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We discuss d-wave topological (broken time reversal symmetry) pairing structures in unpolarized
and polarized Jain states. We demonstrate pairing in the Jain spin singlet state by rewriting it in
an explicit pairing form, in which we can recognize d-wave weak pairing of underlying quasiparticles
- composite fermions. We find and describe the root configuration of the Jain spin singlet state
and its connection with neutral excitations of the Haldane-Rezayi state, and study the transition
between these states via exact diagonalization. We find high overlaps with the Jain spin singlet
state upon a departure from the hollow core model for which the Haldane-Rezayi state is the exact
ground state. Due to a proven algebraic identity we were able to extend the analysis of topological
d-wave pairing structures to polarized Jain states and integer quantum Hall states, and discuss its
consequences.

PACS numbers: 05.30.Pr, 73.43.-f

I. INTRODUCTION

Fractional quantum Hall (FQH) states are strongly
correlated many-body states which in certain cases have
an effective description in terms of weakly-interacting
quasiparticles. An important example are Jain states1

which are composed of weakly-interacting composite
fermion quasiparticles, which themselves form underly-
ing integer quantum Hall (IQH) states. In other im-
portant examples these underlying states of quasipar-
ticles may be superconducting with broken time rever-
sal symmetry, like in the famous Pfaffian (Moore-Read)
state2 with p-wave superconducting pairing of composite
fermion quasiparticles. The paired states in the FQHE
are often discussed in connection with systems with extra
degrees of freedom like spin. The first paired state pro-
posed was the spin-singlet d-wave Haldane-Rezayi (HR)
state3. It has served as inspiration and as a prototype
for other paired states, despite initial confusion about
its compressibility. Initially it was believed to be an in-
compressible state - a spin-singlet state at filling factor
1/2. However in Ref. 10 the HR state was identified as a
critical (gapless) state of a d-wave superconductor with
broken time reversal symmetry. In the same reference it
was shown that the gapped phase that is on the weak
pairing side of the transition for which the HR state is
critical possesses some universal properties of the Jain
spin singlet (JSS) state at half filling4. Therefore the
JSS state may represent a weakly-paired d-wave topo-
logical superconductor of composite fermion quasiparti-
cles and may be related to the gapless HR d-wave state.
On the other hand, recent developments in the theory
of the FQHE have demonstrated exceptional similarities
between polarized Jain states and a non-unitary series of
states (connected with non-unitary conformal field theo-
ries (CFTs)) with gapless behavior5–9.

In this paper we focus on d-wave topological pairing
structures in unpolarized and polarized Jain states. First

we discuss further the connection between the JSS state
and topological d-wave superconductors, and the implied
connection between HR and JSS states. Due to an alge-
braic identity we recover the exact pairing (structure)
in the JSS wavefunction. The root configuration of the
same state is also presented. These results improve our
understanding of the role of paired composite fermions in
the HR and JSS state, and the transition that is expected
to occur between these states. In order to confirm its ex-
istence in the presence of specific interactions we study
this transition by way of exact diagonalization. Due to
the spin degree of freedom our studies are limited in the
system sizes treated compared to studies without spin.
In the systems we could treat we demonstrate high over-
laps with the JSS state upon departing from the pure
hollow core model for which the HR state is the exact
ground state. Due to the proven identity we are able to
show that the pairing structures also exist even in po-
larized Jain states, as a consequence of the underlying
multicomponent nature of the FQH states. Furthermore
we demonstrate a connection, based on the proven iden-
tity, between the IQH states with Chern number equal to
two11–13 and the d-wave superconducting states with bro-
ken time reversal symmetry. This connection is enabled
by the extremely weak pairing in the d-wave supercon-
ductor. We will discuss the connection on the level of
many-body wavefunctions; it was introduced previously
on the level of Hamiltonians by Laughlin in Ref.14.

The paper is organized as follows: section II intro-
duces the HR and JSS model wavefunctions and reviews
their most relevant properties, section III shows how to
see hidden pairing structure in the JSS state, section IV
discusses the HR and JSS states in terms of their root
partitions, section V presents results from numerical cal-
culations, section VI extends the pairing structure argu-
ments to the spin polarized case and finally section VII
presents conclusions.
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II. MODEL WAVEFUNCTIONS

To understand better the topological nature of Jain
states and their relationship to the non-unitary states we
will first discuss the JSS state and related HR state. The
JSS state at ν = 1

2 is defined as

ΨJSS = PLLL(χ2χ110χ1) (1)

in the usual Jain notation. PLLL is the projector oper-
ator to the lowest Landau level (LLL). χ2 denotes the
wavefunction of two filled Landau levels (LLs) of all par-
ticles. As shown in Ref.15, in a condensed form χ2 can
be expressed as

χ2 = A{
M∏
i=1

z∗i ×
∏

i<j;i,j≤M

(zi − zj)

×
∏

k<l;M<k,l≤N

(zk − zl)}, (2)

where N , the total number of particles, is assumed even,
and M = N/2. A denotes the antisymmetrization oper-
ator over the N particles. Here and below we suppress
the omnipresent Gaussian factors, characteristic of the
disk geometry. In this section we look for long-distance
properties of wavefunctions, and use the expressions 2 or
7 below. χ1 denotes the wavefunction of a filled LLL of
all particles.

χ1 =

N∏
i<j

(zi − zj), (3)

and χ110 denotes the wavefunction with Jastrow-
Laughlin factors only between particles with the same
spin.

χ110 =

N
2∏
i<j

(z↑i − z
↑
j )

N
2∏
i<j

(z↓i − z
↓
j ), (4)

where z↑i (z↓i ) are the positions of the particles with spin
up (down). Where no spin index is given, the product is
over all particles irrespective of spin.

The HR state3 is a fermionic spin singlet state defined
as

ΨHR = det

(
1

(z↑i − z
↓
j )2

)∏
i<j

(zi − zj)2. (5)

This state is the unique densest zero energy ground state
of a hollow core two-body interaction Hamiltonian. Two-
body interaction Hamiltonians can be expressed in terms
of the Haldane pseudo-potential coefficients Vm

16 as

H =
∑
m≥0

Vm∑
i<j

P(m)
ij

 , (6)

where Vm is the pseudo-potential coefficient for relative

angular momentum m and P(m)
ij projects a particle pair

onto relative angular momentum m. The hollow core
interaction corresponds to setting the V1 coefficient to a
finite value while the rest are set to zero. For the HR state
the counting of zero modes with and without quasi-holes
can be deduced from a generalized Pauli principle17,18.

We will examine in detail the transition induced by
changing V0 (interaction pseudo-potential for particles
with relative angular momentum zero) that is believed
to represent the transition from HR to JSS state. We are
especially interested in identifying the JSS and its univer-
sal properties on the weak pairing side of the transition.
This will also entail better examination of the JSS along
with its root configuration.

III. PAIRING STRUCTURE

From the expression for the JSS state in (1) we will il-
lustrate the basic pairing structure that is hidden in the
usual definition of Jain states. We will prove an alge-
braic identity in this case that directly relates the JSS
wavefunction and the long-distance form of the ground
state of a d-wave topological superconductor in its weak
pairing phase.

The projection to the LLL is made by replacing com-
plex conjugate coordinates, z∗i , i = 1, . . . , N in the two
LL filled wavefunction, χ2, with derivatives, ∂/(∂zi), i =
1, . . . , N . When attempting to construct this state nu-
merically we found that changing the order of application
of the projection operator to reduce the computational
complexity is no longer applicable here as it is in the spin-
less case19,20. For further details see appendix A. We will
use expression 2 for χ2, derived in Ref.15, which assumes
even numbers of particles, N = 2M . It is important to
notice that in the equivalent but more common definition
of χ2,

χ2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 · · · 1
z1 · · · zi · · · zN
z21 · · · z2i · · · z2N
...

...
...

zM−11 · · · zM−1i · · · zM−1N
z∗1 · · · z∗i · · · z∗N
z∗1z1 · · · z∗i zi · · · z∗NzN
z∗1z

2
1 · · · z∗i z

2
i · · · z∗Nz

2
N

...
...

...

z∗1z
M−1
1 · · · z∗i z

M−1
i · · · z∗Nz

M−1
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (7)

due to the asymmetry of the determinant, any exchange
of two particles amounts only to a change of sign anal-
ogous to the wavefunction of a filled LLL, expression 3.
If we use these expressions for two groups of particles as
in the case of states with spin assignment, which parti-
cles are up or down becomes irrelevant (as far the cor-
relations are concerned) as these expressions have equal
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correlations for up - up, down - down, and up - down
correlators. It is important to notice that spin is not
fixed in a given LL (in χ2 in the definition, expression
2 or 7), and each LL may contain any distribution of
ups and downs. In the following we will extract (under
derivatives due to the LLL projection) from each term in
χ2 the correlator that is between the two definite groups
with the same number of particles equal to M ; the first
group will be among particles to which we assign spin up
and the second group will be among particles with spin
down. Therefore we have

ΨJSS =A[∂z1 · · · ∂zM∏
i<j;i,j≤M (zi − zj)

∏
k<l;M<k,l≤N (zk − zl)∏

p,q(zp↑ − zq↓)
]

(
∏
p,q

(zp↑ − zq↓)]χ110χ1). (8)

Only if the division into two groups under A coincides
with division between up and down particles can we use
the Cauchy identity,∏

i<j(zi↑ − zj↑)
∏
l<m(zl↓ − zm↓)∏

p,q(zp↑ − zq↓)
= det

(
1

zp↑ − zq↓

)
,

where the resulting determinant has antisymmetry
among same spin particles. This gives us a clue about
what the expression under the square brackets in Eq.(8),

A[∂z1 · · · ∂zM∏
i<j;i,j≤M (zi − zj)

∏
k<l;M<k,l≤N (zk − zl)∏

p,q(zp↑ − zq↓)
], (9)

should be.
The expression
(a) should not carry macroscopic flux (the filling factor

is determined by [
∏
p,q(zp↑ − zq↓)]χ110χ1 = χ2

1),

(b) should preserve the same total power (N/2 = M)
of derivatives,

(c) should be antisymmetric under exchange of same
spin particles,

(d) and should be invariant under total (when all parti-
cles participate) exchange between opposite spin particles
due to the factor

∏
p,q(zp↑ − zq↓) that already encodes a

definite symmetry of χ2 under the total exchange equal

to the parity of M2 i.e. (−1)M
2

= (−1)M between oppo-
site spin particles,

(f) and should be invariant under translation (as χ2

is).
This is achieved by the following pairing function,

Ψd = det

(
z∗p↑ − z∗q↓
zp↑ − zq↓

)
, (10)

to which the projection to the LLL has to be applied
when considering the JSS state.

To see that the function is invariant under any total
exchange between up and down particles we start with a

general expression,

Ψ =
∑
p∈SM

f1,p(2) · · · f2M−1,p(2M)sgn(p), (11)

for a pairing function of M pairs. SM is the symmetric
group over a set ofM elements and sgn(p) is the signature
of the permutation p. Each pair is invariant under the
exchange of its constituents i.e. fi,j = fj,i. Any total
exchange between two kinds (even and odd) of particles
is defined by a single permutation s on M numbers. The
transformed wavefunction, EΨ, can be expressed as

EΨ =
∑
p

fs−1p(2),s(1) · · · fs−1p(2M),s(2M−1)sgn(p)

=
∑
p

fs(1),s−1p(2) · · · fs(2M−1),s−1p(2M)sgn(p)

=
∑
p

f1,s−2p(2) · · · f2M−1,s−2p(2M)sgn(p)

=
∑
σ

f1,σ(2) · · · f2M−1,σ(2M)sgn(σ) = Ψ, (12)

i.e. we proved that the pairing function is invariant under
any total exchange E between (ups and downs) even and
odd number particles.

Thus we have

ΨJSS =det

(
∂z↑ − ∂z↓
z↑ − z↓

)
[
∏
i,j

(zi↑ − zj↓)]χ110χ1

=det

(
∂z↑ − ∂z↓
z↑ − z↓

)
χ2
1. (13)

The existence and uniqueness of the pairing function that
satisfies the listed conditions leads to the equality of ex-
pressions. While we don’t have a proof of the unique-
ness of the pairing wavefunction, we checked the follow-
ing identity

χ2 = Ψd

∏
i,j

(zi↑ − zj↓), (14)

and thus Eq.(13), hold true up to N ≤ 8. Interestingly
we came to an expression for χ2 that includes the divi-
sion into two groups of particles, but as we emphasized
previously this does not select any particular two groups
in the definition of χ2 as long as we do not assign spin.
But in the definition of the JSS wavefunction we do and
it is then natural to decompose χ2 in a way that respects
this spin assignment.

IV. ROOT PARTITIONS

In the following we will describe another character-
istic of the JSS, its root configuration. It has been
established21 that many model FQH states can be writ-
ten exactly as Jack polynomials or as the product of a
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Jack polynomial and some power of Vandermonde deter-
minants. Jack polynomials are characterized by a dom-
inant partition which reflects the vanishing properties
of the state. A partition λ can be represented as an
occupation-number configuration n(λ) = {nm(λ),m =
0, 1, 2, ...} of each of the LLL orbitals. A “Squeezing rule”
connects configurations n(λ)→ n(µ). This is a two parti-
cle operation that moves a particle from orbital m1 to m′1
and another from m2 to m′2 with m1 < m′1 <= m′2 < m2

and m1 +m2 = m′1 +m′2. A configuration λ dominates a
configuration µ if n(µ) can be derived from n(λ) by ap-
plying a sequence of squeezing operations. When FQH
wavefunctions, equivalent to Jack polynomials are ex-
panded in the occupation-number basis the only configu-
rations with non zero weight are the dominant configura-
tion and those derived from this via squeezing operations.
This is also true of FQH states which are equivalent to
the product of Jack polynomials and some power of Van-
dermonde determinants. Recent work18,22 has focused
on the form of squeezing operations required for dealing
with spinful states.

As a consequence of the pairing structure that we de-
scribed in section III we will demonstrate that the dif-
ference between the HR and JSS ground states can be
described by an excitation of two neutral fermions of op-
posite spin at total momentum k = 0 in the correspond-
ing root configurations. Here we use the term “neutral
fermions” in the place of “composite fermions” to stress
that at ν = 1/2, these excitations are due to unpaired
particles in the BCS states i.e. neutral fermions10. We
can start from the neutral excitation spectrum of the
JSS state in the thermodynamic limit with quasiparticle-
quasihole minimum as sketched on the left of Fig.1. The
spectrum is completely gapped from the ground state,
Eq.(1), with root configuration on a sphere given by
(2̄00 ↓ 0 ↑ 0 ↓ . . . 0 ↑ 002̄). By 2̄ we denote a spin-
singlet pair on a single orbital. The flux/ particle number
(Nφ/N) relationship is Nφ = 2N − 4. We expect that by
changing (decreasing) the V0 component of the pseudo-
potential series {V0, V1, 0, 0, . . .}, V0, V1 > 0 the system
will become gapless and described at V0 = 0 by the HR
state with excitation spectrum sketched on the right of
Fig. 1 with root configuration (2̄0002̄000 . . . 2̄0002̄) with
the same flux/number of particles relationship. As we
know from the previous analysis10 the branch of gap-
less excitations of the HR state is described by neutral
fermions (excitations due to unpaired particles in the
BCS state). The neutral fermions exist10 in the JSS
state and it is this gapped branch around k = 0 that
becomes gapless at the critical point. It is thus to be ex-
pected that at the transition the pair of neutral fermions
of opposite spin, each of momentum k = 0 become part
of the ground state configuration and description. In-
deed we can convince ourselves by looking at the root
configurations of the JSS and HR states that they differ
by the excitation of two neutral fermions with opposite
spin. Each bulk spin singlet pair in the HR state becomes
set apart by one orbital in the root configuration of the

FIG. 1: The sketches of excitation spectra of Jain spin
singlet (left panel) and Haldane Rezayi state (right

panel) with respective root configurations of the ground
states.

JSS state. Opposite spin thus carry opposite momen-
tum, but due to the requirement of inversion symmetry
wrt the equator and the constraint on the flux/number
of particle ratio (charge neutrality) the boundary config-
urations do not change and the difference between the
two states may appear to us as some kind of boundary
excitations in a uniform state (the JSS state). But as
we already explained essentially the difference between
the HR and JSS phase can be described by the state of
two neutral fermion bulk excitations in their respective
ground states.

V. NUMERICAL CALCULATIONS

To verify the state on the weak paring side of the tran-
sition (HR state) is indeed a JSS state we obtain the
ground state of the relevant interaction Hamiltonian and
compare this to the explicitly constructed JSS state. The
two body interaction here consists of a hollow-core inter-
action (V1 = 1) along with a varying strength hard-core
interaction (V0 > 0). Constructing the JSS wavefunc-
tion is very computationally intensive and N = 10 was
the largest we could construct. This is somewhat smaller
than what has been achieved for spin polarized systems.
This is because changing the order of application of the
projection operator no longer results in a good approx-
imation as it does in the spin polarized case (appendix
A). Figure 2 shows the results of these calculations for
the N = 10 and N = 12 cases. As expected, as V0
is increased the overlap with the HR state decays. For
N = 10 where we could construct the JSS state we see
that as V0 is increased the overlap with this state in-
creases to almost unity before starting to decay. This
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FIG. 2: Excitation gap and overlaps of the ground state
for a two-body interaction Hamiltonian for different V0

V1

for (a) N = 10 and (b) N = 12 (see4 for plots of N=8
case). No overlap data are available for the JSS for

N = 12.

is a strong indication that this is indeed the JSS state
on the week pairing side of the transition. In both cases
the energy gap also shows a peak near where we expect
the JSS state to be which is consistent with this picture.
Note that the Coulomb groundstate in the lowest Lan-
dau level or the second Landau level has a zero overlap
with the HR or JSS state for N = 10 and N = 12, due
to different quantum numbers.

VI. SPIN POLARIZED CASE

In the following we will discuss spin polarized Jain
states and their relationship to the non-unitary states.
This subject is well studied, especially the case of bosons
at filling factor 2/3 and related non-unitary state so-
called Gaffnian state23,24, and our focus here will be un-
derlying pairing structures in these states. The root con-
figurations of these two states, Jain and Gaffnian, are
well known7 and their pairing structure can be probed.
We will see that also in this case, as the difference of two
states, two neutral excitations exist that are spread out
over the whole system. Due to the equivalence of North
and South poles on the sphere (with magnetic monopole
in its center) i.e. symmetry under inversion on the fi-

nite interval of angular momentum states of any quan-
tum Hall state and as a consequence of the bulk neutral
excitations “edge decorations” - special decorations on
the ends (North and South pole) appear as we find in
the case for the JSS state. This neutral rearrangement
and edge decorations can be seen in the root configu-
ration of the Jain state: (2010110102) wrt that of the
Gaffnian state (2002002002) (for the sake of simplicity
we displayed the root configurations for only eight parti-
cles). This can also be seen in Jain states that need more
than two LLs for their construction. Each new LL con-
tributes a new pair of neutral excitations with respect to
non-unitary partner states7. To understand the origin of
this behavior that may stem from a pairing structure in
Jain states, we begin with the definition of the Gaffnian
wavefunction of bosons at 2/3:

ΨGf = S(Ψ221perm

(
1

z↑ − z↓

)
) (15)

In constructing this state we first divide the electrons into
two groups of up (↑) and down (↓) pseudospin. In the def-
inition Eq.(15), perm denotes the permanent which is for

a M×M M matrix perm (M) =
∑
p∈SM

∏M
k=1 Mk,p(k).

Ψ221 is the well known notation of Halperin states for
which we have

Ψ221 =
∏
i<j

(zi↑−zj↑)2
∏
l<m

(zl↓−zm↓)2
∏
p<q

(zp↑−zq↓). (16)

In the following we will use

(zσ − zσ′)m, (17)

where m can be a fraction and (σ, σ′) = (↑, ↑), (↓, ↓),
or (↑, ↓) as a shorthand notation for any of the three
factors in Eq.(16). The overall symmetrization operator,
S in Eq.(15), is necessary to produce a state of polarized
bosons.

To display the pairing structure related to the previous
discussion of the HR state we will separate out the charge
part, i.e. the part blind to pseudospin:

ΨGf = S(
∏

(z − z)3/2 ×

(z↑ − z↑)1/2(z↓ − z↓)1/2
1

(z↑ − z↓)1/2
perm

(
1

(z↑ − z↓)

)
)

(18)

where
∏

(z − z)3/2 denotes the product of all possible
pairs:∏

(z−z)3/2 = (z↑−z↑)3/2(z↓−z↓)3/2(z↑−z↓)3/2. (19)

Due to the equality given in3,

Ψ11−1perm

(
1

z↑ − z↓

)
= det

(
1

(z↑ − z↓)2

)
, (20)
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we can rewrite the Gaffnian as

ΨGf = S(
∏

(z − z)3/2 ×

(z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2
det

(
1

(z↑ − z↓)2

)
). (21)

Thus a possible interpretation of the Gaffnian state is
that it represents a HR pairing state of neutral semions,
semions because we have taken in front the factor

∏
(z−

z)3/2 that describes the charge part. The original semions
that paired in by way of a permanent in the usual def-
inition (Eq.(18)) have relative fermionic statistics with
respect to the new semions of Eq.(21).

We can try to extend our pairing arguments from spin
singlet HR and Jain state to Gaffnian and Jain state at
2/3 (at 2/5 in the case of fermions). We expect that the
Jain state at 2/3 can be viewed as an underlying state of
weakly paired semions as in the following expression (we
neglect the projection to the LLL in the following)

ΨJain = S(
∏

(z − z)3/2 ×

(z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2
det

(
z∗↑ − z∗↓
z↑ − z↓

)
). (22)

Due to the previously proven identity (Eq.(14)),

χ2 =
χ1

χ110
det

(
z∗↑ − z∗↓
z↑ − z↓

)
, (23)

we can rewrite Eq.(22) as

ΨJain = S(
∏

(z − z)3/2 ×

(z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2
χ2χ110

χ1
)

= S(χ1χ2) = χ1A(χ2) = χ1χ2, (24)

as we anticipated. The last identity in which A is anti-
symmetrizer follows from the antisymmetry already en-
coded in χ2 under exchange of any i and j. Moreover we
can start from the definition of the bosonic Jain state,

ΨJain = χ2χ1, (25)

use the same identity in Eq. (23), and conclude that

ΨJain = det

(
z∗↑ − z∗↓
z↑ − z↓

)
×

(z↑ − z↑)(z↓ − z↓)(z↑ − z↓)2, (26)

i.e. come to an expression for ΨJain in terms of two
groups of particles. As we emphasized below Eq.(14), the
division between ups and downs in Eq.(26) is arbitrary
and we do not have a regular paired state with a charge
part clearly separated form a pairing function. As before,
but without the need for symmetrizer S we have

ΨJain =
∏

(z − z)3/2 ×

(z↑ − z↓)1/2

(z↑ − z↑)1/2(z↓ − z↓)1/2
det

(
z∗↑ − z∗↓
z↑ − z↓

)
. (27)

Therefore we conclude that the Jain state at 2/3 can
be (to a certain degree) viewed as a topological super-
conductor of anyons in a weak pairing phase. It is not
obvious what the physical consequences of such a state-
ment are. The pairing is very much disguised. We may
also talk about neutral fermions and their pairing, but
there is no simple relationship between them and the un-
derlying particles - in this case bosons.

Edge decorations in the root configuration of the Jain
state in comparison with the Gaffnian clearly point to
the presence of neutral excitations that follow from pair
breaking. To understand better how edge decorations
are connected with the pairing structure in Gaffnian
and Jain states that we demonstrated previously in
Eqs.(18,21,22,24) we will take out S (symmetrizer) in
the definition of the Gaffnian (Eq.(15)). As a result we
get a spinful state with root configuration: (2̄002̄002̄002̄)
where 2̄ represents a spin singlet on a single orbital. (This
is analogous to the HR case.) We may imagine pair-
breaking neutral excitations with spin which would lead
to root configurations of the following form (2̄0 ↑ 0 ↓↑ 0 ↓
02̄), but this would be too restrictive to describe the root
configuration of a Jain state which is ferromagnetically
ordered with the total projection along the quantization
axis equal to zero in the pseudospin space : (2010110102).
We can convince ourselves of this particular ferromag-
netic ordering by analyzing the expression Eq.(22) for
the Jain state. Nevertheless we see the similarity be-
tween pair-breaking neutral excitations that carry spin
and quasiparticle-qusihole excitations25 on both ends of
the Jain state. Here quasiparticle-quasihole excitations
correspond to neutral fermions in the HR and JSS case.
Instead of a pair of neutral fermions of opposite spin in
the polarized Jain case we have a quadrupolar26 exci-
tation, two quasiparticle-quasihole pairs that are spread
out over the ground state. Namely we need two (neutral)
dipoles of corresponding but opposite momenta to make
k = 0 excitation that falls down in energy when we are
approaching the critical Gaffnian state. The situation is
similar to the spin-singlet HR and JSS case with opposite
spin neutral fermions as sketched in Fig. 1.

With all said about Jain states we can expect
that IQHE wavefunctions that describe non-interacting
fermions can be described as some kind of weakly paired
topological superconductors where the extremely weak
pairing of time reversal symmetry breaking d-wave, which
is just a phase, goes into the description of fermionic cor-
relations between different LLs. As we already demon-
strated the Slater determinant of two filled LLs can be
written as

χ2 = det

(
z∗↑ − z∗↓
z↑ − z↓

)
(z↑ − z↓). (28)

We emphasize that the division between ups and downs
is arbitrary; the only requirement is the equal number of
ups and downs i.e. the total even number of fermionic
particles. The factor, (z↑ − z↓), similar to the Jastrow-
Laughlin factor but not the same, carries the information
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of the filling factor i.e. from the number of flux quanta

that particles experience N↑φ = N↓φ = N/2 − 2 we can
read off the filling factor, ν = 2.

The interesting question is what is the relationship
between weakly paired d-wave superconductors and the
topological insulator i.e. IQHE with Chern number equal
to 2. This question is highly relevant in the context of
fractional Chern insulators27 (i.e. FQHE without mag-
netic field) with Chern number larger than 111–13. Be-
sides a relationship between bulk Hamiltonians defined
on a lattice as demonstrated in Ref.14, there is obvious
similarity in the edge theories, both are made up of two
Dirac fermions10, which expressed in Majoranas, repre-
sent a theory with SO(4) symmetry which is equivalent
to SU(2) × SU(2) symmetry. We may ask what is the
symmetry of bulk d-wave Hamiltonians in order to iden-
tify the degrees of freedom which are transformed under
the symmetry. First there is obvious spin rotation sym-
metry, SU(2)spin, due to the underlying spin degree of
freedom in the Hamiltonian; the ground state wavefunc-
tion,

Ψd = det

(
z∗↑ − z∗↓
z↑ − z↓

)
, (29)

is a spin-singlet - eigenstate of SU(2)spin by being a
collection of BCS spin-singlet pairs. Second, besides
particle-hole symmetry, there is no additional internal
symmetry in the BCS Hamiltonian. Only in its ground
state wavefunction is the number of complex-conjugated
variables and the number of non-conjugated (“LL index”)
expected to be the same or expressed in an equivalent
way their difference should be conserved. Hence we may
talk about an internal U(1) symmetry. What we can con-
clude is that the symmetry that is present in the bulk is
enlarged at the edge to SU(2)spin × SU(2)internal.

On the other hand in the case of IQHE at ν = 2 at
the edge we may talk certainly about a symmetry that
acts on the LL index in parallel with the spin symmetry
on the edge of d-wave superconductors. Therefore on the
edge we have a SU(2)LL index×SU(2)internal symmetry.
(Note that here SU(2)internal should not be identified
with the one in the context of the d-wave superconduc-
tor.) There are no explicit degrees of freedom in the
bulk that would correspond to or lead to SU(2)internal
symmetry on the edge. Interestingly the bulk ground
state wavefunction has the form which can be seen in
Eq.(28) that it is invariant under arbitrary assignment of
ups and downs. Eq.(28) relates the ground state wave-
function of d-wave superconductors and IQHE at ν = 2
and therefore indicates a pairing structure in IQHE wave-
functions. There is no pseudospin degree of freedom in
IQHE (Hamiltonian) in the bulk, but the ground state
wavefunction looks as if there is an additional ferromag-
netically ordered pseudospin degree of freedom next to
the LL index. And the symmetries related to these struc-
tures exist on the edge.

Therefore IQHE and polarized FQHE states underlie
pairing construction which incorporates the “right” mu-

tual statistics of constituents that is achieved by their d-
wave pairing. At the same time their construction incor-
porates an explicit projection to ferromagnetic i.e. one-
component state so that the paired nature is suppressed.
In this way latent, pseudospin degrees of freedom that
are paired in the ground state wave functions appear in
the root configurations of the model wavefunctions and
on the edge in the way of enlarged symmetry.

VII. CONCLUSIONS

Haldane-Rezayi and Jain spin singlet states are canon-
ical examples of d-wave pairing of FQHE wave functions.
We explicitly showed d-wave pairing in the case of the JSS
state. The root configuration of the JSS state was derived
in which we could recognize the role of composite (neu-
tral) fermion pairs in the transition from the JSS to the
HR state. We demonstrated this transition in an exact
diagonalization study. Besides its intrinsic interest the
study enabled us to make parallels and conclusions con-
cerning polarized FQHE and IQHE states. We found the
presence of the d-wave pairing in these states although it
is suppressed due to their one-component nature.
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Appendix A: Numerical construction of composite
fermion wavefunctions

First we discuss the construction of lowest Landau level
spin polarized composite fermion wavefunctions of the
form

φ = PLLL
[
χ2p
1 χn

]
In19 it was demonstrated that when constructing wave-
functions of this form the Jastrow factor χ2p

1 can be
moved inside the determinant coming from χn. The LLL
projection can then be performed before taking the de-
terminant. In addition, analytical expressions for the ap-
plication for the LLL projection operator can be derived.
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In this manner the computational cost of constructing
such wavefunctions is dramatically reduced.

Extending this, it was discovered that this method can
be applied even for cases where the wavefunction in ques-
tion does not have this form. For example, the bosonic
wavefunctions considered in Ref.20 that are associated to
CF state at filling factor ν = n

n+1 fall into this category.

φB = PLLL [χ1χn]

It was shown that this wavefunction can be approximated
well with

φ′B = χ−11 PLLL
[
χ2
1χn

]
which is amenable to the technique from19. The overlap
for N = 8 is |〈φB |φ′B〉|2 = 0.982020.

In the case of the JSS wavefunction it was hoped that
a similar method could be applied. We constructed the
wavefunctions

φ′JSS = χ−1001PLLL
[
χ2
1χ2

]
and

φ′′JSS = χ110PLLL [χ1χ2]

However it was found that these do not offer good
approximations of the JSS state even for small sys-
tems. The overlaps with the JSS state for N = 8 are
|〈φJSS |φ′JSS〉|2 = 0.790 and |〈φJSS |φ′′JSS〉|2 = 0.792.
Note that for φ′′JSS the term inside the projection is not of

the form χ2p
1 χ2 and thus is not amenable to the technique

described in19. However this wavefunction is still less
computationally intensive to construct than φJSS (Eq.
1) since the application of the projection operator before
performing the product operation makes this operation
much less demanding.
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