal
approach employed in this work, while in Sec. III we first investigate the formation of surface defect patterns in the
case of Ag deposited on Ru(0001), and then turn to the nucleation and growth of islands in single-component systems
and compositional domain formation in bulk-immiscible binary systems on both regular surfaces with periodic strain
patterns and quasicrystalline substrates via numerical simulations. Finally, a brief discussion and concluding remarks
can be found in Sec. IV.
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II. THEORETICAL APPROACH

Physically, the growth process of a thin film in the layer-by-layer mode can be described in terms of successive
growth of individual monolayers on a substrate, whose properties may vary from one layer to another. In order
to account for the composition and local morphology of a given layer, we take advantage of the phase-field crystal
(PFC) method25–30, which is especially well-suited for the study of thin film growth24,31–34. This methodology can
be viewed as a bridge between atomistic simulations and the more traditional phase field approaches36–38. Similar
to the phase field technique, the system is described by a characteristic free energy functional expressed in terms
of one or more continuum fields. In this case, however, the key continuum field is a local time-averaged, smoothly
varying single-particle density endowed with the periodicity of a crystal lattice. The PFC approach is closely related
to classical density functional theory28,39, and enables the study of collective phenomena at the atomic length scale
over mesoscopic (i.e., diffusive) time scales as driven by a (dynamic) minimization of the free energy.
Following our previous work24, our starting point is a dimensionless free-energy functional (see Appendix A for the

non-dimensionlization procedure) for the ith layer, given by

Fi[ρi, ci] =

∫
[(

ρi
2

(

ri(ci) +
(

qi(ci)
2 +∇2

)2
)

ρi +
ρ4i
4

)

+ Vi(ci)ρi

+ f0

(

w2
0

2
(∇ci)

2 − θc
2
c2i +

θ

2
[(1 + ci) log(1 + ci) + (1 − ci) log(1− ci)]

)]

dr. (1)

Here, ρi(r, t) denotes the atomic density field of the ith layer, ci(r, t) denotes the concentration field (with fixed spatial
average c̄i = 0 or 1 corresponding to 50/50 mixtures or pure systems investigated in this work and c = ±1 representing
different atomic species), Vi(ci) denotes the species-specific substrate-film interaction energy, qi(ci) incorporates the
bulk lattice constants of different species (treated as adjustable parameters herein), f0 controls the relative importance
of elastic and chemical energies, θ is related to the dimensionless temperature [cf. Appendix A], θc is related to the
critical temperature above which there is no phase-separation in the bulk system, w0 > 0 contributes to interfacial
energy between different species, and ri(ci) is the degree of undercooling. As in our previous work, we will consider
binary systems which are immiscible in bulk, and which may form alloys due to substrate interactions. Note that
by setting f0 = 0 and ci = 1 in Eq. (1), one can recover the case of deposition of a single-component species on a
substrate. Also, note that the functional forms of Vi(ci) and qi(ci) will be specified in the next section.
In order to model the growth dynamics, we assume that the dynamics of the layer that is currently deposited can be

described as effectively two-dimensional growth on top of the previously grown monolayer, which acts as a template
for further growth. That is, the film is assumed to grow in the so-called Frank-van der Merwe (or layer-by-layer)
mode40, which is often observed in heteroepitaxial systems during early stages of growth. Furthermore, it is assumed
that both the substrate and the previously deposited monolayers remain effectively “frozen” such that there is no
intermixing between layers or elastic relaxation within the layers21,41–43. Intermixing can be neglected when films are
grown at sufficiently low temperatures where bulk diffusion does not play any significant role, and elastic relaxation
processes associated with either misfit dislocation nucleation above a critical thickness44 or a morphological transition
from the layer-by-layer to 3D island growth mode40,45 are not relevant for the systems of interest here. Under these
assumptions, the dynamics governing the behavior of the local composition (ci) and morphology (ρi) of the newly
deposited partial or full monolayer can be described via the following dimensionless, non-linear, stochastic partial
differential equations:

∂ρi
∂t

= ∇2

(

δFi

δρi

)

+ ηi, (2)

where ηi denotes a Gaussian noise term with mean 〈ηi〉 = 0 and variance 〈ηi(r, t)ηi(r′, t′)〉 = −2T̃∇2δ(r− r
′)δ(t− t′)

in accordance with the fluctuation-dissipation theorem, and

∂ci
∂t

= Mc∇2

(

δFi

δci

)

. (3)

In principle, one should also include stochastic fluctuations in Eq. (3). However, all physical phenomena investigated
in this work involving multi-component systems are not associated with homogeneous nucleation processes, and hence
the neglect of the noise term is warranted46. Finally, in order to eliminate spatial variations in ci(r, t) within a single
atom, we impose the condition ĉi(k, t) = 0 for k2 > k2f , where kf denotes a cutoff wave number to be specified below,

and ĉ denotes the Fourier transform of ci(r, t). We also expand the logarithmic free energy in Eq. (1) in powers of c
up to c52 in order to impose the condition |ci(r, t)| ≤ 1 at all times24.
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III. NUMERICAL SIMULATIONS

We have carried out extensive numerical simulations to investigate nucleation and growth processes of monolayer
thin films on both crystalline and quasicrystalline surfaces using the formalism discussed in Section II. We begin the
exploration of the model by considering nucleation and growth processes on a regular, crystalline surface. The details
of the numerical method can be found in Appendix B. To facilitate visualization of the configurations, we first extract
the local maxima from ρi(r, t) and assign equivalent particle positions to these maxima, and then plot the particles;
for binary systems, particle identities at maxima are fixed by ci > 0 (< 0) representing A (B) atoms.

A. Nucleation and growth on crystalline surface

1. Formation of herringbone structures

Our first application of the formalism concerns the growth of a misfitting, monolayer thin film on a metallic surface;
as a concrete example, we will consider the case of Ag on Ru(0001) characterized by the primitive lattice vectors [1 0 0]

and 1
2 [1

√
3 0]. Experiments have demonstrated that the lattice mismatch between the Ag layer and Ru(0001) layer

is accommodated by the formation of a so-called “short-period herringbone” structure (SHB), which is characterized
by a regular zig-zag arrangement of edge dislocations11,12. These edge dislocations form when stripes of Ag with fcc
and hcp stackings, separated by Shockley partial dislocations that run along the different 1

2 [1
√
3 0] directions, meet.

To model this system, we set f0 = 0 and c1 = 1 in Eq. (1), and employ a simple form for the film-substrate potential,
which allows us to conveniently tune the relative interaction energies of an adatom on the substrate hcp, fcc, or bridge

sites, respectively47: V1 = −Va

∑i=3
i=1 cos(Kj · r) + Vb

∑i=3
i=1 sin(Kj · r), where Kj = [cos(2πj/3), sin(2πj/3)] (j=1,2,3)

denotes the leading reciprocal lattice vectors of the hexagonally ordered surface. As detailed in Ref.24, choosing
Va = 4.7 × 10−3, Vb = 0, ρ̄1 = 0.25, and r1 = −0.3 allows us to match the elastic properties of the adlayer and
the film-substrate interaction to those determined from first-principles calculations48. Furthermore, we set Kj = 1
and q1 = 0.9480 in order to incorporate the +5.5% misfit between the substrate and the adlayer. The grid spacing,
simulation box-size and the time stepping used were ∆x = π/(2

√
3), ∆y = π/4, Nx = 512, Ny = 512 and ∆t = 0.5.

Other parameters that were employed in the time-stepping algorithm in Eq. (B1) were set to a1 = 0.252, a2 = 0.6, and
a3 = 0.4. In order to facilitate the equilibration of the system, we carry out a simulated annealing procedure wherein
the noise term is active in the beginning of the simulation, and is subsequently reduced to zero as the simulations
proceed.

Several distinct morphologies emerge depending on the initial conditions. Starting from a perfectly misfitting Ag
layer on top of the Ru(0001) substrate with a dimensionless temperature T̃ = 9.1× 10−3, Ag atoms become displaced
from their bulk equilibrium positions as guided by the substrate potential, leading to the emergence of regions with
local fcc or hcp stackings, separated by Shockley partial dislocations representing a partially ordered SHB pattern.
Over time, these structures anneal and become more regular, albeit very slowly. A typical final configuration is
shown in Fig. 1 (a). On the other hand, “compressing” the initial Ag layer along the 1

2 [1
√
3 0] direction to force a

modulated match with the underlying Ru lattice leads to the formation of alternating regions of fcc and hcp stackings
in a lamellar pattern (“stripe phase”). Finally, compressing the initial Ag layer along the [1 0 0] direction leads to the
formation of a regular arrangement of edge dislocations, which constitute a more ordered SHB pattern, as shown in
Fig. 1 (b). Interestingly, upon comparing the energies (in meV per Ru atom) for the ordered HB patterns, stripe,
and SHB patterns, we obtain the values 1467.57, 1463.28, and 1467.50, respectively; that is, the stripe phase is the
energetically favored one.

It should be noted that in experiments, upon deposition of Ag in excess of a complete monolayer, further surface
reconstruction ensues and the SHB pattern morphs into the so-called long-range herringbone (LHB) pattern12. This
reconstruction is a result of large scale collective motion of atoms that is aided by long-range substrate mediated
elasticity, as discussed in Ref.47. The assumption of a rigid substrate employed in this work thus precludes the study
of such LHB structures. However, the focus of the present work is to explore the role of misfit strain patterns generated
by the SHB edge dislocations on the templated growth of ordered heterostructures. As will be discussed next, the
resulting strain patterns from the SHB dislocations can be accounted for in the deposition of additional monolayers
(partial or complete) of either single or binary component systems by employing ρ1 as the effective substrate potential
for the second layer.
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FIG. 1. (Color online) (a) Simulated morphology of ML1 Ag (filled circles) deposited on Ru(0001) substrate. The empty circles
indicate the hcp lattice sites of the Ru(0001) surface. Starting from a random initial condition, we observe the formation of
a partially ordered arrangement of edge dislocations indicated by red “T” and “inverted T” symbols, representing a partially
ordered short-period herringbone (SHB) structure. (b) Starting from an initial condition in which the initial Ag layer is
compressed along the 1

2
[1
√
3 0] direction, we observe the formation of a regular arrangement of edge dislocations, constituting

a more ordered SHB structure. (c) Morphology of a partial monolayer (filled circles) with relative misfit of −5.5% w.r.t to
ML1 (empty circles). Note that the nucleation of SML2 commences on top of the edge dislocations within ML1. (d) Island size
distribution on templated and pseudomorphic substrates. The size distribution is sharply peaked in the templated substrate
case, while it is considerably broader in the pseudomorphic substrate case due to homogeneous nucleation behavior.

2. Templated growth of single component systems on herringbone structure

We next study the case of a submonolayer (SML2) of a single component system deposited on top of the templated
substrate with ordered SHB structure using Eq. (1) with V2 = V12(ρ1(r) − ρ̄1)/2A1. Here, A1 denotes the density

amplitude of ML1, which can be approximated by A1 = ρ̄1/5 +
√

−15r1 − 36ρ̄12/15
25,26, while V12 denotes the

coupling strength between SML2 and ML1. The simulations are started from a supersaturated uniform phase with
ρ2(r, 0) = ρ̄2, where ρ̄2 is varied to control the fraction of the crystalline phase for SML2 (i.e., the coverage)25. More
specifically, herein we set ρ̄2 = 0.64, which corresponds to a coverage of 0.23. In addition, we assume that SML2 has
a relative misfit of −5.5% w.r.t ML1, i.e., SML2 has the same lattice spacing as that of the original substrate beneath
ML1. The rest of the parameters are set to r2 = −0.75, V12 = 0.3, T̃ = 8 × 10−4, and q2 = 1.058. The grid spacing,
simulation box-size and time step employed were ∆x = π/(2

√
3)/1.055, ∆y = π/4/1.055, Nx = 512, Ny = 512 and

∆t = 0.5. Note that the ∆x and ∆y values used in these particular simulations, in effect, rescale the wave number of
ML1 obtained in the previous section to 1. Other parameters that were employed in the time-stepping algorithm in
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Eq. (B1) were set to a1 = 0.2, a2 = 0.6, and a3 = 0.4.
Typical morphologies obtained from simulations are shown in Fig. 1 (c). It can be seen that the nucleation of

SML2 islands commences on top of the edge dislocations of ML1 as guided by the local elastic strain fields. More
specifically, due to the smaller lattice spacing of SML2, the islands initially form on the compressive parts of the
misfit dislocations. One can further notice that the heterostructures comprising the SML2 are faceted. Such faceting
behavior can be correlated with the inherent anisotropies associated with solid-liquid interface at high undercooling
(r) as investigated very recently by Granasy and co-workers33,49.
In order to quantify the role of the misfit strain fields in the heterogeneous nucleation behavior of SML2, we have

carried out a total of 50 independent simulations in order to extract the island size distribution at fixed coverage.
The data is shown in Fig. 1 (d). It can be seen that the island size distribution is sharply peaked corresponding to
the templated substrate in comparison with a perfectly pseudomorphic substrate, for which the nucleation behavior is
homogeneous, leading to considerably broader size distribution. Furthermore, upon increasing the coverage of SML2,
the islands grow in a highly anisotropic manner as guided by the dislocation strain fields; that is, the dislocations
give rise to local barriers for domain growth and thus constrain further island growth. It should be noted that while
experiments13 indicate that the heterogenous nucleation of islands on top of herringbone pattern proceeds first via
site specific exchange processes with the underlying substrate not included in the present approach, the presence of
misfit strain fields alone is sufficient to guide the nucleation and patterning of such islands.

3. Compositional domain formation in bulk-immiscible binary alloy systems on herringbone structure

Next, we consider the case of a complete monolayer deposition of a two component, bulk-immiscible system on
top of the herringbone structure of ML1. The ML1-ML2 interaction potential is incorporated by setting V2(c) =
V12(c)(ρ1(r) − ρ̄1)/2A1; for simplicity, we will consider only the case for which V12(c) = 0.06 is independent of
composition. Furthermore, as in our previous work24, we set r2(c) = Ar +Brc and q2(c) = 1 − ǫc/2 + ǫ2c2/4, which
allows us to independently tune the elastic properties and bulk lattice constants of the corresponding pure systems.
More specifically, we set Ar = −0.75, Br = 0, θc = 3, θ = 1.5, and w0 = 2π/

√
3. A value of ǫ = 0.11 is chosen

for the misfit, implying that the c = −1 component has the same lattice spacing as the original substrate. The grid
spacing and simulation box-size used were ∆x = π/(2

√
3)/1.055, ∆y = π/4/1.055, Nx = 512, Ny = 512. The time

stepping used was ∆t = 0.4 for f0 < 0.0352 and ∆t = 0.2 for f0 > 0.0352. Other parameters that were employed in
the time-stepping algorithm in Eqs. (B1) and (B14) were set to kf = 0.59, a1 = 0.2, a2 = 0.55, and a3 = 0.45. The
simulations are started with random initial conditions for both c and ρ2 with c̄ = 0 and ρ̄2 = 0.35, and the evolution
equations [Eqs. (2) and (3)] are numerically integrated in time in the absence of stochastic fluctuations.
Final equilibrated domain morphologies on the templated substrate are displayed in Figs. 2 (a) and (b) for com-

positional domain wall line tension values f0 = 3.7 × 10−3 and 27.8 × 10−3, respectively. It can be seen that the
morphology in both cases is characterized by spatially periodic compositional domains, stabilized by the dislocation
strain fields. In particular, tensile regions of ML1 attract the c = −1 species, while the c = +1 species accommodates
the spatial preference of the other species by occupying the compressive regions along the substrate. Furthermore,
Fig. 2 (c) shows the corresponding morphology of ML2 when deposited on top of a perfectly commensurate surface
layer with line tension value f0 = 27.8× 10−3. It is noteworthy that in the latter case, line tension is strong enough
to drive the system towards complete phase separation. In the herringbone case, the presence of the elastic strain
field is sufficient to counteract line tension forces, leading to compositional patterning. In this regime, we find that
the domain length scales are set by the dislocation spacing and the sizes of the strain-stabilized domains display only
a gradual variation with line tension.
To better quantify the templated compositional domain formation process, we have extracted the typical domain

size Lc from Lc ≡ L2/Lint (in units of the substrate lattice spacing), where L2 is the total area of our simulation
cell and Lint denotes the total interface length between the compositional domains24. To this end, the data shown
in Fig. 2 (d) displays the variation of Lc as a function of f0 for domain evolution on both the templated and the
perfectly commensurate surfaces. It can be seen that while Lc is a monotonically increasing function of f0 with a
divergence at a critical value f∗

0 ≈ 5.5× 10−3 in the case of the perfectly commensurate ML1, it is characterized by a
rather weak f0 dependence leading up to a divergence around f∗

0 ≈ 45× 10−3 in the herringbone case. Interestingly,
Lc displays a non-monotonic dependence on line tension for f0 <∼ 37× 10−3 within the accuracy of our data. Within
this regime, increasing f0 leads to an overall “flattening” of the compositional interfaces, as expected. Intriguingly,
we occasionally observe specific domain “cleavage” events, in which a connected compositional domain splits into
multiple domains. Both processes contribute to the variation of Lc in ways which do not lend themselves to a simple
quantitative explanation. Finally, we have explicitly verified that these observations and data hold even when thermal
fluctuations with magnitudes up to T̃ = 1× 10−3 are included in the evolution equations for both ρ and c for several
f0 values, namely f0 = 9.3× 10−3, 1.85× 10−2, 2.2× 10−2, and 2.78× 10−2.
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FIG. 2. (Color online) Compositional domain formation on templated and pseudomorphic substrates. (a) and (b) display the
equilibrated, strain-stabilized compositional domains obtained with a line tension value of f0 = 3.7×10−3 and f0 = 27.8×10−3 ,
respectively, for growth on a templated surface, while (c) displays a coarsened compositional microstructure for growth on
pseudomorphic substrate for f0 = 27.8× 10−3. (d) Compositional domain size vs. line tension f0. It can be seen that while Lc

is a monotonically increasing function of f0 with a divergence at a critical value f∗
0 ≈ 5.5 × 10−3 in the case of the perfectly

commensurate ML1, it is characterized by a rather weak f0 dependence leading up to a divergence around f∗
0 ≈ 45 × 10−3 in

the herringbone case.

B. Nucleation, growth, and compositional patterning on quasicrystalline substrates

Having established the critical role that periodic misfit strain fields play in both promoting heterogeneous nucleation
and anisotropic growth of islands at submonolayer coverages and compositional patterning at complete monolayer
coverage, we now turn to a discussion of nucleation behavior and compositional patterning on a quasicrystalline (QC)
surface. Apart from atomic deposition on a physical adsorbate, one can realize such congruent experimental systems by
means of laser interference of colloidal systems50,51. As mentioned earlier, one of the most commonly studied epitaxial
system involving QCs is the case of deposition on five-fold surfaces of icosahedral QCs. A phenomenological adlayer-
substrate interaction potential, which incorporates the proper symmetries, has been very recently proposed by Rottler
and co-workers34: VQC = V0|

∑5
j=1 exp (iαKj · r) |2, where Kj = [cos(2πj/5), sin(2πj/5)]. The structure factor of

this 5-fold substrate potential is 10-fold symmetric, with the fundamental peaks in the structure factor occurring at
wavenumbers k1 =

√
2α[1 − cos(2π/5)]1/2 and k2 =

√
2α[1 − cos(4π/5)]1/2, such that the ratio k2/k1 = (

√
5 + 1)/2

corresponds to the so-called “golden mean”. The parameter α is employed to tune the first and second fundamental
length scales (∼ 1/k1 and ∼ 1/k2, respectively) corresponding to the QC substrate relative to the bulk lattice constant
of the adlayer. Below, we employ this adlayer-substrate potential to investigate both single component systems at
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sub-monolayer coverages and binary systems at complete monolayer coverage on such surfaces.

1. Island nucleation on quasicrystalline substrate

We first study the role played by the adlayer-substrate interaction strength, V0, on the morphology of single-
component islands at submonolayer coverages. To this end, we set f0 = 0, c = 1, ρ̄ = 0.58, r = −0.9, ǫ = 0.0, η = 0.0,
and α = 0.84 in Eq. (1). This particular choice of α (implying that k1 ≈ 1) was chosen to ensure a good overall match
between the first fundamental length scale of the QC substrate and the bulk lattice constant of the depositing particles.
Furthermore, the grid spacing, simulation box-size and the time stepping used were ∆x = π/(2

√
3), ∆y = π/(2

√
3),

Nx = 1024, Ny = 1024, and ∆t = 0.1, respectively. Other parameters that were employed in the time-stepping
algorithm in Eq. (B1) were set to a1 = 0, a2 = 0, and a3 = 0.
Upon starting from a random initial condition corresponding to a supercooled liquid phase, islands nucleate and

begin to grow at sufficiently large adlayer-substrate interaction strengths. Typical equilibrated configurations are
shown in Fig. 3 (a) through (c) corresponding to three different V0 values, namely 9.15 × 10−4, 9.25 × 10−4, and
9.45 × 10−4, respectively. Interestingly, for this range of V0 values, it can be seen that while the islands retain local

hexagonal ordering, at sufficiently large scales they conform to the symmetries of the underlying QC substrate. To
quantify this competition between short-range and long-range ordering, we have extracted the adlayer structure factor
corresponding to V0 = 9.15× 10−4 and averaged it over 40 independent simulations. The data is shown in Fig. 3 (d).
It can be seen that the structure factor has a dominant “ring” of peaks at q = 1, reflecting the local hexagonal ordering
of these clusters at different orientations, with additional ten-fold symmetric peaks at smaller wavenumbers, reflecting
the emergence of QC symmetries at large scales. Increasing V0 shifts these ten-fold symmetric peaks towards q = 1
(data not shown), as both the hexagonal cluster size and cluster separation decrease. Finally, upon increasing V0

beyond 1.1× 10−3, the QC peaks merge with the q = 1 ring. Beyond this point, local hexagonal ordering disappears
completely, and the adlayer exhibits only a quasicrystalline symmetry.
A better understanding of island growth kinetics can be obtained by examining island morphologies during the

growth phase. To this end, Fig. 4 displays four configurations during the growth of a particular island. In particular,
it can be seen that, initially, a seed particle attaches to the center of a 10-fold symmetric substrate adsorption site.
Then, an annulus consisting of 7 particles coalesces around the seed particle. Finally, subsequent growth occurs via
addition of particles arranged with hexagonal symmetry along the periphery of the cluster, leading to the formation
of a defected hexagonal grain, with the core of an edge dislocation residing at the initial nucleation site.
In order to better quantify the nucleation behavior, we have extracted the island size distributions for three different

values of V0. The data is shown in Fig. 5. At the largest V0 value, the size distribution is unimodal and sharply
peaked, while at the smallest of the V0 values employed, it is also unimodal but significantly broader. On the other
hand, the size distribution corresponding to the intermediate V0 value displays a bimodal form with rather narrow
support. In this case, in the simulations it is observed that the larger domains (corresponding to the second peak in
the size distribution) nucleate first and form locally arranged “rings” consisting of 10 islands, before a ring of smaller
islands (first peak in the size distribution) nucleates and grows.
Finally, we have investigated the effect of the relative misfit between the adlayer and the QC substrate on the

morphology of the sub-monolayer film. To this end, we have set V0 = 9.15 × 10−4 and varied the parameter α.
Configurations corresponding to α = 0.48 and 0.51 are shown in Fig. 6 (a) and (b), respectively. In the former
case, when the adlayer lattice constant is mismatched relative to either of the fundamental length scales of the QC
substrate, exotic island morphologies emerge. In the latter case, on the other hand, when the adlayer lattice constant
is matched to the second fundamental length scale (∼ 1/k2) of the QC substrate, the particles tend to populate
the 5-fold symmetric lattice sites, leading to emergence of so-called “starfish” patterns, which have been observed in
quasicrystalline epitaxial systems such as Al/Al-Cu-Fe19 and Pb/Al-Pd-Mn35. Close-up of a starfish island illustrating
the local particle arrangements is shown in turn in Fig. 6 (c).

2. Compositional domain formation in bulk-immiscible binary alloy systems on quasicrystalline substrate

Finally, we turn to the case of a full monolayer of a binary system deposited on a QC substrate. Recall that in
the case of deposition on the herringbone substrate, we observed the emergence of strain-stabilized compositional
domains. Herein, we investigate the possibility of replicating such an effect for deposition on a QC substrate, which
inherently presents a much broader range of local misfit patterns. To this end, we chose the following parameters:
ρ̄ = 0.35, c̄ = 0, V0 = 7 × 10−3, r = −0.75, ǫ = 0.2, θc = 3, θ = 1.5, and α = 0.77. These particular choices for ǫ
and α imply that the lattice spacing of the c = +1 component matches well with the first fundamental QC length
scale, while the c = −1 component has a considerably poorer match with the substrate. In these simulations, the grid
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(a) (d)

(b) (c)

FIG. 3. (Color online) Nucleation of islands and island morphology on quasicrystalline substrate for varying adlayer-substrate
interaction strengths V0 for the case where the adlayer lattice constant is matched to the first fundamental length scale (∼ 1/k1)
of the QC substrate. (a) V0 = 9.15 × 10−4 (b) V0 = 9.25 × 10−4 (c) V0 = 9.45 × 10−4. (d) Structure factor corresponding to
configuration in (a). It can be seen that the structure factor has a dominant “ring” of peaks at K = 1, reflecting the local
hexagonal ordering of these clusters at different orientations, with additional ten-fold symmetric peaks at smaller wavenumbers,
reflecting the emergence of QC symmetries at large scales. Increasing V0 shifts these ten-fold symmetric peaks towards K = 1,
as both the hexagonal cluster size and cluster separation decrease.

spacing, simulation box-size and time-stepping used were ∆x = π/(2
√
3), ∆y = π/(2

√
3), Nx = 512, Ny = 512, and

∆t = 0.3. Other parameters that were employed in the time-stepping algorithm in Eqs. (B1) and (B14) were set to
kf = 0.48, a1 = 0.2, a2 = 0.55, and a3 = 0.45.

Starting from random initial conditions for both ρ and c, typical equilibrated configurations which emerge are
shown in Fig. 7 (a) through (c) corresponding to three different line tension values. In all three cases, formation
of strain-stabilized compositional domains is observed, with larger values of the line tension corresponding to larger
domains, as expected. To better quantify the emerging domain structure, we have again computed the structure
factors corresponding to the local composition c(r). The data is shown in Fig. 7 (d) through (f). It can be seen
that at low line tensions, the structure factors show well-defined peaks that are ten-fold symmetric, reflecting the
formation of compositional domains with QC symmetry. Furthermore, the compositional domains corresponding to
the c = +1 particles localize at the ten-fold symmetric adsorption sites of the substrate potential, with a center particle
surrounded by an annulus of 7 additional particles. This is perhaps not so surprising, as precisely such arrangements
of particles were observed during the island nucleation and sub-monolayer growth phase in the corresponding c = +1
single component system [cf. Fig. 4 (b)]. At larger line tension values, the domain structure begins to resemble the
characteristic of the classical spinodal microstructure, which is reflected in the structure factor by virtue of the ten-fold
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(a) (b)

(c) (d)

FIG. 4. (Color online) Detailed growth kinetics of a nucleated island on QC substrate for the case where the adlayer lattice
constant is matched to the first fundamental length scale (∼ 1/k1) of the QC substrate. Particles are shown in solid black
circles, while the contours represent local substrate potential values. (a) Initially, a seed particle attaches to the center of a
10-fold symmetric substrate adsorption site. (b) Then, an annulus consisting of 7 particles coalesces around the seed particle.
(c)-(d): Subsequent growth occurs via addition of particles arranged with hexagonal symmetry along the periphery of the
cluster, leading to the formation of a defected hexagonal grain, with the core of an edge dislocation residing at the initial
nucleation site.

symmetric peaks coalescing into a “ring” around the characteristic wavenumber of the spinodal microstructure.

IV. DISCUSSION

In this paper, we have explored the effects of misfit strain fields on both heterogeneous nucleation behavior and
anisotropic growth of islands at submonolayer coverages and compositional domain formation in bulk-immiscible sys-
tems at complete monolayer coverage. In particular, deposition on top of a herringbone structure and quasicrystalline
(QC) substrate were considered, the former representing a system with spatially periodic misfit strain fields arising
from the presence of a regular dislocation network, while the latter representing a system which inherently possesses
a wide range of local, aperiodic misfit patterns. This study was facilitated by extensive numerical simulations of a
phase-field crystal (PFC) model presented in Sec. II.
First, it was demonstrated that our PFC approach naturally reproduces experimentally observed herringbone

patterns in the case of Ag on Ru(0001). Then, the simulated herringbone structure was employed as a substrate for
further deposition of generic single component and bulk-immiscible binary systems. In the case of a single-component
system deposited at submonolayer coverages, it was shown that misfit dislocations act as heterogeneous nucleation
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FIG. 5. (Color online) Island size distribution on quasicrystalline substrate at several adlayer-substrate interaction strengths.
At the largest V0 value, the size distribution is unimodal and sharply peaked, while at the smallest of the V0 values employed,
it is also unimodal but significantly broader. On the other hand, the size distribution corresponding to the intermediate
interaction value displays a bimodal form with rather narrow support.

sites, and that their elastic strain fields effectively guide the further growth of islands. In the case of binary systems
at complete monolayer coverage, we observed the emergence of strain-stabilized compositional nanoscale domains.
The characteristic domain length scale is set by the periodicity of the strain pattern with weak dependence on the
compositional domain wall line tension up to a threshold value, beyond which coarsening takes place.

In the case of the QC substrate, it was first shown that with appropriately tuned particle-substrate interaction
values and adlayer lattice constant matched to the first fundamental QC length scale, islands which nucleate and
grow at submonolayer coverages retain local hexagonal ordering, leading to defected grains with edge dislocations
residing at the initial nucleation sites. However, at sufficiently large scales, the islands conform to the symmetries of
the underlying QC substrate. This competition between local and global ordering was quantified in terms of structure
factors, and such morphologies should be readily observable in colloidal systems50,51 in which attractive inter-particle
and particle-substrate interactions can be tuned. Interestingly, when the adlayer lattice constant is matched to the
second fundamental length scale of the QC substrate, emergence of “starfish” islands were observed. Taken together,
these results suggest that a broad range of morphologies can be generated by appropriately tuning the lattice mismatch
between the adlayer and QC substrate and the adlayer-substrate interaction potential.

In the case of a binary system deposited on the QC substrate at complete monolayer coverage, it was shown again
that compositional domains emerge as guided by the aperiodic misfit strain fields. In particular, the compositional
domains inherit the QC symmetries of the underlying substrate at sufficiently low line tension values, while at larger
line tension values, the domain structure begins to resemble the classical spinodal microstructure. These morphologies
should also be readily observable in colloidal systems.

The work described in this paper can be extended in several ways. First, it would be interesting to allow for
intermixing between the deposited layers and elastic relaxation within layers during growth and annealing. This can
be done by carrying out full three-dimensional simulations of appropriately constructed, quantitative PFC models; see,
e.g., Refs.31,32 for examples of PFC modeling of 3D thin film growth. Second, incorporating elastic relaxation processes
within the substrate would facilitate simulation studies of the formation of long-ranged herringbone structures and
subsequent templated growth on such substrates. In principle, this can be achieved by describing the substrate
in terms of its own PFC model. However, it would be more computationally efficient to integrate out the elastic
deformations within the substrate and incorporate their effect within a 3D PFC description of the thin film. We
are currently exploring such approaches. Finally, it would be interesting to incorporate more detailed, atomically-
informed adlayer-substrate potentials for the case of deposition on metallic QC substrates. All of the aforementioned
extensions would provide critical insights into the nonlinear self-assembly and growth processes on surfaces.

Acknowledgements – Partial financial support for this work was provided by the Princeton Center for Complex
Materials (PCCM), a U.S. National Science Foundation Materials Research Science and Engineering Center (Grant
DMR-0819860), and by the PCCM REU and RET programs. The authors would like to thank Dr. J. Rottler for
useful discussions.
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(a) (b)

(c)

FIG. 6. (Color online) Morphology of sub-monolayer film on QC substrate at different misfits. (a) When the adlayer lattice
constant is mismatched relative to either of the fundamental length scales of the QC substrate, exotic island morphologies
emerge. (b) On the other hand, when the adlayer lattice constant is matched to the second fundamental length scale of the QC
substrate, the particles tend to populate the 5-fold symmetric lattice sites, leading to emergence of so-called “starfish” patterns.
(c) Close-up of one starfish island from panel (b). Particles are shown in solid black circles, while the contours represent local
substrate potential values.

Appendix A: Non dimensionalization

For completeness, the non-dimensionalization procedure for the system free energy and dynamical equations is
presented here. Our starting point is the full dimensional form of the free energy functional, given by

F̂i[ρ̂i, ci] =

∫
[(

ρ̂i
2

(

r̂i(ci) + λ
(

q̂i(ci)
2 + ∇̂2

)2
)

ρ̂i + u
ρ̂4i
4

)

+ V̂i(ci)ρ̂i + f̂0

(

ŵ2
0

2
(∇̂ci)

2

−kBTc

2
c2i +

kBT

2
[(1 + ci) log(1 + ci) + (1 − ci) log(1− ci)]

)]

dr̂. (A1)

As discussed in detail by Elder and co-workers26,28, the parameters r̂i, λ, q̂i, and u can be related to the liquid state
structure factor and elastic constants of the hexagonal crystal, while the terms involving the composition account for
the bulk and interfacial thermodynamics of the binary system. Finally, the term V̂i(ci)ρ̂i incorporates the interaction
between the adlayer and the substrate24,30.
Now, from Eq. (A1), the dimensional spatio-temporal evolution equations can be derived as

∂ρ̂i

∂t̂
= M̂ρ∇̂2

(

δFi

δρ̂i

)

+ ζρi , (A2)
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(a) (b) (c)

(d) (e) (f)

FIG. 7. (Color online) Compositional domain formation on quasicrystalline substrate at several line tension values: (a)
f0 = 1.53 × 10−2, (b) f0 = 2.45 × 10−2, and (c) f0 = 4.29 × 10−2. The corresponding compositional structure factors are
shown in (d), (e), and (f), respectively. In all three cases, formation of strain-stabilized compositional domains is observed, with
larger values of the line tension corresponding to larger domains, as expected. It can also be seen that at low line tensions, the
structure factors show well-defined peaks that are ten-fold symmetric, reflecting the formation of compositional domains with
QC symmetry. At larger line tension values, the domain structure begins to resemble the classical spinodal microstructure,
which is reflected in the structure factor by virtue of the ten-fold symmetric peaks coalescing into a “ring” at the characteristic
wavenumber of the spinodal microstructure.

and

∂ci

∂t̂
= M̂c∇̂2

(

δFi

δci

)

+ ζci . (A3)

Here, ζ
ρ/c
i denotes a Gaussian noise term with mean 〈ζρ/ci 〉 = 0 and variance 〈ζρ/ci (r, t)ζ

ρ/c
i (r′, t′)〉 = −2M̂ρ/ckBT ∇̂2δ(r̂−

r̂
′)δ(t̂− t̂′) in accordance with the fluctuation-dissipation theorem. Introducing the non-dimensional variables

r = qsubr̂, qi(c) =
q̂i(c)

qsub
, ρi = ρ̂i

√

u

λq4sub
, r =

r̂

λq4sub
, t = M̂ρλq

6
sub t̂ (A4)

f0 =
uŵ2

0f̂0
λ2q6subw

2
0

, Vi(ci) =
V̂i(ci)u

1/2

q6subλ
3/2

, F =
uF̂

q6subλ
2
, θ(c) =

kBT(c)w
2
0

uq2subŵ
2
0

,

where qsub denotes the substrate wave number, results in the non-dimensional free energy [Eq. (1) in the main text]

Fi[ρi, ci] =

∫
[(

ρi
2

(

ri(ci) +
(

qi(ci)
2 +∇2

)2
)

ρi +
ρ4i
4

)

+ Vi(ci)ρi + f0

(

w2
0

2
(∇ci)

2

−θc
2
c2i +

θ

2
[(1 + ci) log(1 + ci) + (1 − ci) log(1− ci)]

)]

dr, (A5)

and the dimensionless dynamic equations [Eqs. (2) and (3) in the main text]

∂ρi
∂t

= ∇2

(

δFi

δρi

)

+ ηρi (A6)
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and

∂ci
∂t

= Mc∇2

(

δFi

δci

)

+ ηci , (A7)

where Mc ≡ (M̂cλq
4
sub)/(M̂ρu), and 〈ηc/ρi (r, t)η

c/ρ
i (r′, t′)〉 = −2(M̂c/ρ/M̂ρ)T̃∇2δ(r − r

′)δ(t − t′). Finally, the dimen-
sionless temperature is given by

T̃ ≡ ukBT/(q
2
subλ

2). (A8)

Appendix B: Numerical method

1. Single component systems

In the case of single component systems, we employ the semi-implicit Fourier spectral method introduced by Cheng
and Warren52 for the spatio-temporal evolution of ρ(r, t). With this method, ρ is integrated in time via

ρ̃kn+1 = ρ̃kn − |k|2∆tPFC
eff (k,∆t){Lkρ ρ̃kn + Ñk[ρn]}+ η̃′

k
, (B1)

where ρk denotes the fourier transform of ρ, ∆t denotes the time step, the subscript n indicates the current time step,

∆tPFC
eff (k,∆t) =

∆t

1 + ∆t[(r + q40)(1− a1) + 2|k|2q20(a2 − 1) + |k|4(1− a3)]
; (B2)

Lkρ = (r + (q20 − |k|2)2); when (r + (q20 − |k|2)2) < 12.5;

Lkρ = 12.5; when (r + (q20 − |k|2)2) > 12.5; (B3)

and

N [ρ] = ρ3 + V. (B4)

Within this scheme, the parameters a1, a2, and a3 are employed to optimize (i.e., maximize) the time step in the
simulations resulting in numerically stable solutions. The noise function η was constructed using the method described
in Petschek and Metiu53, which is reiterated here for convinience. We know that

〈η′(r1, t1)η′(r2, t2)〉 = −2T̃∆t∇2δ(r2 − r1). (B5)

where,

η′(r, t) =

∫ t+∆t

t

η(r, t1)dt1. (B6)

Within this formulation, η′, which is the conserved noise, is constructed from two statistically independent Gaussian
fields µ1 and µ2 as follows:

η′(x, y, t) =

(

µ1(x+∆x, y, t)− µ1(x, y, t)

∆x
+

µ2(x, y +∆y, t)− µ2(x, y, t)

∆y

)

(B7)

where,

〈µ1(r1, t1)µ1(r2, t2)〉 = 〈µ2(r1, t1)µ2(r2, t2)〉 =
2T̃∆t

∆x∆y
(B8)

for r1 = r2 and t1 = t2 and

〈µ1(r1, t1)µ1(r2, t2)〉 = 〈µ2(r1, t1)µ2(r2, t2)〉 = 0 (B9)

otherwise. Furthermore, we introduce a cut-off wave number kcut = 2, such that η̃′
k
= 0 for |k| > kcut.



15

2. Binary systems

In the case of binary systems, we employ the semi-implicit Fourier spectral method introduced by Zhu et al.54 for
the evolution of c(r, t) and the semi-implicit Fourier spectral method discussed above for ρ. More specifically, the
time-stepping algorithm used for the evolution of ρ is now given by

ρ̃kn+1 = ρ̃kn − |k|2∆tPFC
eff (k,∆t){Lkρ ρ̃kn + Ñk[ρn]}, (B10)

where,

∆tPFC
eff (k,∆t) =

∆t

1 + ∆t[(r + 1)(1− a1) + 2|k|2(a2 − 1) + |k|4(1− a3)]
; (B11)

Lkρ = (r + (1− |k|2)2); when (r + (1 − |k|2)2) < 12.5;

Lkρ = 12.5; when (r + (1− |k|2)2) > 12.5; (B12)

and

N [ρ] =

(

ρ3 +
r(+1)− r(−1)

2
ρc+ Vi(c)

)

+ǫ

(

− 2cρ− 2c∇2ρ− 2∇ρ · ∇c− ρ∇2c

)

+ǫ2
(

5

2
ρc2 +

3

2
c2∇2ρ+ 3c∇ρ · ∇c+

3

2
ρ|∇c|2 + 3

2
ρc∇2c

)

. (B13)

The time-stepping algorithm used for the evolution of c is given by:

c̃kn+1 =
4c̃kn − c̃kn−1 − |k|2

(

2Ñk[cn]− Ñk[cn−1]
)

2Mc∆t

(3− 2Mc∆tLkc )
; (B14)

Lkc = −f0w
2
0 |k|2; (B15)

and

N [c] =

(

f0

(

(−θc + θ)c+ θ

(

c3

3
+

c5

5
+ · · · c

51

51

))

+
r(+1)− r(−1)

4
ρ2 +

V (+1)− V (−1)

2
ρ

)

− ǫ

(

ρ2 + ρ∇2ρ

)

+ ǫ2
(

5

2
ρ2c+

3

2
ρc∇2ρ

)

. (B16)

Finally, the spatial derivatives of the variables in Eqs. (B13) and (B16) are computed up to fourth order accuracy in
∆x and ∆y. In particular, first order spatial derivatives are computed using

∂g

∂x
=

1

∆x

(

− 1

12
g(x+ 2∆x, y, t) +

2

3
g(x+∆x, y, t)− 2

3
g(x−∆x, y, t) (B17)

+
1

12
g(x− 2∆x, y, t)

)

∂g

∂y
=

1

∆y

(

− 1

12
g(x, y + 2∆y, t) +

2

3
g(x, y +∆y, t)− 2

3
g(x, y −∆y, t) (B18)

+
1

12
g(x, y − 2∆y, t)

)

,

while the Laplacian is evaluated using

∇2g =
1

∆x2

(

− 1

12
g(x+ 2∆x, y, t) +

4

3
g(x+∆x, y, t) +

4

3
g(x−∆x, y, t) (B19)

− 1

12
g(x− 2∆x, y, t)− 5

2
g(x, y, t)

)

+
1

∆y2

(

− 1

12
g(x, y + 2∆y, t) +

4

3
g(x, y +∆y, t) +

4

3
g(x, y −∆y, t) +

1

12
g(x, y − 2∆y, t)− 5

2
g(x, y, t)

)

.
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