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The electronic and electrical properties of crystalline organic semiconductors, such as the dis-
persions of the electronic bands and the dependence of charge-carrier mobility on temperature, are
greatly impacted by the nonlocal electron-phonon interactions associated with intermolecular lat-
tice vibrations. Here, we present a theoretical description that underlines that these properties vary
differently as a function of the symmetry of the nonlocal electron-phonon coupling mechanism. The
electron-phonon coupling patterns in real space are seen to have direct and significant impact on
the interactions in reciprocal space. Our findings demonstrate the importance of aspects that are
usually missing in current transport models. Importantly, an adequate description of the electronic
and charge-transport properties of organic semiconductors requires that the models take into ac-
count both antisymmetric and symmetric contributions to the nonlocal electron-phonon coupling
mechanism.
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I. INTRODUCTION

While organic molecular semiconductors have been actively investigated for several decades, reaching a complete
understanding of their charge-transport mechanism still poses a major challenge. Until recently, it was commonly
assumed that: (i) at low temperatures, these systems could exhibit a conventional band-like behavior with the
mobility decreasing in a power-law fashion with increasing temperature; and, (ii) at high temperatures, as a result of
strong polaron localization effects (band narrowing), the motion of the carriers could be described as a sequence of
uncorrelated hops, with the mobility showing an Arrhenius-like (activated) temperature dependence1.
Two major electron-phonon (e-ph) coupling mechanisms can be distinguished in the framework of a simple tight-

binding description of organic semiconductors. The first comes from the modulation by vibrations of the site energy, εn
(local or Holstein-type2,3 e-ph coupling). The second mechanism is due to the dependence of the transfer integral, tmn,
on the distances between adjacent molecules and their relative orientations (nonlocal or Peierls-type3,4 e-ph coupling).
The band-to-hopping crossover of the charge-transport mechanism is generally associated with a Holstein-type polaron
coupling. However, the results of extensive experimental and theoretical studies have shown that, in most organic
systems of current interest such as oligoacenes and their derivatives, the polaron binding energy (or relaxation energy)
due to local coupling is comparable to or even (much) smaller than the width of the conduction and valence bands1,5,6.
In addition, the largest part of the polaron binding energy arises from high-frequency intramolecular vibrations whose
excited levels are thermally inaccessible even at room temperature. Therefore, a Holstein-type mechanism taken alone
cannot provide a comprehensive description of the charge-transport properties of organic semiconductors.
On the other hand, there is currently a growing consensus that the nonlocal e-ph coupling mechanism plays an

important or even dominant role in organic semiconductors1,7–19. Although a detailed quantum-chemical investigation
of the nonlocal e-ph coupling has been performed to date only for a few systems14–16, the results underline that the
nonlocal e-ph coupling mechanism can be very complex and, depending on the nature of the relevant phonon modes,
can result in different dynamical disorder patterns. The latter aspect is largely overlooked in most current theoretical
studies since these are commonly based on models that consider only a single specific dynamical disorder pattern. In
this work, we show that, as a function of their symmetry, various contributions to the nonlocal e-ph coupling mechanism
can affect in remarkably different ways the electronic spectrum of organic semiconductors and, consequently, their
charge-transport as well as spectroscopic properties.

II. MODEL

We illustrate the problem by employing a Su-Schrieffer-Heeger (SSH)-type Hamiltonian20:

H = −
∑

n

tn,n+1

(

a†nan+1 + h.c.
)

+
∑

nj

h̄ωj

2

(

u2
nj + p2nj

)

. (1)

Here a†n and an denote the creation and annihilation operators for an electron at site n; tn,n+1 represents the transfer
integral between adjacent molecules; ωj , unj and pnj denote, respectively, the frequency and the dimensionless coor-
dinate and momentum of the jth vibration mode associated with site n. The nonlocal e-ph coupling is obtained by
expanding the transfer integral in a power series of the molecular displacements:

tn,n+1 = t(0) +
∑

j

(υnjunj + υn+1,jun+1,j) + · · · , (2)

where t(0) is the transfer integral at the equilibrium geometry while υnj = (
∂tn,n+1

∂unj
)0 and υn+1,j = (

∂tn,n+1

∂un+1,j
)0 represent

the linear coupling constants. By symmetrizing the vibration coordinates in Eq. (2), the resulting e-ph Hamiltonian
can be written as:

He-ph =
∑

nj

[υaj (unj − un+1,j) + υsj (unj + un+1,j)]
(

a†nan+1 + h.c.
)

, (3)

where υaj = 1
2 (υnj − υn+1,j) and υsj = 1

2 (υnj + υn+1,j). Following the classification introduced by Lindenberg

and co-workers9, we refer to the υaj and υsj terms in Eq. (3) as the antisymmetric and symmetric nonlocal e-ph
coupling mechanism, respectively. The case where a single mode per molecule is considered and the symmetric
coupling mechanism is neglected, υs = 0 (i.e., υn+1 = −υn), corresponds to the standard SSH model; starting
with the work of Munn and Silbey8, it is the most commonly used model to describe charge transport in organic
semiconductors9,11–13,17,19.
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FIG. 1. (Color online) Schematic diagrams of examples of lattice vibrations (top part) and e-ph coupling constants |υkq|
2 in

reciprocal space (bottom part): (a) symmetric coupling; (b) antisymmetric coupling. Here, δtmn = tmn − t(0); k and q are the
electron and phonon wave vectors, respectively.

The two coupling mechanisms lead to rather different interaction patterns. In the case of antisymmetric coupling,
the change in a vibration coordinate un results in an increase of the transfer integral between molecule n and its
neighbor on one side, and in a decrease of the transfer integral with its neighbor on the other side (see Fig. 1). In the
case of symmetric coupling, both transfer integrals vary in the same way. It is also instructive to evaluate how these
two mechanisms operate in reciprocal space. In the Bloch representation, He-ph takes the form:

He-ph =
∑

kqj

υkqjQqja
†
kak−q, (4)

where

υkqj =
2√
N

{υsj [cos (ka) + cos ((k − q)a)] + iυaj [sin (ka)− sin ((k − q)a)]} . (5)

The antisymmetric and symmetric contributions to |υkq|2 (one mode per molecule) are plotted in Fig. 1. In the case
of symmetric coupling, the strongest interactions take place between electrons in states near k = 0 and ±π

a (band
edges) and long-wavelength phonons; in the case of antisymmetric coupling, the strongest interactions occur between
electrons in states near k = ± π

2a (band center) and short-wavelength phonons.
It is convenient to quantify the strength of the dynamical disorder due to e-ph interactions at a given temperature

by the variance of the transfer integral:

σ2 =
〈

t2n,n+1

〉

− 〈tn,n+1〉2 , (6)

where 〈· · ·〉 represents the thermal average over the lattice phonons. In the classical limit (kBT ≫ h̄ωj), the variance
takes the form:

σ2 = 2 (Ls + La) kBT, (7)

where Ls(a) =
∑

j υ
2
s(a)j/h̄ωj is the nonlocal relaxation energy. It is important to note that the partition of σ2 into

symmetric and antisymmetric contributions is possible, whether or not a given phonon mode contributes just to one
or simultaneously to both nonlocal e-ph coupling mechanisms.
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FIG. 2. Sketch of the crystal structure of pentacene and illustration of the molecular pairs presenting the largest transfer
integrals and considered in the calculations.

TABLE I. Nonlocal relaxation energies (Ls, La, and L = Ls + La) and transfer integrals t(0) in the pentacene crystal. Here, h
and e denote hole and electron, respectively.

Pair 1a Pair 1b Pair 2a Pair 2b

h e h e h e h e

Ls (meV) 0.70 0.48 0.79 0.54 3.7 1.3 5.3 1.5

La (meV) 3.2 2.4 2.4 1.8 5.1 2.6 6.0 3.3

L (meV) 3.9 2.9 3.2 2.3 8.8 3.9 11 4.8

t(0) (meV) 36 -36 37 -37 47 -64 -84 71

L/t(0) 0.1 -0.08 0.09 -0.06 0.2 -0.06 -0.1 0.07

III. ESTIMATES OF ELECTRON-PHONON COUPLING SYMMETRY

The symmetric coupling mechanism has received so far much less attention9,10 (possibly because it is less intuitive
to visualize the corresponding interactions). However, our recent studies14,15 have demonstrated that this mechanism
has a prominent contribution in oligoacenes. Here, we revisit the problem of estimating the e-ph coupling parameters
in the specific case of the pentacene crystal.

In contrast to our previous studies15, we use here a supercell model that allows us to obtain a more accurate
description of the e-ph coupling. The geometry optimizations and lattice dynamics of the pentacene crystal have
been carried out at the Γ-point based on a supercell that doubles the unit cell along the a axis (see Fig. 2). The
calculations were performed with the TINKER program using the OPLS-AA force field21. In the course of the
geometry optimizations, the cell parameters were fixed at the experimental values22. As in our previous study15,

we define υj =
(

∂tmn

∂Qj

)

0
as the nonlocal electron-phonon (e-ph) coupling constant of a dimer with respect to the

dimensionless normal coordinate Qj of vibration mode j. It was computed numerically by distorting the crystal along

Qj (with the largest atomic displacement set to 0.01 Å). The transfer integrals for all the generated configurations of
dimers, shown in Fig. 2, were evaluated at the semi-empirical Hartree-Fock INDO (intermediate neglect of differential
overlap) level. The symmetry of the e-ph coupling for a given vibration mode was determined by considering the sign
of υj of adjacent dimers along a specific direction. In the case of antisymmetric coupling, υj for adjacent dimers are
opposite in sign while in the case of symmetric coupling they carry the same sign.

The computed transfer integrals and relaxation energies are listed in Table I (see the supplementary section23 for
more detailed results). The results indicate that the nonlocal relaxation energy can be comparable for the symmetric
and antisymmetric mechanisms; depending on the crystal direction, the ratio Ls/La is in the range ∼ 0.2–0.9. These
findings are supported by the results of molecular dynamics simulations in pentacene24 that show that the absolute

value of the correlation function
〈δtn−1,nδtn,n+1〉

√

〈δt2n−1,n〉〈δt2n,n+1〉
(δtmn = tmn − 〈tmn〉) is smaller than 0.25; such a value can be

obtained only when symmetric and antisymmetric mechanisms (that present correlation functions of 0.5 and −0.5,
respectively) are both operational. For the sake of convenience, in the following we use the notation c = L(s)/L, where
L = Ls + La. Note that 1 ≥ c ≥ 0, where c = 1 corresponds to symmetric coupling and c = 0 to antisymmetric
coupling.
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IV. ELECTRONIC SPECTRAL PROPERTIES

We first consider the e-ph interaction in the static disorder limit for a linear chain of N molecules. In this case,
only the electronic part of the Hamiltonian He (the first term on the right side of Eq.(1)) is taken into account. The
vibration coordinates are assigned random values according to a Gaussian distribution that, at each given temperature
T , obeys the statistics of an ensemble of harmonic oscillators with frequency ω. For each set of vibration coordinates,
the electronic Hamiltonian of the N -molecule chain is solved numerically assuming open-chain boundary conditions.
The electronic density of states (DOS) is computed as:

ρ (E) =

〈

∑

ν

δ (E − Eν)

〉

{un}

, (8)

where the Eν terms correspond to the eigenvalues of He and 〈· · ·〉{un}
denotes thermal average over a large number

of realizations of the lattice configuration {un}. In the calculations, the delta function was replaced by a Lorentzian
function with width 0.15h̄ω. In order to investigate the spatial extent of the eigenfunctions, we calculate the energy-
resolved localization length, defined here as:

ℓ−1 (E) =

〈

∑

ν

ℓ−1
ν δ (E − Eν) /

∑

ν

δ (E − Eν)

〉

{un}

, (9)

where ℓν is the localization length of the νth eigenfunction calculated according to the Thouless formalism25. Fig. 3
collects the ρ (E) and ℓ (E) values obtained as an average over 5× 104 lattice configurations for a chain with N = 500
sites, as well as the relevant parameters for oligoacenes. We note that the dominant contribution to the nonlocal
relaxation energy in oligoacenes is due to low-energy intermolecular modes15,23; therefore, in our model calculations,
we used a value of h̄ω = 50 cm−1 for the energy of the effective phonon mode. As the transfer integrals t(0)/h̄ω in
pentacene are in the range ∼ 6–14 (see Table I), we considered here an average value of t(0)/h̄ω = 10 (Ref. 15). In
a similar way, the relaxation energy L/h̄ω in pentacene is direction-dependent and ranges from 0.4 to 1.8; therefore,
we took L/h̄ω = 1 as a characteristic value for both holes and electrons.

As seen from Fig. 3, in the case of very weak e-ph interactions (L/h̄ω = 0.01), the shape of ρ (E) for both coupling
mechanisms resembles the DOS of an unperturbed one-dimensional system. However, even in this situation, the
difference between the antisymmetric and symmetric mechanisms is already evident as the peaks in ρ (E) at the band
edges are broader and less intense in the case of symmetric coupling. This is consistent with the fact mentioned
above (see Fig. 1) that the impact of symmetric coupling is maximum near the band edges. As the symmetric e-ph
coupling increases, the peaks in ρ (E) move towards the band center, become broader and much less intense, and
ultimately disappear. In contrast, in the case of the antisymmetric mechanism, as the coupling increases, the peaks
in ρ (E) move further away from the band center; while they become broader and less intense as well, they can be
distinguished even for very large couplings. We note that the DOS for both mechanisms exhibit a singularity at the
band center; this represents a well-known signature of nondiagonal disorder and is related to the chiral symmetry of
the system26,27.

The calculations of ℓ (E) reveal that, in the case of symmetric coupling, the states became gradually more localized
when going from the band center to the band edges. In the case of antisymmetric coupling, the “band” states
(|E| < 2t(0)) display a nearly equal (de)localization length (except in the vicinity of E = 0). These states are much
more extended than the states in the tails outside the band region. The transition between delocalized and localized
states, as seen from Fig. 3d, is much sharper than in the case of the symmetric mechanism, Fig. 3b. Thus, ρ (E)
and ℓ (E) are more strongly affected by the antisymmetric coupling for the inner-band states and by the symmetric
coupling at the band edges. When both mechanisms act simultaneously, the results (see Figs. 3e and 3f) can be
understood as an approximate superposition of the two contributions.

The concept that large dynamical disorder is required to interpret the charge-transport properties in organic systems
has been recently questioned by the results of angle-resolved photoelectron spectroscopy (ARPES) measurements28–31

that clearly show the existence of well-defined Bloch states in pentacene and rubrene. In order to relate our results
to the ARPES data, we computed the single-particle wave-vector resolved spectral function that is proportional to
photoemission intensity32.

A (k,E) =

〈

1

N

∑

νnm

ϕν (n)ϕν (m) cos [k (n−m) a] δ (E − Eν)

〉

{un}

. (10)
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FIG. 3. (Color online) Energy-resolved electronic density of states (in units of N/t(0)) and localization length for different e-ph
coupling strengths: (a)-(b) symmetric coupling only (c = 1); (c)-(d) antisymmetric coupling only (c = 0); (e)-(f) both couplings

treated on an equal footing (c = 0.5). Here, h̄ω = 50 cm−1, t(0)/h̄ω = 10, T = 300 K, N = 500 and the values of L are shown
in (a).

This equation is obtained by performing a Fourier transformation to the local density of states:

A (n,E) =
∑

ν

ϕ2
ν (n) δ (E − Eν) , (11)

where ϕν (n) is the amplitude of the νth eigenfunction on site n. The results are presented in Fig. 4. In the case
of very weak e-ph interactions (Figs. 4a, 4d, and 4g), the quasi-particle energy dispersion extracted from A (k,E)
is very close to the band energy Ek = −2t(0) cos (ka). On the other hand, in the case of very strong e-ph couplings
(Figs. 4c, 4f, and 4i), the band feature of the energy dispersion has been completely destroyed due to the presence of
large dynamical disorder. The results obtained for the pentacene crystal in fact correspond to the case of moderate
e-ph couplings (Figs. 4b, 4e, and 4h); in agreement with previous results12, a well-defined band-like dispersion can
be resolved for both mechanisms. However, depending on the nature of the coupling mechanism, there appears a
substantial difference in the broadening of the quasi-particle states. For instance, the states around the band edges
are much broader for symmetric coupling than antisymmetric coupling. This feature becomes even more evident when
the temperature dependence is considered. As shown in Fig. 5, in the case of the symmetric mechanism, the width of
the photoemission peak at the Γ-point (k = 0) is nearly tripled when the temperature increases from 0 to 300 K. In
contrast, the antisymmetric coupling induces only a minor broadening of this peak. We note that, in pentacene, a very
significant temperature-induced broadening of the Γ-point peak (and other peaks) is observed31. Our present study
strongly suggests that these observations can be accounted for by the substantial contribution from the symmetric
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3. The values of L are shown on the top of each column sharing the same e-ph coupling strength: (a)-(c) c = 1; (d)-(f) c = 0;
(g)-(i) c = 0.5.

nonlocal e-ph coupling mechanism in this system.
The ARPES data for pentacene also indicate that the electronic bands become narrower at higher temperatures28,31.

However, our calculations indicate that symmetric e-ph coupling, as is the case for antisymmetric coupling13, leads
to an opposite effect, i.e., to band broadening, as shown in Fig. 6. Thus, the observation of band narrowing in
this system might be due to coupling to local (Holstein) modes or/and to a temperature-induced lattice expansion13,
resulting in a decrease of t(0). We are currently investigating this effect and the results will be reported elsewhere.

V. CHARGE-TRANSPORT PROPERTIES

We now examine how the antisymmetric and symmetric coupling mechanisms affect charge-carrier mobility. We
consider two methods that, while approximate, are well suited to describe charge transport in the pentacene crystal
and to explicitly reveal the different impact of the two coupling mechanisms; in the first one, the e-ph interaction is
treated as a perturbation (this approach fails for very high temperatures when dynamical disorder becomes significant)
while, in the second one, the static description (see Refs. 12 and 17 for earlier applications of this approach to organic
semiconductors) used in the previous section is retained.



8

0.0

0.3

0.6

0.9

0.0

0.3

0.6

0.9

0 100 200 300
0.0

0.3

0.6

0.9

FW
H

M
 (t

(0
) ) (a)

 
FW

H
M

 (t
(0

) )

   k = 0 (  /a)
   k = 0.25 (  /a)
   k = 0.5 (  /a)

(b)

 

FW
H

M
 (t

(0
) )

T (K)

(c)

FIG. 5. (Color online) Full width at half maximum (FWHM) of the spectral function for different k values as a function of

temperature. Here, h̄ω = 50 cm−1, t(0)/h̄ω = 10, L/h̄ω = 1, T = 300 K and N = 500 (a) c = 1; (b) c = 0; (c) c = 0.5.

In the first case, which corresponds to the band-like transport regime, the mobility is computed according to the
Boltzmann theory in the relaxation time approximation33:

µ =
e

kBT

∑

k ν
2
kτke

−Ek/kBT

∑

k e
−Ek/kBT

, (12)

where νk = h̄−1∂Ek/∂k is the electron velocity at state k and τk is the electronic relaxation time in the elastic
scattering approximation. For the present e-ph model, we obtain:

τ−1
k =

8kBTL [1 + (2c− 1) cos (2ka)]

h̄t(0) |sin (ka)| , (13)
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µ/µ0 =
t3ωh̄ω

32πLT 2
ωI0 (tω/Tω)

∫ 1

−1

1− x2

1 + (2c− 1) (2x2 − 1)
e−xtω/Tωdx. (14)

Here, µ0 = ea2/h̄, tω = 2t(0)/h̄ω, Tω = kBT/h̄ω and I0 is the modified Bessel function of the first kind.
In the second case, the mobility is computed using the Kubo formalism34. According to the linear response theory,

the dc conductivity is given by:

σdc =
πh̄

kBTNa

∑

lν

e−Eν/kBT

Z
|〈ϕl|J |ϕν〉|2 δ (El − Eν) , (15)

where Z =
∑

ν e
−Eν/kBT and J = ea

ih̄

∑

n tn,n+1

(

a†n+1an − h.c.
)

. The mobility is then computed as:

µ = 〈σdc/ene〉{un}
. (16)

Here ne is the charge density. In this study, the calculations are performed for the one-electron case (i.e., ne = 1/Na).

The results derived by means of both methods are illustrated in Fig. 7. In the case of symmetric coupling, see Fig.
7a, τ vanishes at the band edges and exhibits a singularity at the band center. In contrast, in the case of antisymmetric
coupling, τ exhibits singularities at the band edges and is rather constant for states within the band. When both
mechanisms are contributing to the relaxation processes, τ (E) shows exactly the same trend as ρ (E) and ℓ (E), i.e.,
it is essentially defined by the symmetric coupling at the band edges and by the antisymmetric coupling within the
band. These characteristics of the relaxation time are reflected in the temperature dependence of the mobility, see
Fig. 7b. At low temperatures when only the states near the band edge are thermally populated, the symmetric
coupling mechanism leads to much lower mobilities than the antisymmetric mechanism; at high temperatures, the
opposite trend is observed. Interestingly, when the e-ph interaction is dominated by the symmetric mechanism, at
intermediate temperatures, the mobility exhibits a peculiar increase with temperature as a result of a crossover between
two power-law (µ ∝ T−n) regimes with different values of n at low and high temperatures. The results obtained in
the framework of the Kubo formalism show similar trends, see Fig. 7c. When both mechanisms contribute to the
scattering processes, a power-law-like behavior is in general observed. However, the exponent n strongly depends on
the relative contributions of each mechanism and the range of considered temperatures. For instance, as seen from the
inset in Fig. 7c, when only antisymmetric coupling is taken into account, the mobility show a µ ∝ T−2.2 dependence
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in the 200–400 K range, while this dependence switches to µ ∝ T−1.2 when both mechanisms equally contribute to
the overall e-ph interaction. These results point to the fact that the interplay between the two nonlocal e-ph coupling
mechanisms can be an important factor responsible for the broad range of exponents n that have been measured
experimentally3,35.

VI. CONCLUSIONS

In summary, we have shown that in organic semiconductors there exist distinct symmetric and antisymmetric
nonlocal e-ph coupling mechanisms that lead to different dynamical disorder patterns in real space and different
coupling patterns in reciprocal space. As a result, the electronic and charge-transport properties are significantly
impacted. Importantly, the symmetric and antisymmetric coupling mechanisms manifest themselves most strongly
in separate situations; for instance, in the case of carrier scattering, they are most effective over different ranges of
temperatures.
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