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The electronic structure of a LaNiO3 bilayer grown along the [111] direction and confined between insulating
layers of LaAlO3 is theoretically investigated using a combination of first principle calculations and effective
multi-orbital lattice models. The LDA band structure is well reproduced by a tight-binding model for the Ni-eg
orbitals defined on the buckled honeycomb lattice. We highlight peculiar properties of this model which in-
clude almost flat bands as well as linear and quadratic band crossing points. The effect of local correlations is
discussed within the LDA+U scheme and within the Hartree-Fock approximation for interacting multi-orbital
lattice models. Over a wide range of interaction parameters we find that a ferromagnetic phase is energetically
favored. We discuss the possibility of additional orbital order which could stabilize a spontaneous Chern insu-
lator with chiral edge modes or a staggered orbital phase with a

√

3 ×
√

3 reconstruction of the unit cell. By
studying an interacting nickel-oxygen lattice model we find that the stability of these orbitally ordered phases
also depends on the value of the charge-transfer energy. Controlling the charge-transfer energy might therefore
be an important step towards engineering exotic electronic phases in certain classes of oxide heterostructures.

I. INTRODUCTION

Design, growth and characterization of artificial structures
of complex oxide materials has become an important field of
research in modern condensed matter physics.1,2 The wide
range of available materials with a multitude of physical
properties carry great potential to engineer novel electronic
devices3 with desired functionalities, such as superconduc-
tivity, ferromagnetism, ferroelectricity or multiferroic behav-
ior. There are various physical mechanisms which mod-
ify the electronic properties at interfaces and in superlattices
as opposed to the bulk systems which can lead to atomic,
electronic4,5 and orbital reconstructions.6

A promising strategy to tune the electronic properties at
interfaces and in superlattices of complex oxides is to grow
the heterostructure along uncommon crystallographic direc-
tions, such as along the [111] direction of a cubic perovskite.7

One interesting feature of such structures is the possibility to
create a large variety of effectively two-dimensional lattices
by sandwiching a precise number of layers of an “active ma-
terial” between a good insulator. For example, a (111) bi-
layer of a cubic lattice forms a (buckled) honeycomb lattice
while three adjacent layers form a three-dimensional version
of the dice lattice.7–10 Realizing these lattice geometries is par-
ticularly interesting in view of engineering electronic phases
with topologically non-trivial band structures such as Chern
insulators11 or time-reversal invariant topological insulators12

with their associated protected surface modes.7,8,10

In this article, we discuss the electronic structure of a (111)
bilayer of LaNiO3 sandwiched between sufficiently large re-
gions of LaAlO3. LaAlO3 is a wide band-gap insulator13

with an experimentally determined gap of Eg = 5.6 eV while
LaNiO3 is a paramagnetic metal in bulk. The formal valence
of nickel is Ni3+ which corresponds to a partially filled 3d-
shell with an electronic configuration t62ge

1
g , i.e. one electron

in the doubly degenerate eg manifold. The insulating LaAlO3

layers insure that the electronic degrees near the Fermi en-
ergy are effectively confined to the buckled honeycomb lattice
formed by the Ni ions of the (111) bilayer. Figure 1 shows
the actual supercell (LaNiO3)2/(LaAlO3)10 used in our den-

(LaNiO3)2 (LaAlO3)10

LaNi Al

FIG. 1. The supercell of the superlattice (LaNiO3)2/(LaAlO3)10 con-
sidered in this work. The growth direction is the [111] direction of
the cubic perovskite. The primitive cell of the perovskite structure is
also indicated.

sity functional theory (DFT) calculations.14,15

Digital heterostructures between LaNiO3 and LaAlO3 have
been considered previously but the focus was on systems
grown along the [001] direction.16–19 The interest in the [001]-
grown heterostructures has been stimulated (at least in part)
by the prospect to control the orbital character of the con-
duction electrons by applying tensile or compressive strain.
As opposed to bulk LaNiO3 where no sign of orbital pref-
erence is observed, the reduced symmetry in the [001] het-
erostructure splits the energy between the dz2 and the dx2−y2

orbitals. Theoretically, it has been suggested to apply tensile
strain to selectively lower the energy of the dx2−y2 -orbital. In
this case, one could hope to imitate the relevant conditions
for cuprate high-temperature superconductivity with nickelate
analogs.20–22 However, instead of a phase with uniformly oc-
cupied dx2−y2 orbitals, a charge-density wave is experimen-
tally observed for tensile strain,16–18 similar to the insulating
bulk phases observed in other nickelates RNiO3 with R=Pr,
Nd, or Sm.23

In contrast to the [001] heterostructure, the eg-orbitals of
the Ni ions remain doubly degenerate for the heterostructure
grown along the [111] direction as long as the trigonal sym-
metry is preserved. The non-interacting band structure of an
eg-orbital model has a degeneracy point at k = 0 where two
bands touch quadratically. Such a situations can in princi-
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ple give rise to interesting weak-coupling instabilities, includ-
ing spin nematic and topological insulator phases.10,24 From
the theoretical point of view, strong electronic correlations,
charge-transfer physics and the complex interplay between
the electronic and lattice degrees of freedom pose many chal-
lenges in modeling the nickelates. Moreover, to the best of
our knowledge, there are currently no experimental data avail-
able for the (111) bilayer system. In this study, we use natu-
ral idealizations of the real system which allow us to under-
stand the electronic structure from simple multi-orbital lattice
models. However, due to the lack of phenomenological in-
put, the present work should be considered as a first step to-
wards a more accurate theoretical description of these inter-
esting structures.

This paper is organized as follows. In Sec. II we present
DFT results of the electronic structure for the supercell in
Fig. 1. We show that the electronic degrees near the Fermi en-
ergy are predominately given by the eg electrons with mixing
of the nearby oxygen-p electrons. Effects of local correlations
are discussed within the LSDA+U scheme25 which predicts
ferromagnetism. In Sec. III we show that the band structure is
well reproduced by a tight-binding model for eg electrons on
the buckled honeycomb lattice and highlight universal prop-
erties arising from the particular geometry. The effect of local
correlations is considered within this reduced model using a
conventional mean-field approximation. In agreement with
the LSDA+U calculation, we find that a ferromagnetic phase
is stabilized over a wide range of interaction parameters. De-
pending on the relative strength of the Hund’s coupling J , we
also identify spontaneous orbital order. In Sec. IV we intro-
duce an effective model which includes both the Ni-eg and
oxygen-p states. This allows us to study how the charge-
transfer physics26 alters the stability of the orbitally ordered
phases.

II. DENSITY FUNCTIONAL THEORY

We have studied the electronic structure of the
(LaNiO3)2/(LaAlO3)10 supercell (see Fig. 1) using den-
sity functional theory (DFT)14,15 within the local density
approximation (LDA)15 as well as the local spin density
approximation (LSDA)27 as implemented in the Vienna
ab-initio simulation package (VASP).28 We used the projector
augmented wave pseudopotentials for all our calculations.29

A plane wave cut off energy of 600 eV and a 6× 6× 6 k-point
grid was chosen for integrating over the Brillouin zone. The
lattice constant for the supercell was chosen as 3.82 Å which
corresponds to the experimental pseudocubic lattice constant
of bulk LaAlO3. Atomic relaxation effects were not taken
into account for our calculations.

The LDA band gap for LaAlO3 is Eg = 3.3 eV (experi-
mental value Eg = 5.6 eV).13 As expected, this wide band
gap leads to a strong confinement of the electronic degrees
of freedom to the LaNiO3 bilayer. The spectral weight near
the Fermi energy is predominately comprised of states located
at the Ni and their neighboring O ions. On the adjacent Al
ion, we find very little spectral weight near the Fermi energy.

These states on the Al are mainly associated with the s and p
orbitals which weakly hybridize with the O-p states connect-
ing the nearby Ni ion. We do not find a recognizable differ-
ence in the total charge of an Al ion located next to the inter-
face or far away, indicating that there is essentially no charge
transfer from the Ni to the Al. By symmetry, the “inner O
layer” which is sandwiched between the two Ni layers is dis-
tinguished from the two “outer O layers” adjacent to only one
of the two Ni layers. Figure 2 shows the orbital projected for a
Ni atom as well as for an inner and outer O as obtained within
the LDA. The LSDA calculations gave identical results. In
Fig. 2 we set the zero of the energy to the Fermi level. The oc-
tahedral crystal field splits the Ni 3d orbitals into the triply de-
generate t2g states and the doubly degenerate eg states which
are well separated near the Fermi level. The eg DOS near the
Fermi energy has a three peak structure with two prominent
features near E ≈ 0 and E ≲ 2 eV. As we show in Sec. III,
these peaks appear due to weakly dispersing bands which are
generically present in an eg model on the buckled honeycomb
lattice. The orbital projected for the O atoms show that there
is considerable mixing between the Ni-eg and the O-p states.
Out of the three p orbitals it is the pσ orbital pointing towards
the Ni ion which hybridizes most strongly. Also note that the
outer O mixes strongly with the lower and the inner O with
the upper flat band. The LDA band structure along a high-
symmetry path in the Brillouin zone is shown in Fig. 3(a).
Near the Fermi level, there is a well-separated block consist-
ing of four bands for each spin projection. Comparing with
the results for the projected DOS in Fig. 2 we can associate
these four bands with the two eg orbitals and the A-B sub-
lattice structure of the (111) bilayer. We will discuss further
characteristic properties of this band structure in more detail
in Sec. III.

In order to study correlation effects of the d electrons in
Ni we also performed LSDA+U calculations where we em-
ployed the simplified rotationally invariant approach as in-
troduced by Dudarev et al.25 We choose an effective Ueff

value of 5.74 eV which was taken from Ref. 30 where the
Ueff parameter has been computed in a self-consistent ap-
proach following the scheme introduced in Ref. 31. It has
been shown that this choice leads to accurate results for the
ground state atomic structure.30 The chosen Ueff is also con-
sistent with the reported experimental value in a recent work
by Nohara et. al32 who performed GW as well as LSDA+U
calculations on LaNiO3. Upon fitting the calculated energy
spectra of a cluster model to experimental X-ray photoelec-
tron spectroscopy (XPS) and X-ray absorption spectroscopy
(XAS) data33 an effective Ueff of 5.7 eV was obtained.

Our LSDA+U calculation favors a ferromagnetic state with
a magnetic moment of 1.12µB on each Ni atom, where µB

is the Bohr magneton. This is consistent with the theoreti-
cal value of 1µB from LSDA+U reported in Ref. 30 for bulk
LaNiO3. Figure 3(b) shows the spin-resolved band structure
near the Fermi level. The eg bands for spin-↑ and spin-↓ com-
pletely separate. The Fermi level is in the fully polarized
majority band and is now shifted to the vicinity of the linear
band-crossing point (Dirac point) located at K (and K’). Fig-
ure 4 shows the projected and spin-resolved DOS. Note that
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FIG. 2. (Color online.) LDA result for the orbitally projected of the
Ni ions and its two neighboring O ions which are distinguished by
symmetry.

the ferromagnetic solution remains gapless and is fully po-
larized such that only the majority electrons contribute to the
DOS at the Fermi energy. In our LSDA+U calculation there
is no sign of orbital ordering.

Bulk LaNiO3 is experimentally found to be paramag-
netic although LSDA+U calculations predict a ferromagnetic
phase.30 For the bulk system, it has been argued that the poor
treatment of the dynamical screening in the LSDA+U is re-
sponsible for the disagreement with experiments.30,32 From a
phenomenological point of view, Ueff = 0 gives the best agree-
ment with experimental data30 and this choice has been used
as starting point for GW calculations.32 The ferromagnetic
state found in our LSDA+U calculation (with Ueff = 5.74eV)
for the bilayer system should therefore be taken with care.
On the one hand, one expects that the static treatment of
the atomic interaction could be even more problematic in the
quasi-two dimensional bilayer system. On the other hand, or-
dered phases not present in the bulk have been experimentally
observed in strained LaNiO3 thin films.19 Due to the lack of
phenomenological input from experiments, we think that this
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FIG. 3. (a) The LDA band structure near the Fermi level along a high-
symmetry path in the hexagonal Brillouin zone. (b) The LDA+U
band structure along the same path as in (a). The solid (dashed)
curves denote the energy bands of the majority (minority) spin pro-
jection. The zero of energy is set to the Fermi level.

uncertainty can not be resolved at the present moment.

III. eg-ORBITAL MODEL FOR THE (111) BILAYER

Let us now discuss the LDA band structure from the per-
spective of a tight-binding model defined on the buckled hon-
eycomb lattice. The tight-binding model helps to identify
generic features of the band structure in this particular geom-
etry. Based on the observations made in the previous section,
we focus here on an orbital model for eg electrons alone. This
is justified if the crystal field splitting is sufficiently large and
the energy of the oxygen p-states is well separated from the
energy of the Ni-eg states. As we will show in the follow-
ing, this approach allows us to reproduce the LDA band struc-
ture fairly well. Nevertheless, the eg model discussed in this
section misses an important physical ingredient, namely the
charge transfer between the Ni and O ions. In Sec. IV we
therefore review the role of the charge transfer in the context
of a more general model which also includes oxygen p states.

A. Idealized tight-binding model

In the simplest tight-binding model we consider only the
dominant hopping between neighboring transition-metal ions
which is mediated via an intermediate oxygen p-orbital. It is
convenient to define the following orbitals

du2 ≡ d3u2−r2 = êu ⋅ d⃗, d⃗ = (dx2−y2 , d3z2−r2), (1)

where êx = (
√

3/2,−1/2), êy = (−
√

3/2,−1/2, ) and êz =
(0,1) are the unit vectors in the directions of the nearest-
neighbor bonds projected to the plane perpendicular to the
[111] direction. The real orbitals dx2 and dy2 are rotations of
the dz2 orbital around the [111] axis by ±2π/3 and are shown
in Fig. 5(a). For oxygen mediated hopping in the direction êu,
the Slater-Koster energy integrals34 are only finite between
neighboring du2 -orbitals. The tight-binding model takes the
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FIG. 4. (Color online.) LDA+U results for the orbitally projected
in the ferromagnetic phase. Shown are the Ni 3d orbitals and the p
orbitals for the two neighboring O ions which are distinguished by
symmetry. Spin-↑ and spin-↓ contributions are shown separately.

simple form Ht = ∑σHtσ where

Htσ = −t∑
i∈A

∑
u=x,y,z

(d†
i,u2,σ

di+êu,u2,σ + h.c.) . (2)

The operators d†
i,u2,σ

creates an electron with spin σ in a
du2 -orbital at site i and the summation runs over the sites of
the A sublattice of the honeycomb lattice. Employing peri-
odic boundary conditions, Eq. (2) is readily diagonalized in
momentum space.7 The band structure shows two dispers-
ing bands which are reminiscent of the electronic structure
of graphene,

ε2(k) = −t/2
√

3 +Ak, ε3(k) = t/2
√

3 +Ak. (3)

Here, we have introduced

Ak = 2 cos(
√

3kX) + 4 cos(
√

3

2
kX) cos(3kY

2
). (4)

The subscript of the wave-vectors refers to the two-
dimensional (X,Y )-coordinate system, see Fig. 5, and the
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FIG. 5. (a) Oxygen mediated hopping along the principle axis of
the cube are between the d3u2−r2 orbitals with u = x, y, z. (b) A
spatially localized eigenstate of the nearest-neighbor tight-binding
model Eq. (2). The viewpoint is along [111]. (c) Taking equal weight
superpositions of the hexagonal states (i) allows one to construct lo-
calized states with support on arbitrary contractible loops (ii). There
are two more states which are linearly independent from the hexag-
onal states and have support on a loop encircling the torus in one or
the other direction (iii).

unit of length is chosen as the length of the projection of the
nearest-neighbor bond into the [111] plane. The two dispers-
ing bands cross linearly at K+ = ( 4π

3
√

3
,0) and K− = −K+

forming Dirac cones as in graphene. However, different from
graphene, the dispersing bands are “sandwiched” by two flat
bands with energy

ε1(k) = −3t/2, ε4(k) = 3t/2. (5)

The two peaks observed in the projected of the Ni eg orbitals
in the LDA calculation, Fig. 2, can be related to these two flat
bands. The flat bands touch the dispersing bands in a single
point at k = 0. Remarkably, the model Eq. (2) is formally
equivalent to the planar p-band model on the honeycomb lat-
tice introduced in Ref. 35.36 However, the physical implemen-
tation of Eq. (2) is very different in the present context: in-
stead of p-orbitals, the elementary degrees of freedom are the
eg-orbitals of the d-electrons which hop on a buckled honey-
comb lattice formed by a cubic (111) bilayer instead of the
planar hexagonal lattice.

We can use this formal analogy to the planar p-model to
give a physical interpretation of the flat bands and the degen-
eracy points. This is done by constructing spatially localized
eigenstates of Eq. (2).35,37 Owing to the fact that hopping in
the êu direction is only finite between du2 -orbitals, it is pos-
sible to find spatially localized eigenfunctions which extend
around a single hexagon located at R, see Fig. 5(b):

∣Ψν
R⟩ = 1√

6

6

∑
j=1

(−ν)j (cos θj ∣dj,x2−y2⟩ − sin θj ∣dj,z2⟩) . (6)
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Here, ν = ± labels a member of the bottom (-) and top (+)
flat band manifold and θj = (j − 1)π/3. At each site j of
the hexagon, the orbital wave function is orthogonal to the
“outward-pointing” orbital dj,u2

j
, which confines the electron

to the hexagon. Assuming N unit cells, there are a total of N
hexagon states for a given ν. Taking equal weight superpo-
sitions of different hexagonal states, one can construct eigen-
states of Eq. (2) with support on arbitrary contractible loops,
see Fig. 5(c).

From the definition of the hexagonal states Eq. (6) it fol-
lows that ∑R ∣ΨR⟩ = 0. Therefore, only N − 1 states are lin-
early independent. However, one can construct two additional
eigenstates in real space which are linearly independent from
the states in Eq. (6). They have support on non-contractible
loops which encircle the torus in one or the other direction,
as shown in Fig. 5(c). Therefore, the total number of linearly
independent eigenstates with energy equal to the flat band is
N +1. It follows that there must be an isolated point where the
flat band touches the dispersing band.35,37 The corresponding
k = 0 Bloch states are given by

∣Ψν
0,x2−y2⟩ =

1√
N

(∑
i∈A

∣dr,x2−y2⟩ − ν∑
i∈B

∣di,x2−y2⟩) ,

∣Ψν
0,z2⟩ =

1√
N

(∑
i∈A

∣di,z2⟩ − ν∑
i∈B

∣di,z2⟩) . (7)

with N a normalization factor. This result from real-space
topology is consistent with the band structure obtained by di-
rect diagonalization.

B. Generalized tight-binding model

The idealized model Eq. (2) of the previous section only in-
cludes the hopping t between the directed du2 -orbitals. To get
a satisfying fit to the LDA band structure, the tight-binding
model has to be generalized by including additional hop-
ping terms. Although these terms are small they neverthe-
less modify the band structure notably. In particular, ad-
ditional hopping amplitudes introduce a weak dispersion in
the otherwise flat bands. It turns out that the two-fold de-
generacy at k = 0 is protected by the trigonal symmetry
(D3d) of the bilayer system and therefore is robust against
the inclusion of additional tight-binding parameters. In fact,
the two pairs of degenerated eigenstates at k = 0 span the
vector spaces of the two-dimensional irreducible representa-
tions of the D3d point group. This fact is interesting because
if the Fermi surface coincides with the symmetry-protected
quadratic band touching point, unusual weak coupling in-
stabilities are possible.10,24,38,39 The symmetry-broken state
generically is either a (lattice) nematic phase in which the
rotational symmetry is broken or a topological phase with a
gapped band structure characterized by a non-trivial topolog-
ical invariant.

In the following we refine the tight-binding model by in-
cluding additional parameters consistent with the eg character
of the orbitals and assuming that the trigonal symmetry of the
lattice is preserved.

1. Nearest-neighbor hopping

The Slater-Koster parameters for hopping along the z-
direction yield the matrix

t̂z = −(t 0
0 tδ

) (8)

in the basis (dz2 , dx2−y2). As before, t includes predomi-
nantly the hopping via the intermediate oxygen while tδ arises
from the direct overlap and is small, see below. Assuming
that the nearest-neighbor hopping in x and y directions are
equivalent to the hopping along the z direction, we obtain the
corresponding matrices by a rotation of the eg-orbitals around
[111] by ±2π/3. The matrix for the rotation by 2π/3 is

R̂ = ( −1/2
√

3/2
−
√

3/2 −1/2) . (9)

As a result, we then find

t̂x = R̂T t̂zR̂, t̂y = R̂T t̂xR̂. (10)

2. Second-neighbor hopping

The Slater-Koster parameters for second-neighbor hopping
via two intermediate oxygen atoms define the matrix

t̂xy = −( t′/2
√

3∆/2
−
√

3∆/2 −3t′/2 ) . (11)

They take into account the lowest-order processes for the
second-neighbor hopping. The off-diagonal entries propor-
tional to ∆ are allowed in the bilayer system discussed here
(as opposed to a perfect cubic system) because the two pos-
sible paths connecting second-neighbor transition-metal ions
are not equivalent: they either involve “inner” or “outer” oxy-
gens, see also Fig. 9. Note that txy is not symmetric if ∆ ≠ 0
which means that there is an associated direction for the hop-
ping. We use the convention that txy denotes the hopping of
an electron along a second neighbor bond which is reached
by first following the y-axis and then the x-axis of the cube.
By rotating the orbitals, we also obtain the second-neighbor
hopping along the other directions:

t̂yz = R̂T t̂xyR̂, t̂zx = R̂T t̂yzR̂. (12)

Including the above introduced hopping matrices, the gener-
alized tight-binding model now takes the form

H0 = ∑
r∈A

∑
σ
∑

u=xyz

(d⃗†
σ,r t̂ud⃗σ,r+eu + h.c.)

+ ∑
r∈A

∑
σ
∑

u=xyz

(d⃗†
σ,r t̂u,u+1d⃗σ,r+eu−eu+1 + h.c.) (13)

+ ∑
r∈B

∑
σ
∑

u=xyz

(d⃗†
σ,r t̂u,u+1d⃗σ,r−eu+eu+1 + h.c.) .

Here, d⃗σ = (dz2,σ, dx2−y2,σ)T is a vector in orbital space and
the notation u + 1 refers to y if u = x with a cyclic extension
to the other elements.
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FIG. 6. (Color online). The solid line shows the LDA bands near
the Fermi energy along a high-symmetry path Γ-K-M-Γ for an unre-
laxed (LaNiO3)2/(LaAlO3)10 superlattice. Also shown are the tight-
binding bands obtained from a least-square fit as detailed in the main
text and Tab. I. Shown are the fits A (diamonds), B (squared) and
C (circles) while fit D is essentially indistinguishable from C and
not shown. The bands of A have been shifted by +0.2 eV for better
visibility.

fit t [eV] t′ [eV] ∆ [eV] tδ [eV] EF [eV]
A 0.603 0 0 0 -0.701
B 0.600 0.058 0 0 -0.693
C 0.598 0.062 -0.023 0 -0.693
D 0.598 0.062 -0.023 -0.007 -0.693

TABLE I. Parameters obtained in different tight-binding fits to the eg
LDA band structure of the 12 layer superlattice shown in Fig. 6. with
an increasing number of adjustable parameters.

C. Tight-binding fit of LDA band structure

We used the refined tight-binding model Eq. (13) for a least-
square fit of the LDA band structure of the eg-bands along the
path Γ-K-M-Γ. The result is shown in Fig. 6 and the fitting
parameters are listed in Tab. I. We have performed fits with
an increasing number of adjustable hopping amplitudes t, t′,
∆ and tδ . We find that the nearest-neighbor hopping is about
t = 0.6 eV. The next biggest parameter is the second neigh-
bor hopping for which we find t′ ≈ 0.1t. This values are in
agreement with previous findings.8,40 Even smaller is the off-
diagonal term ∆ in Eq. (11) which is specific to the bilayer
system and we find ∆ ≈ −0.04t. However, the inclusion of
this parameter markedly improves the fit, especially near the
K-point, as can be seen in Fig. 6. Finally, we find that the in-
clusion of the direct overlap tδ is vanishingly small and does
not lead to an essentially better fit.

We have also performed fits whit a tight-binding model with
completely general hopping matrices for tz [Eq. (8)] and txy
[Eq. (11)]. However, we found that the least-square fit is only

marginally better indicating that the most dominant processes
are included in the form of the matrices in Eqs. (8) and (11).
Despite the good overall agreement, certain details of the LDA
band structure (e.g. the low-lying part near M and along M-Γ)
are not captured within the present model. This indicates that
in order to describe all the details of the LDA band-structure
in a eg tight-binding model, one has to consider further-range
hopping parameters. An alternative way is to explicitly in-
clude the oxygen-p states. This is done in Sec. IV where we
discuss a Ni-O lattice model.

D. Interaction effects in eg-model

We now turn to an analysis of interaction effects within the
effective description of the tight-binding model Eq. (13). Ow-
ing to the localized character of the 3d-orbitals, we include
local interactions of the standard form41,42

Hint= ∑
r

[U∑
α

nrα↑nrα↓ + (U ′ − J) ∑
α>β,σ

nrασnrβσ

+U ′ ∑
α≠β

nrα↑nrβ↓ + J ∑
α≠β

d†
rα↑drβ↑d

†
rβ↓drα↓

+I ∑
α≠β

d†
rα↑drβ↑d

†
rα↓drβ↓]. (14)

We assume the following relations between the Slater-
Kanamori interaction parameters: U ′ = U − 2J and I = J .
They are valid in free space and considered as approximately
true in the solid state environment. The total multi-orbital
Hubbard Hamiltonian for the eg electrons is given by

H =H0 +Hint. (15)

The interacting Hamiltonian Eq. (15) with only nearest-
neighbor hopping has been studied previously within the
Hartree-Fock approximation and the phase diagram has
been worked out for various combinations of interaction
parameters.8,10 A particularly interesting result for intermedi-
ate to strong interactions is the observation of a spontaneously
generated quantum anomalous Hall (QAH) phase which is ac-
companied by ordering in complex orbitals within a ferromag-
netic (FM) phase. The resulting mean-field band structure is
topologically non-trivial with a finite Chern number ν = ±1
displaying a spontaneous quantum Hall effect.

Here, we generalize the previous Hartree-Fock studies in
three ways: We study the effect of a finite second-neighbor
hopping t′, we allow for ordering with a tripled unit cell and
we also consider larger values of the Hund coupling J . The
resulting phase diagram for fixed interaction U + J = 10t as
function of the ratio J/U and t′/t is shown in Fig. 7. Our new
findings are summarized as follows: (i) For 0.1 ≲ J/U ≲ 0.2
we find that a ferromagnetic phase (FM) with staggered orbital
order (AFO) which triples the unit cell but preserves the three-
fold rotation symmetry has lower energy than the previously
found phase which breaks the rotation symmetry but pre-
serves the original unit cell.8,10 (ii) For large Hund coupling
J/U ≳ 0.4 a charge-density wave (CDW) is stabilized. (iii)
For the considered interactions, there is very little dependence
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FIG. 7. Hartree-Fock phase diagram obtained from the interacting
eg-model for fixed interaction U + J = 10t as function of the ratio
J/U and t′/t. The various phases are explained in the main text.

on t′. As a side note, we remark that the phase-boundaries at
weak interactions, as discussed in Ref. 10, are more strongly
affected by the inclusion of the second-neighbor hopping t′.
In particular, upon increasing t′/t, we observe a rapid shrink-
ing (t′/t = 0.01 is enough) of the region where the sponta-
neous topological insulator phase is energetically favored.

In the following, we discuss the various phases shown in
Fig. 7 in more detail. For the considered range of parame-
ters, we find ferromagnetic order of the spin degrees within a
Ni-layer. However, depending on the relative strength of the
Hund exchange, the coupling between the two layers is anti-
ferromagnetic (AFM) if J/U ≲ 0.1 or ferromagnetic (FM) if
J/U ≳ 0.1.

In addition to the magnetic order, we find various types of
orbital order. The orbital order is conveniently discussed with
the help of the orbital pseudospin-1/2 operator

T⃗i =
1

2
∑
σ
∑
α,β

d†
iασ τ⃗αβdiβσ. (16)

The spontaneous development of long-range orbital order of
the orbital pseudospin is indicated by a finite expectation
value

µ⃗i = ⟨T⃗i⟩. (17)

Depending on the details of the interaction parameters, we
find different types of orbital order.

1. FO/AFM

For antiferromagnetically coupled layers, we found ferro-
orbital (FO) order with

µ⃗ =
⎛
⎜⎜
⎝

0

0

µz

⎞
⎟⎟
⎠
. (18)

Other equivalent orbital orders are obtained by rotating the
real orbitals around [111] by ±2π/3:

(µ
′
z

µ′x
) = R(µz

µx
) . (19)

Here, the rotation matrix is given in Eq. (9). Hence, the
FO/AFM order breaks the rotation symmetry while preserv-
ing the translational symmetry.

2.
√

3 ×
√

3 AFO/FM

Increasing J/U we find a first-order transition to the ferro-
magnetic phases. In this regime, spin-up and spin-down bands
are separated by an energy (U + J)/2 and we find fully spin-
polarized phases. Because of the large energy splitting be-
tween ↑ and ↓ spins, the orbital order in this regime can be
studied in a spinless model. Assuming polarization along the
↑-direction and neglecting the ↓-bands, the effective Hamilto-
nian in the fully polarized ferromagnet is

HFM =H0,↑ + V ∑
i

nia↑nib↑, (20)

with V = U ′−J = U−3J . This model is formally equivalent to
a “single-orbital” Hubbard model with “spin-dependent” hop-
ping and Hubbard interaction V . The model Eq. (20) should
be studied at half filling where the Fermi energy crosses the
Dirac points for V = 0.

The
√

3×
√

3 AFO/FM phase corresponds to the intermedi-
ate to large V limit of Eq. (20). It is characterized by a special
type of staggered orbital order with a

√
3×

√
3 reconstruction

of the unit cell, see Fig. 8. In this phase, the orbital order pa-
rameters at different sites are related by a unitary transforma-
tion. For example, the order parameters at site 3 of Fig. 5(b)
are related to site 1 in the following way:

(µ
z
3

µx3
) = R(µ

z
1

µx1
) (21)

This corresponds to a rotation of the orbitals around the [111]
axis by an angle of 2π/3. A real space sketch of the orbital
order in this phase is shown in Fig. 8. On the mean-field level,
there is a six-fold degeneracy of this phase.

The findings of the mean-field theory can be compared with
the strong coupling expansion of Eq. (20). At half filling,
Eq. (20) reduces to an orbital pseudospin model of the form

HK =K∑
i∈A

(τxi τxi+ex + τ
y
i τ

y
i+ey

+ τzi τzi+ex) (22)
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X

Y

FIG. 8. (Color online.) Sketch of the staggered orbital order phase
with a tripled unit cell (

√

3×
√

3 AFO/FM). The shown real orbitals
indicate the majority occupation and the enlarged unit cell is shown
as shaded area.

where K = 2t2/V . In terms of the orbital pseudospin-1/2
operator T⃗i, the operators entering Eq. (22) are given by

τxi = −1/2T zi −
√

3/2T xi , (23)

τyi = −1/2T zi +
√

3/2T xi , (24)
τzi = T zi . (25)

Because K > 0, staggered orbital order is energetically fa-
vored, consistent with the mean-field result. Nevertheless, the
pseudospin interaction described by Eq. (22) is frustrated on
the honeycomb lattice and to our knowledge the nature of the
ground-state order hasn’t been identified completely. Indeed,
the study of the classical version of Eq. (20) in Ref. 43 shows
that the ground-state is macroscopically degenerate. Further-
more, it was shown that both thermal and quantum fluctua-
tions lift this degeneracy. The

√
3×

√
3 reconstruction identi-

fied in our mean-field analysis is insofar a reasonable scenario
because it maximizes the number of “resonating hexagons”
favored by ring exchange processes. Such a behavior would
be similar to the one observed in other frustrated models such
as the hardcore dimer model on the hexagonal lattice44 or the
frustrated charge models on the kagome45,46 or checker board
lattices.47

3. QAH/FM

In a narrow region of J/U , which corresponds to an inter-
mediate effective interaction V in the spinless model Eq. (20),
we find a phase which is characterized by the uniform orbital
order along the y-direction, i.e.

µy ≠ 0. (26)

This means that the electrons predominantly occupy complex
orbitals

∣d ± id⟩ = 1√
2
(∣dz2⟩ ± i∣dx2−y2⟩) . (27)

Such orbital order opens a gap throughout the Brillouin zone.
It has been pointed out previously8,10 that the resulting insu-
lator is a spontaneous quantum anomalous Hall (or Chern) in-
sulator with topologically protected chiral edge modes. The

mean-field band structure is characterized by a finite Chern
number48 n = ±1.

4. Gapless FM

Increasing the ratio J/U even further, we find a gapless
ferromagnetic phase without long-range orbital order. This
phase corresponds to the weak-coupling phase of the spinless
model Eq. (20) and it reflects the well-known fact that the
Dirac semi-metal is perturbatively stable against interactions.
Therefore, orbital order is suppressed and µ⃗ = 0. Instead, the
ferromagnetic solution with gapless single-particle excitations
is stable.

5. CDW/FM

By further increasing the relative strength of the Hund cou-
pling, we identify a second order phase transition to a charge-
density wave (CDW) with charge disproportion between the
top and bottom layer (i.e. between the A and B sublattices
of the buckled honeycomb lattice). The tendency towards
a CDW phase can be understood from the effective model
Eq. (20) which shows that the effective interaction V becomes
attractive if J > U/3. Our mean-field analysis reveals that an
even larger critical ratio J/U ≈ 0.4 is needed to stabilize the
charge disproportion.

A CDW with charge disproportion between the A and B
sublattices has also been proposed for bulk nickelates as a
mechanism to lift the orbital degeneracy which is different
from the Jahn-Teller distortion.49 Our findings that a relatively
large Hund coupling is required is in agreement with a recent
work based on a two-band model for bulk LaNiO3.40

IV. NICKEL-OXYGEN MODEL

In the previous section we discussed the band structure of
the conduction electrons in terms of an effective multi-orbital
Hubbard model for the eg states. In this model, the oxygens
enter the description implicitly by mediating the hopping be-
tween the Ni ions. The satisfactory fit of the LDA band struc-
ture from the tight-binding model obtained in Sec. III C seems
to justify this view-point. On the basis of this model, we have
obtained the Hartree-Fock phase diagram which, depending
on the interaction parameters, shows both orbitally ordered
and disordered phases. While the ferromagnetic order pre-
dicted by the Hartree-Fock for a large region of parameters is
consistent with the LSDA+U result, we did not observe or-
bital ordering in the DFT calculations.

Below we reexamine the stability of the orbitally ordered
phases in the context of a lattice model which explicitly in-
cludes both the oxygen and nickel ions. Within the Hartree-
Fock approximation, we study the dependence of the elec-
tronic phases on the energy splitting between the Ni-d and O-p
states and find that orbital order is more stable if the charge-
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FIG. 9. (Color online.) Sketch of the Ni-O model for the (111) bi-
layer. There are two layers of Ni ions denoted by Ni1 and Ni2 for
which we keep the eg orbitals. There are an inner and two outer lay-
ers of O ions. We keep the O-p orbitals which form a σ-bond with
their neighboring Ni-eg orbitals. The Al ions are treated as vacuum,
so that there is no mixing with its neighboring oxygens.

transfer energy is increased. We discuss possible mechanisms
leading to this result.

A. Ni-O model for (111) bilayer

In the following, we consider a model which treats both the
Ni-d and O-p orbitals.41 Instead of keeping the full Ni-d and
O-p manifolds, we consider a simplified version with two eg-
orbitals at the Ni sites and one p-orbital at the O sites, see
Fig. 9. The Al ions are treated as vacuum. The p orbital is
chosen such that it points along the directions of the cartesian
coordinate system, i.e. the p-orbital which makes a σ-bond
with its neighboring dx2−y2 /d3z2−r2 orbitals. The resulting
model has the form

H = ∑
iσ

εpip
†
iσpiσ + ∑

iασ

εdd
†
iασdiασ +Hhyb +Hp

+Hint +HDC . (28)

The hybridization between the p and d electrons is given by

Hhyb = ∑
⟨i,j⟩

(V αij p
†
iσdjασ + h.c.) . (29)

The hybridization V αij between the eg orbitals and the p or-
bitals is parametrized by the Slater-Koster parameter (pdσ).
Hp describes the direct overlap between O-p orbitals for
which we introduce the hopping parameter tpp. Finally, only
the d-electrons are assumed to be correlated and Hint is given
by Eq. (14). HDC accounts for the “double-counting” in the
interacting model and will be discussed later.

The unit cell of the bilayer system has two nickel and nine
oxygen atoms arranged in layers along the [111] direction as
O3/Ni/O3/Ni/O3. By symmetry, the inner oxygen layer, which
is sandwiched between the Ni layers, has a different onsite-
energy ε(i)p than the outer oxygens ε(o)p .

B. LDA fit based on Ni-O model

We find that there is an ambiguity in fitting the parame-
ters of the Ni-O model to the LDA results. In particular, fit-
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FIG. 10. (Color online.) Comparison between the LDA and the Ni-O
tight-binding (TB) model. In (a) we show the least-square fit of the
eg band structure along a high symmetry line. Panels (b)-(d) show
the projected density of states obtained from the TB and the LDA
calculations. The Ni-eg states are shown in (c) and the inner and
outer O-p states in (b) and (d). Along with the total O-p DOS we
also show the contribution from the Oσ orbital alone.

ting different quantities accessible in the Ni-O model, such
as the eg band structure, the orbitally projected DOS or any
combination of these observables result in different optimized
tight-binding parameters. Nevertheless, different fits which
are in agreement with the overall structure of both the O and
Ni states yield similar parameters. Our qualitative conclu-
sions are therefore not affected by the details of the fitting
procedure. Here, we show the result obtained by fixing the
Slater-Koster parameters at (pdσ) = 1.8 eV and the hop-
ping between oxygens at tpp = 0.7 eV. We choose to fit the
eg band structure by optimizing the onsite energies for the
Ni states, εd, and for the inner and outer O states, ε(o)p and
ε
(i)
p . The fixed hopping parameters are similar to the ones

used by other groups,41,50 and we find that this choice gives
satisfactory agreement both for the eg bands as well as for
the projected DOS. The optimized values are εd = −1.47 eV,
ε
(i)
p = −4.74 eV and ε(o)p = −5.47 eV. The result of this fit is

summarized in Fig. 10 where we show the eg bands and the
projected DOS.

C. Hartree-Fock approximation and double counting

The Hartree-Fock decoupling of Hint [Eq. (14)] yields a
term

Hc = Ū∑
i

⟨nd⟩ni −
Ū

2
∑
i

⟨nd⟩2 (30)

where ⟨nd⟩ is the averaged occupation of the Ni states and
Ū = (3U − 5J)/4. In general, Hc leads to a shift of the
d-orbital energy as compared to the O-p levels which would
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FIG. 11. Dependence of the symmetry-broken phases on the shift in
the d-electron level ∆εd as obtained from the interacting Ni-O model
in the Hartree-Fock approximation. Shown are the average occupa-
tion of the Ni-eg orbitals ⟨nd⟩, the uniform magnetization ⟨m⟩ of the
ferromagnetic (FM) order as well as the expectation values of the or-
bital pseudospin ⟨T⃗ ⟩. Increasing ∆εd triggers a transition from the
gapless FM phase to a gapped topological phase (QAH) and eventu-
ally to a phase with staggered orbital order (AFO). Also shown is the
bandwidth W (in eV) of the eg band obtained in the corresponding
non-interacting Ni-O model.

modify the average occupations of the d-orbitals when inter-
actions are included. In the LSDA+U method,51 one there-
fore adds a double counting term which essentially compen-
sateHc. It is argued that the DFT calculation already includes
a local term similar to Eq. (30) and that the overall charge
distribution (although not the orbital occupation) is obtained
reliably from the DFT. The interacting Hamiltonian with the
double-counting correction should therefore reproduce the
DFT result in the absence of interaction-driven orbital order.
This so-called double-counting problem appears also in the
DFT+DMFT approach.52 In the spirit of the LSDA+U we
choose the double-counting term HDC such that it compen-
sates for the above discussed Hartree shift, HDC = −Hc. The
remaining interactions are treated in the conventional Hartree-
Fock approximation and we solved the self-consistency equa-
tions via iteration.

D. Charge transfer

In order to see how the symmetry-broken phases are af-
fected by the charge-transfer physics,26,53,54 we performed
Hartree-Fock calculations for different charge-transfer ener-
gies using the double-counting term discussed in the previous
section. We fixed the tight-binding parameters at the values
obtained from the LDA except for εd which we varied accord-
ing to εd → εd + ∆εd. This effectively changes the energy
splitting between the O and Ni states. Figure 11 shows the
dependence of the symmetry-broken phases on ∆εd for fixed
interaction parameters U = 6 eV and J = 0.5 eV. Around

∆εd = 0, we find that a gapless ferromagnetic phase with-
out orbital order is energetically favored. This is consistent
with the LSDA+U results reported in Sec. II. Increasing
∆εd = 0 leads to orbital ordering of complex orbitals and
⟨Ty⟩ ≠ 0 (QAH/FM). In this phase, the single-particle spec-
trum is gapped but the band-structure is topologically non-
trivial and characterized by a finite Chern number. By in-
creasing ∆εd even further, we find that staggered orbital order
(AFO) in real orbitals is favored and ⟨Tx⟩ ≠ 0 on each sublat-
tice.

There are two aspects of the charge-transfer physics which
can help understanding these results. First, increasing the
charge-transfer energy reduces the effective bandwidth of the
eg bands. We illustrate this point in Fig. 11 by plotting the
width W of the eg bands in the corresponding non-interacting
Ni-O tight-binding model. The ratio U/W is increased by
increasing ∆εd and correlation effects become more impor-
tant. The observed orbital order can therefore be consid-
ered as a result of increasing U/W in an effective model for
the eg-electrons.8,10 A second aspect of the charge-transfer
physics can be quantified by the average occupation of the Ni-
eg states, ⟨nd⟩, which is also modified by the charge-transfer
energy. For ∆εd = 0, the Ni-O model predicts ⟨nd⟩ ≈ 2 which
is very different from the ionic limit ⟨nd⟩ = 1 (correspond-
ing to Ni3+) and indicates that a large number of holes resides
on the oxygen sites. In our LSDA+U calculation, the differ-
ence from the ionic value seems even larger: examining the
local density-matrix we find ⟨nd⟩DFT ≈ 2.4. Previously, this
effect was called “self-doping” of the oxygen p-band53,54 and
is considered to capture aspects beyond modifying the ratio
of U/W in an effective model for the eg electrons. Recently,
it has been argued that ⟨nd⟩ is a fundamental quantity which
crucially affects the interaction-driven metal-insulator transi-
tion in the nickelates.55 In Fig. 11, the reduction in ⟨nd⟩ goes
hand in hand with the reduction of W and therefore, these
two aspects can not be separated in a clear way. Nevertheless,
our results are consistent with the statement that the (gapped)
orbitally ordered phases are more stable if fewer charges are
transferred between the Ni and O. The charge transfer there-
fore offers an explanation why the orbitally ordered phases are
not observed in our LSDA+U calculation.

V. CONCLUSIONS

In summary, we discussed the electronic structure of a
LaNiO3 (111) bilayer sandwiched between several layers of
the insulator LaAlO3. Using a combination of first prin-
ciple methods and effective multi-orbital lattice models we
have studied both the non-interacting band structure as well
as possible instabilities driven by local correlations among
the Ni-d electrons. The non-interacting band structure is well
reproduced by a generalized tight-binding model including
also second-neighbor hopping amplitudes for eg states on the
buckled honeycomb lattice. If local interactions among the
Ni-d electrons are included, both the Hartree-Fock and the
LSDA+U predict ferromagnetic ordering over a wide range
of parameters. We have extended previous Hartree-Fock
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calculations8,10 in various ways and, apart from the magnetic
order, we have also identified possible orbital ordering which
could give rise to interesting electronic phases including a
spontaneous Chern insulator or a staggered orbitally ordered
phase with a triplet unit cell. Furthermore, we identified a
charge-density wave for large values of the Hund coupling.

By considering an effective lattice model which includes
both the O-p and Ni-d states, we studied the effect of mod-
ifying the charge-transfer energy between the Ni and O
states on the orbital ordering. Our results are consistent
with the statement that orbital ordering is suppressed the
more charge is transferred. This is in qualitative agree-
ment with recent theoretical results on the orbital polariza-
tion in [001] heterostructures50,56 and the phase boundaries
for the paramagnetic metal-insulator transition in bulk nicke-
lates and cuprates.55 The charge-transfer energy was experi-
mentally observed to change with n in (LaAlO3)3/(LaNiO3)n

superlattices16 suggesting that it might be possible to control
the degree of covalency in artificial structures.19 Important is-
sues such as the atomic relaxation in the bilayer geometry
and its dependence on the electronic correlations as well as
the treatment of the electronic correlations beyond the static
mean-field approximations remain topics for future study.
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