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One of the most promising proposals for engineering topological superconductivity and Majo-
rana fermions employs a spin-orbit coupled nanowire subjected to a magnetic field and proximate
to an s-wave superconductor. When only part of the wire’s length contacts to the superconduc-
tor, the remaining conducting portion serves as a natural lead that can be used to probe these
Majorana modes via tunneling. The enhanced role of interactions in one dimension dictates that
this configuration should be viewed as a superconductor-Luttinger liquid junction. We investigate
such junctions between both helical and spinful Luttinger liquids, and topological as well as non-
topological superconductors. We determine the phase diagram for each case and show that universal
low-energy transport in these systems is governed by fixed points describing either perfect normal
reflection or perfect Andreev reflection. In addition to capturing (in some instances) the famil-
iar Majorana-mediated ‘zero-bias anomaly’ in a new framework, we show that interactions yield
dramatic consequences in certain regimes. Indeed, we establish that strong repulsion removes this
conductance anomaly altogether while strong attraction produces dynamically generated effective
Majorana modes even in a junction with a trivial superconductor. Interactions further lead to
striking signatures in the local density of states and the line-shape of the conductance peak at fi-
nite voltage, and also are essential for establishing smoking-gun transport signatures of Majorana
fermions in spinful Luttinger liquid junctions.

PACS numbers: 73.21.Hb, 71.10.Pm, 74.78.Fk

I. INTRODUCTION

Topological phases display many ‘exact’ features that
are remarkably robust to variations in microscopic re-
alization and imperfections. One of the most exotic is
the possibility of emergent excitations known as non-
Abelian anyons that host zero-energy ‘internal’ degrees
of freedom in an intrinsically non-local way. Informa-
tion encoded in such anyons is then naturally protected
from decoherence and can furthermore be manipulated
using braiding operations, forming the basis of attractive
quantum computing platforms.1 Recently attention has
focused on the so-called Majorana fermion, which binds
to a specific kind of non-Abelian anyon originally pre-
dicted to occur in the ν = 5/2 fractional quantum Hall
state2,3. Among the many current proposals for generat-
ing Majorana fermions4–6 (see [7,8] for a review), one
attractive class involves spinless one-dimensional (1D)
topological superconductors whose hallmark is the ex-
istence of Majorana zero-modes localized at the ends of
the system.9 This phase can be engineered in a variety
of settings, including 2D topological insulator edges10,
spin-orbit-coupled nanowires11,12, 3D topological insula-
tor nanoribbons13, and cold atomic gases14. Numerous
quantum computation protocols based on manipulating
Majoranas in 1D systems have now been proposed15–25.

The first step towards realizing such applications is of
course the conclusive experimental identification of Majo-

rana fermions. One appealing detection method involves
transport. In particular, several studies predict that tun-
neling electrons onto a Majorana mode gives rise to a
zero-bias conductance anomaly.26–35 Here we revisit this
problem from a new perspective based on renormaliza-
tion group methods similar to those of Refs. [36–38], and
especially [39]61. A major virtue of this approach is that
it allows one to extract universal tunneling signatures of
these modes even when strong interactions are present.
Indeed, we will (in some cases) recover in a very gen-
eral way previous results based on specific model calcu-
lations, and also identify new regimes where interactions
lead to dramatic and very surprising consequences. Fur-
thermore, our approach provides an elegant means of ad-
dressing the fate of localized Majorana zero-modes when
coupled to gapless degrees of freedom.

The theoretical technology developed here is widely
applicable to superconducting Majorana platforms. We
will, however, mainly focus on spin-orbit-coupled 1D
systems such as a semiconducting nanowire subjected
to a magnetic field, in the experimentally accessible
geometry where half of the wire couples to an s-wave
superconductor while the other half remains gapless; see,
for example, Fig. 1(a) and Ref. 35,40. By gating one can
independently tune the left and right halves between
a ‘helical’ regime—with only one active channel at low
energies—and a ‘spinful’ regime where two channels play
a role (multi-channel regimes are also accessible34,41–43
but will not be considered here). Crucially, in either
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TABLE I: The four junction archetypes studied in this paper. The columns denote the two possibilities for the one dimensional
leads, and the rows differentiate between superconductors with and without Majorana zero mode bound states. The Luttinger
parameters g and gρ describe the interactions in the lead; g < 1 and g > 1 correspond to repulsive and attractive interactions
respectively. Note that for the regime of weak repulsive interactions expected in many solid state implementations, a zero bias
conductance G = 2e2/h is a robust signature of Majorana zero mode bound states in the superconductor.

limit the gapless half generically forms a Luttinger
liquid. The nature of the superconducting state in
the other half of the wire depends strongly on the
number of channels: in the helical case a topological
phase supporting Majorana zero-modes emerges, while
in the spinful regime a trivial gapped state appears
instead.11,12 This system therefore admits four natural
superconductor/Luttinger liquid junction archetypes:
the gapless part of the wire (which we view as a lead)
can be either helical or spinful and likewise the supercon-
ducting region can be topological or trivial. We stress
that it is essential to understand the transport properties
of both the topological and trivial junctions to establish
unambiguous transport signatures of Majorana modes.
For instance, if the conductance can behave similarly
with or without the presence of a Majorana then clearly
this would be less than a ‘smoking-gun’ detection scheme.

To introduce the basic philosophy underlying our ap-
proach it is useful to first imagine physically cutting the
wire such that the Luttinger liquid and superconducting
regions decouple entirely. Transfer of electrons across the
junction formed by the two subsystems is then prohibited
for trivial reasons. In renormalization group language,
the system’s low-energy behavior here is described by a
fixed point theory characterized by a vanishing conduc-
tance. We refer to this as a ‘perfect normal reflection’
fixed point since in this case electrons incident on the su-
perconductor undergo normal reflection with unit prob-
ability at the junction. Suppose now that the Luttinger
liquid and superconductor ‘reconnect’, and one incorpo-
rates arbitrary symmetry-allowed couplings between the
two. Our objective is to then address questions such as
the following: What is the fate of the perfect normal re-
flection fixed point in this case? If it is unstable, what
couplings provide the leading instability and to which
fixed point do they ultimately drive the system? What
are the properties of such putative fixed points? And

what are the implications for transport experiments?

Let us now highlight our main results (partially sum-
marized in Table I) for the four cases that we analyze, be-
ginning with the topological superconductor/helical Lut-
tinger liquid junction. In this case the gapless region is
characterized by a Luttinger parameter g where g = 1
represents the free-fermion limit while g < 1 and g > 1
respectively correspond to repulsive and attractive inter-
actions. When the wire is cut as described above the
topological superconductor supports a single localized
Majorana zero-mode at the junction.62 Provided the Lut-
tinger parameter falls in the range g > 1/2 tunneling elec-
trons onto this mode constitutes a relevant perturbation
that destabilizes the perfect normal reflection fixed point.
We demonstrate that the Majorana zero-mode then de-
localizes completely into the Luttinger liquid and drives
the system to a fixed point describing perfect Andreev
reflection at the junction. This perfect Andreev reflec-
tion fixed point is characterized by the familiar quantized
zero-bias conductance G = 2e2/h at zero temperature
T = 0 that has been captured by numerous studies in
the free-fermion limit.26–30,32,33,35 In addition to the uni-
versal value of 2e2/h for the conductance at zero bias, the
topological superconductor/helical Luttinger liquid junc-
tion also exhibits a universal form for the finite bias con-
ductance curve. The form of this curve can be computed
in perturbation theory in certain voltage regimes, allow-
ing one to extract the value of the Luttinger parameter
g. For g < 1/2, however, (which is potentially applica-
ble to carbon nanotube-based Majorana proposals44–46)
coupling to the zero-mode at the junction is irrelevant at
the perfect normal reflection fixed point, which is then
stable. Consequently the zero-bias conductance vanishes
at T = 0. This does not, however, imply that the Ma-
jorana mode remains localized—we show using scaling
that in this limit the probability density associated with
the Majorana mode decays into the Luttinger liquid as a
power law.
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When a helical Luttinger liquid impinges instead on
a trivial superconductor, the perfect normal reflection
fixed point is stable, resulting in a vanishing zero-bias
conductance, for any g < 2. Taken together, the above
results imply that electron transport from a helical wire
(with not-too-strong repulsive interactions) onto a su-
perconductor is unmistakably different in the topological
and trivial cases and thus indeed provides an unambigu-
ous way of identifying Majorana zero-modes. The g > 2
regime may be realizable in cold atoms experiments14 and
exhibits fascinating properties even from a purely theo-
retical perspective. Here Cooper-pair tunneling from the
Luttinger liquid to the superconductor is relevant, gener-
ating a flow to the perfect Andreev reflection fixed point
with quantized conductance. We show that this results
from the dynamical generation of a pair of asymptoti-
cally decoupled Majorana modes which mediate the per-
fect Andreev reflection. It is remarkable that any trace
of Majorana physics appears in a junction with an ordi-
nary superconductor; this would certainly be interesting
to explore further in numerical simulations.

Perhaps more than any other case, superconduc-
tor/spinful Luttinger liquid junctions highlight the limi-
tations of model-specific microscopic calculations and the
utility of our approach based on universal low-energy
physics. When a spinful Luttinger liquid couples to a
topological superconductor, the leading perturbation at
the perfect normal reflection fixed point again involves
electron tunneling onto the Majorana zero-mode at the
junction. Its relevance follows from the charge- and spin-
sector Luttinger parameters gρ and gσ. With unbroken
SU(2) spin symmetry in the Luttinger liquid one has
gσ = 1, and in this case coupling to the Majorana is
relevant for all gρ > 1/3. Because only one of the two
spin channels can hybridize with the Majorana mode, the
junction flows to a novel fixed point corresponding to per-
fect Andreev reflection for one species and perfect normal
reflection for the other. This fixed point is in fact robust
with respect to some perturbations which break SU(2)
in the bulk, i.e. correspond to gσ 6= 1, such as spin or-
bit coupling and magnetic field. Thus, in the topological
case, a spinful Luttinger liquid junction again exhibits ro-
bust G = 2e2/h conductance quantization down to fairly
strong repulsive interactions with gρ = 1/3.

An analysis of the non-topological superconduc-
tor/spinful Luttinger liquid case in the free-fermion
limit, however, yields a non-universal zero-bias conduc-
tance ranging anywhere from 0 to 4e2/h depending on
parameters—potentially making it difficult to differen-
tiate from the signal originating from the Majorana in
the topological junction. This apparent non-universality
originates from the fact that the leading perturbations
to the perfect normal reflection fixed point in the free
fermion case are exactly marginal. Fortunately we find
that arbitrarily weak repulsive interactions are sufficient
to stabilize the perfect normal reflection fixed point.
Since weak repulsive interactions are generic in many
physical realizations of such Luttinger liquids, the non-

universal zero-bias conductance calculated for the free
fermion limit will eventually renormalize to zero at suf-
ficiently long length scales and low energies. We thus
conclude that a quantited zero-bias G = 2e2/h conduc-
tance indeed serves as a definitive fingerprint of a Majo-
rana mode at the junction, for both spinless and spinful
Luttinger liquids.

The remainder of the paper analyzes each of the four
cases in detail. We begin in Sec. II with the heli-
cal/topological junction, which we first solve in the free
fermion limit g = 1 and then in the general case us-
ing bosonization. In particular, we extract the conduc-
tance from a boundary action obtained by integrating
out the bulk of the Luttinger liquid, and use duality
to gain insight into the nature of the two fixed points.
In Sec. III we apply similar methods to analyze the
helical/non-topological junction. Sections IV and V treat
the spinful/non-topological and spinful/topological junc-
tions. In the discussion (Sec. VI) we examine the phys-
ical consequences of our work in more detail. In partic-
ular, we show that the line-shape of the finite bias con-
ductance curve contains information about the Luttinger
parameter g, and that its generic asymptotics (g 6= 1) dif-
fers from that of the finely tuned free fermion case g = 1.
Also, Appendices A and B provide details on the deriva-
tion of the bosonized boundary theories, while Appen-
dices C and D solve for the delocalized Majorana mode
at the junction in the non-interacting and interacting he-
lical/topological cases, respectively.

II. TOPOLOGICAL
SUPERCONDUCTOR–HELICAL LUTTINGER

LIQUID JUNCTIONS

The first junction we will analyze is that formed by
a helical Luttinger liquid adjacent to a 1D topological
superconductor supporting a single localized Majorana
mode at each end as illustrated in Fig. 1(a). While ulti-
mately we wish to understand the universal properties of
the junction at low energies in the presence of (possibly
strong) interactions in the Luttinger liquid, here we will
begin by exploring the free fermion case which provides
a useful point of reference.

A. Scattering problem for free fermions

Throughout this section we will assume that the su-
perconductor is fully gapped save for the end-Majorana
modes γ1 and γ2 shown in Fig. 1(a). We further as-
sume that the superconductor is sufficiently long that
these Majoranas overlap negligibly9,47, and that the heli-
cal wire couples only to γ1. The only relevant low-energy
degrees of freedom are then γ1 and those of the gapless
helical wire, taken here to be non-interacting. At low
energies it suffices to linearize the kinetic energy for the
helical wire and incorporate the effects of the supercon-
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FIG. 1: (a) Topological superconductor forming a junction
with a helical Luttinger liquid. We assume that the helical
Luttinger liquid couples only to the Majorana γ1 at the inter-
face, while its partner γ2 remains a robust zero-energy mode.
(b) Flow diagram for the junction as a function of the interac-
tion parameter g for the Luttinger liquid. Provided g > 1/2,
coupling to the Majorana γ1 causes the Luttinger liquid to
flow onto a fixed point where perfect Andreev reflection occurs
at the junction. Here the zero-bias conductance for the junc-
tion is quantized at 2e2/h. For Luttinger liquids with strong
repulsive interactions such that g < 1/2, however, coupling
to γ1 is irrelevant. Here the system flows onto a fixed point
where the Luttinger liquid undergoes perfect normal reflection
at the junction, leading to a vanishing zero-bias conductance.

ductor through local perturbations to the wire Hamilto-
nian acting at the interface. (Formally, the latter pertur-
bations can be derived by coupling the wire and super-
conductor at the junction and then integrating out the
gapped superconductor degrees of freedom.) Taking a
semi-infinite wire at x > 0, we write the full Hamiltonian
as H = H0 + δH, where δH represents the boundary
terms and the kinetic energy H0 reads

H0 =

∫ ∞
0

dx
(
−ivFψ†R∂xψR + ivFψ

†
L∂xψL

)
. (1)

Here vF is the Fermi velocity and ψ†R/L creates right/left-
moving excitations near the Fermi energy. It is conve-
nient to rewrite H0 in terms of a single fermion field ψ(x)
defined over all x as follows:

ψ(x) =

{
ψR(x), x > 0

ψL(−x), x < 0.
(2)

In terms of ψ(x), H0 becomes simply

H0 =

∫ ∞
−∞

dx
(
−ivFψ†∂xψ

)
. (3)

The boundary Hamiltonian δH will encode various
couplings at the junction, including tunneling between

the Majorana mode γ1 and the wire, local chemical po-
tential modifications, and Cooper pairing induced locally
in the wire by the superconductor. Thus the full Hamilto-
nian will take the form of a Bogoliubov-de Gennes equa-
tion. Before turning to a specific form of δH it is useful
to discuss the problem in some generality. It is natural
to expect that in the low-energy limit the effect of these
couplings will be to impose certain boundary conditions
on the wire, the precise nature of which will depend on
details of the Hamiltonian. The set of possible bound-
ary conditions corresponds, in renormalization group lan-
guage, to different fixed points whose stability we would
like to understand. For free fermions this issue can be
exhaustively addressed using scattering theory. Here, all
information regarding these putative fixed points as well
as their stability is encoded in the S-matrix S(E), which
at a given energy E relates the particle and hole states
incident on the superconductor with the reflected states.
Interestingly, using arguments similar to Refs. 48,49 one
can show very generally that the S-matrix for an infinite
wire can take only one of two forms in the E → 0 limit,
corresponding to fixed points describing either perfect
normal reflection, or perfect Andreev reflection at the
junction. In the case of a finite wire of length L, the
S-matrix has been derived in Refs. [27,50,51], and one
recovers the above answers in the appropriate limit, i.e.
L =∞, E → 0.

1. General properties of the S-matrix

The full Hamiltonian H including boundary couplings
is diagonalized with quasiparticle operators carrying en-
ergy E of the form

ΓE = φEγ1 +

∫ ∞
−∞

dxe
−iExvF [PE(x)ψ(x) +HE(x)ψ†(x)],

(4)
where φE is the component of the wavefunction at the
Majorana and PE(x), HE(x) respectively determine the
particle- and hole-like amplitudes of the wavefunctions.
Since PE(−∞) and HE(−∞) describe left-moving elec-
trons and holes incident on the superconductor, while
PE(∞) and HE(∞) capture the reflected right-moving
states [see Eq. (2)], the S-matrix is defined by[

PE(∞)

HE(∞)

]
= S(E)

[
PE(−∞)

HE(−∞)

]
(5)

≡

[
SPP (E) SPH(E)

SHP (E) SHH(E)

][
PE(−∞)

HE(−∞)

]
.

To restrict the form of S(E), we first note that ΓE =

Γ†−E , which follows from particle-hole symmetry exhib-
ited by any Bogoliubov-de Gennes equation, combined
with the fact that the helical wire has only a single
fermionic species. This relation connects the particle
and hole wavefunction amplitudes via P ∗−E(x) = HE(x),
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which in turn implies that the S-matrix must obey
S(E) = σxS∗(−E)σx, where σx is a Pauli matrix. Thus
it suffices to determine (say) SPP (E) and SPH(E), since
the other matrix elements follow from

SHH(E) = S∗PP (−E)

SHP (E) = S∗PH(−E). (6)

At zero energy, Eqs. (6) allow one to restrict the S-
matrix further still. Imposing SPP (0) = S∗HH(0) and
SPH(0) = S∗HP (0) along with unitarity of the S-matrix as
required by current conservation, one finds that S(E = 0)
can take only two possible forms:

S(0) =

(
eiα 0

0 e−iα

)
, (perfect normal reflection) (7)

or

S(0) =

(
0 eiβ

e−iβ 0

)
, (perfect Andreev reflection),

(8)
for some phases α and β. The diagonal form in Eq.
(7) corresponds to the situation where particles incident
on the superconductor undergo perfect normal reflection
at the interface—an electron reflects as an electron with
unit probability and similarly for holes. Conversely, the
purely off-diagonal form in Eq. (8) describes perfect An-
dreev reflection at the junction; here electrons scatter
perfectly into holes and vice versa, transmitting a Cooper
pair into the superconductor in the process. In renormal-
ization group terms, these limits correspond to two differ-
ent fixed points at which the topological superconductor
imposes either perfect normal reflecting or perfect An-
dreev reflecting boundary conditions on the helical wire.
Given our assumptions fixed points with intermediate
boundary conditions are not possible (at least for free
fermions).

Following Ref. 29, these two possible fixed points can
be distinguished by the conductance across the junction.
At a bias voltage V , the current transmitted into the
superconductor is given by

I =
2e

h

∫ eV

0

dE|SPH(E)|2, (9)

where |SPH(E)|2 is the probability that an incident elec-
tron at energy E Andreev reflects into a hole at the
junction, transmitting charge 2e into the superconduc-
tor. The differential conductance G = dI

dV at T = 0 is
then

G =
2e2

h
|SPH(eV )|2, (10)

which in the zero-bias limit becomes

G(V → 0) =

{
0 (perfect normal reflection)

2e2

h (perfect Andreev reflection).
(11)

While it is intuitively clear that perfect normal reflection
ought to give rise to a vanishing zero-bias conductance,
it is interesting that in the Andreev limit one necessarily
obtains conductance quantization. We will return to this
issue below when we obtain the S-matrix for a specific
form of δH.

2. Accessing the perfect normal and Andreev reflection fixed
points with free fermions

We would like to now understand the conditions re-
quired for our non-interacting helical wire to flow onto
each of the two possible fixed points identified above.
With this objective in mind we will now consider the
following boundary Hamiltonian:

δH =

∫ ∞
−∞

dx

[
t√
2
γ1(ψ† − ψ) + 2uψ†ψ

+ (i∆ψ∂xψ + h.c.)

]
δ(x). (12)

Here, t allows electron tunneling between the Majorana
γ1 and the helical wire at the junction, u is a local poten-
tial that favors normal reflection, and the ∆ term (which
must involve a derivative by Fermi statistics) encodes
processes wherein a Cooper pair hops between the helical
wire and the superconductor. Additional couplings are in
principle present but necessarily carry higher derivatives
than those already displayed and can thus be safely ne-
glected at low energies. Given this form of δH, a straight-
forward solution of the S-matrix yields,

SPP = − Ẽ[(ũ+ i)2 + ∆̃(t̃2 + Ẽ2∆̃)]

it̃2 + Ẽ[1 + ũ2 + ∆̃(t̃2 + Ẽ2∆̃)]

SPH =
i(t̃2 + 2Ẽ2∆̃)

it̃2 + Ẽ[1 + ũ2 + ∆̃(t̃2 + Ẽ2∆̃)]
, (13)

where the tildes denote quantities expressed in units of
vF , e.g., ũ = u/vF . [Recall that the other two matrix
elements follow from Eqs. (6).] For generic values of
the couplings one clearly sees that the S-matrix becomes
purely off-diagonal in the E → 0 limit, corresponding
to the onset of perfect Andreev reflection at the bound-
ary and a quantized zero-bias conductance of 2e2/h for
the junction. Avoiding this outcome requires fine-tuning,
indicating that the Andreev fixed point is stable in the
non-interacting case.

Closer inspection of Eqs. (13) reveals that the flow
towards perfect Andreev boundary conditions originates
exclusively from the coupling to the Majorana γ1 located
at the junction. Indeed, in the E → 0 limit the S-matrix
becomes purely diagonal upon fine-tuning t = 0, so that
without coupling to the Majorana the system flows in-
stead onto the (unstable) perfect normal reflection fixed
point. (One might naively expect that the pairing term
∆ alone would be sufficient to drive the system to the An-
dreev fixed point, but this is not the case. In the helical
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wire, Pauli exclusion, which is responsible for the deriva-
tive in this term, renders this an irrelevant perturbation
at the perfect normal reflection fixed point. This can be
understood by noting that when E → 0, ∆ drops out en-
tirely from the S-matrix.) It follows that here the quan-
tized 2e2/h conductance for the junction at the Andreev
fixed point reflects the familiar zero-bias anomaly associ-
ated with tunneling onto a Majorana mode26–30,32,33,35.
The scattering approach adopted here in fact follows
closely the treatment of Ref. 29 who showed that reso-
nantly coupling a non-interacting system to a Majorana
mode generically induces perfect Andreev reflection as
recovered here. One can intuitively understand this by
observing that for any non-zero t, the Majorana zero-
mode originally described by γ1 gets absorbed into the
helical wire, where it becomes a delocalized plane-wave
state (see Appendix C). The Majorana character of this
plane-wave must be preserved, however, which in turn
guarantees perfect Andreev reflection.

Next we explore the stability of the fixed points cap-
tured here for free fermions when interactions are present.
Interestingly, we will show that strong repulsive interac-
tions modify the physics of the junction qualitatively. We
will first treat the perfect normal reflection fixed point
and then turn to the Andreev fixed point.

B. Stability of the perfect normal reflection fixed
point with interactions

In the non-interacting limit accessing the perfect nor-
mal reflection fixed point required fine-tuning to zero the
coupling between the helical wire and the Majorana γ1

at the junction. Guided by this case, we will initially
neglect the presence of γ1 and derive a fixed-point action
describing perfect normal reflection for the Luttinger liq-
uid. This is conveniently achieved using bosonization,
where the right/left-moving fermionic modes in the wire
are expressed in terms of dual bosonic fields φ, θ via

ψR ∼ ei(φ+θ) (14)

ψL ∼ ei(φ−θ). (15)

Physically, θ relates to the fermion density n in the Lut-
tinger liquid according to n = ∂xθ/π, while φ and n
are canonically conjugate variables. It will be useful be-
low to observe that since one can write θ(x) − θ(0) =
−π
∫ x

0
dx′n(x′), the fermion parity in the helical Lut-

tinger liquid is given by PLL = cos[θ(x = L)− θ(x = 0)],
where x = L corresponds to the right endpoint of the
wire.

To ensure perfect normal reflection at the junction the
fermionic fields are constrained to satisfy

ψR(x = 0) = eiαψL(x = 0) (16)

for some unimportant phase α which we will simply set
to zero. This in turn implies pinning of the field θ at the

junction:

θ(x = 0) = 0 mod π. (17)

Similar constraints of course apply to the right end of
the wire at x = L, so for concreteness we will henceforth
set θ(x = L) = 0 (except in Appendix D, where a differ-
ent convention is specified) . The fermion parity in the
Luttinger liquid then reduces to

PLL = cos[θ(x = 0)]. (18)

Thus the two pinning values in Eq. (17) correspond to
the cases where the Luttinger liquid accommodates an
even and odd number of electrons.

Let us now arbitrarily select a particular pinning value
for θ(x = 0). One can obtain an effective action for
the remaining fluctuating phase field at the boundary,
φ(x = 0), in the following manner. First, the kinetic
energy in Eq. (1) supplemented by interactions in the
helical wire bosonizes to

H0 =

∫ ∞
0

dx
vF
2π

[g(∂xφ)2 + g−1(∂xθ)
2], (19)

where vF is the Fermi velocity and g is the Luttinger pa-
rameter specifying the interaction strength (again, g = 1
is the free-fermion limit while g < 1 and g > 1 re-
spectively correspond to repulsive and attractive inter-
actions). Obtaining the Euclidean action corresponding
to Eq. (19) and integrating out all fields away from x = 0
(see Appendix A for details) then leads to the following
action,

Snormal =
g

2π

∫
dω

2π
|ω||Φ|2, (20)

where Φ ≡ φ(x = 0). This action describes the perfect
normal reflection fixed point, whose stability we can now
assess.

The most relevant perturbation to Snormal originates
from coupling to the neglected Majorana mode γ1,

δSt =
t√
2

∫
dτγ1[ψR(x = 0)† − ψR(x = 0)] (21)

which promotes Andreev processes at the junction. [The
use of ψR as opposed to ψL here is immaterial be-
cause of the boundary condition of Eq. (16).] Bosoniz-
ing δSt requires some care, as the usual procedure of
naively replacing ψR ∼ eiΦ in Eq. (21) leaves one with
a non-Hermitian operator (among other technical prob-
lems stemming from the Majorana operator). Indeed,
since Eq. (21) contains γ1 our bosonization must include
the topological superconductor as well in order to ob-
tain consistent results. We will now show how this can
be done by considering a lattice model that includes the
relevant low-energy operators for both subsystems.

Because the only low-lying degrees of freedom in the
superconductor are γ1 and γ2, we can distill this part
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down to a single fermionic lattice site taken to lie at po-
sition 0:

γ1 = c†0 + c0

γ2 = i(c†0 − c0). (22)

Even though we formally model γ1 and γ2 as deriving
from the same site, physically these operators are spa-
tially well-separated. For our purposes the only conse-
quence of this is that the Luttinger liquid, which we now
define on a lattice indexed by sites j > 0, couples only
to the linear combination c†0 + c0 on site 0. We there-
fore consider the following tunneling Hamiltonian that
hybridizes this site and the Luttinger Liquid,

δHt = tγ1(c†1 − c1) = t(c†0 + c0)(c†1 − c1). (23)

The full Hamiltonian is then

H = HLL +Ht, (24)

with the Luttinger Liquid Hamiltonian

HLL = −J
∑
j>0

(c†jcj+1 + h.c.) +Hint, (25)

where Hint encodes density-density interactions.
Next we implement a Jordan-Wigner transformation

to write the Hamiltonian in terms of hard-core bosons bj
via

cj = exp

iπ∑
j′<j

nj′

 bj , (26)

with nj = b†jbj = c†jcj . Furthermore, we rewrite the
bosons at site 0 in terms of Pauli spin matrices via b0 =
(σx + iσy)/2, and those on the remaining sites j > 0 in
terms of a phase field φj : bj ∼ ieiφj . Using exp (iπn0) =
σz the tunneling term Ht in Eq. (23) then becomes

δHt = tσx cos Φ, (27)

where Φ ≡ φ1. The Euclidean action corresponding to
Eq. (27) is

δSt = 2t

∫
dτσx cos Φ, (28)

which upon trivially rescaling t is the correctly bosonized
form of the Majorana tunneling term in Eq. (21).

For concreteness, it is useful to relate the wavefunc-
tions for the superconductor in the fermionic and ‘spin’
languages. When t = 0 the superconductor admits two
degenerate ground states with well-defined but opposite
fermion parity, |0〉 and |1〉, due to the Majorana zero-
modes γ1 and γ2. These states are connected by the
Majorana operators: γi|0〉 ∝ |1〉. In the spin language
|0〉 and |1〉 are eigenstates of σz, but the natural pair
of degenerate ground states is formed by eigenstates |+〉

and |−〉 of σx. The distinction between the two can be
sharpened by considering a more realistic model for the
superconductor, consisting of a Kitaev model9 with many
sites intervening between γ1 and γ2. The ground states
of given fermion parity, natural in the original fermionic
representation, are then Schrodinger cat states for the
spins, i.e. linear combinations of the two phase eigen-
states, in which all spins point along the plus or minus
x direction.63 (Incidentally this is essentially why a 1D
spinless p-wave superconductor is a widely sought topo-
logical phase of matter while the Ising spin chain is not,
despite the fact that these models are superficially re-
lated.)

We are now in position to analyze the stability of the
perfect normal reflection fixed point. The scaling dimen-
sion of cos Φ is 1/(2g) while that of σx is zero at this fixed
point, so under renormalization t flows according to

dt

d`
= [1− (2g)−1]t. (29)

Equation (29) determines the renormalized coupling
strength at a length scale l in terms of ` = ln(l/l0), with
l0 a microscopic length of order the Fermi wavelength.
Remarkably, for helical Luttinger liquids with g < 1/2
tunneling onto γ1 thus constitutes an irrelevant pertur-
bation; perfect normal reflection is then stable despite
the presence of a zero-energy Majorana mode to which
the system can couple. We will explore the physical con-
sequences of this result in the discussion. This coupling
is relevant, however, when g > 1/2, indicating instabil-
ity of the perfect normal reflection fixed point (consis-
tent with our scattering analysis for free fermions with
g = 1). Since this perturbation promotes Andreev reflec-
tion at the junction it is natural to expect that at low en-
ergies normal reflection then becomes entirely suppressed
in favor of Andreev processes, just as we found for free
fermions. We establish in the next subsection that this
is indeed the case by examining the stability of the per-
fect Andreev reflection fixed point when interactions are
present.

C. Stability of the perfect Andreev reflection fixed
point with interactions

One illuminating method for extracting the fixed point
action describing perfect Andreev reflection at the junc-
tion is to apply a duality transformation to the bosonized
action Snormal + δSt. In particular, this allows us to ex-
tract the most relevant operator around this fixed point
and analyze its stability. Our starting point is the parti-
tion function for the perfect normal reflection fixed point
expressed as a path integral; this is carefully derived in
Appendix B and reads

Z =

∫
DΦ

∑
σx=±1

e−Snormale−2t
∫
dτσx cos Φ (30)
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An important point here is that there is only a single
sum over σx = ±1 (rather than one at each imaginary
time slice). This arises from the fact that σx is a con-
served quantity in the Hamiltonian and therefore has no
imaginary time dynamics. Upon writing the cosine term
in the Villain approximation the partition function then
becomes

Z ≈
∫
DΦ

∑
σx=±1

∑
{n(τ)}∈Z

e−Snormal

× e−t
∫
dτ [Φ+(1+σx)π/2−2πn]2 . (31)

In Villainized form the t term can be decoupled with a
Hubbard-Stratonovich field ρ, yielding

Z =

∫
DΦDρ

∑
σx=±1

∑
{n(τ)}∈Z

e−Snormal

× e
−
∫
dτ
{
ρ2

t +2iρ[Φ+(1+σx)π/2−2πn]
}
. (32)

At this point it is convenient to introduce the variable Θ
which is canonically conjugate to Φ/π by writing

ρ =
∂τΘ

2π
. (33)

Performing the sum over integers n(τ) in Eq. (32) re-
stricts the field Θ to elements of πZ, while the σx sum
simply imposes periodic boundary conditions on Θ along
the imaginary time direction [i.e., Θ(τ = β) = Θ(τ = 0)
mod 2π]. As usual the former restriction is difficult to
handle so we impose the constraint ‘softly’ by adding a
potential to the action which energetically favors integer
values for Θ/π; the partition function then reads

Z ≈
∫
DΦDΘe−Snormale

−
∫
dτ

[
(∂τΘ)2

(2π)2t
+ i
πΦ∂τΘ−v cos(2Θ)

]
.

(34)

One can then integrate out Φ to obtain the desired dual
theory for Θ:

Z =

∫
DΘe−Sdual (35)

Sdual =

∫
dω

2π

|ω|
2πg
|Θ|2 − v

∫
dτ cos(2Θ), (36)

where we dropped a term proportional to (∂τΘ)2 since
it is irrelevant compared to the first term in the action
above.

Since Θ and Φ/π are conjugate variables, the operator
e2iΘ shifts Φ by 2π. Thus the v term above represents
an instanton operator which tunnels between adjacent
minima of the σx cos Φ potential in Eq. (30). [One might
naively expect instanton operators that simultaneously
change σx → −σx and Φ → Φ + π to be important, but
these are forbidden since σx is a non-fluctuating classical
degree of freedom.] Tunneling events imposed by cos(2Θ)

are qualitatively unimportant at ‘large’ t but must be
retained otherwise. When t is relevant and the perfect
normal reflection fixed point is unstable, the fixed point
described by the dual theory with v = 0 should therefore
be stable and vice versa. This strongly suggests that
Sdual with v = 0 describes the perfect Andreev reflection
fixed point. We will now confirm this by rederiving Sdual

beginning from the fermionic theory.
To access the perfect Andreev reflection fixed point,

tunneling onto the Majorana γ1 (which as we saw in Sec.
IIA 2 underlies the flow to this fixed point) must be in-
corporated non-perturbatively. The coupling to γ1 con-
strains the fermionic fields at the junction such that at
low energies

ψ†R(x = 0) = eiβψL(x = 0), (37)

which upon setting β = 0 for simplicity pins the
bosonized phase field φ to

Φ = φ(x = 0) = 0 or π. (38)

(See Appendix C for an explicit solution that derives
these boundary conditions in the non-interacting limit.)
The appearance of two possible pinning values for Φ
can be understood from our analysis of the perfect nor-
mal reflection fixed point above. There we showed that,
by bosonizing the low-energy degrees of freedom for the
Luttinger liquid and the topological superconductor, the
coupling to γ1 can be written as δHt ∝ tσx cos Φ, where
σx swaps between the two opposite-parity degenerate
ground states |0〉 and |1〉 for the superconductor. Note
that δHt commutes with the total fermion parity opera-
tor

Ptot = σz cos θ(x = 0), (39)

with σz = iγ1γ2, as expected since the hopping preserves
the global parity of the system. For g > 1/2 we showed
that tunneling onto γ1 constitutes a relevant perturbation
at the perfect normal reflection fixed point. The system
then flows at low energies onto a fixed point at which
σx cos Φ is pinned to −1 (assuming t > 0). This allows
two possibilities:

σx = +1, cos Φ = −1

σx = −1, cos Φ = +1, (40)

corresponding to the two pinning values in Eq. (38).
It is instructive to examine the ground states corre-

sponding to the two sectors identified above. At the An-
dreev fixed point these may be written as

| ↑〉 = |σx = 1〉 ⊗ |Φ = π〉
| ↓〉 = |σx = −1〉 ⊗ |Φ = 0〉, (41)

where |σx = ±1〉 = |0〉 ± |1〉, and |Φ = 0, π〉 are the
ground states of the bosonized Hamiltonian in Eq. (19)
with boundary conditions φ(x = 0) = 0, π. Appropriate
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linear combinations of the states in Eqs. (41) yield ground
states with well-defined parity Ptot,

|−〉 = | ↑〉 − | ↓〉
|+〉 = | ↑〉+ | ↓〉, (42)

satisfying Ptot|±〉 = ±|±〉. While the overall parity Ptot

is a good quantum number, the individual parities of the
superconductor and the Luttinger liquid are entangled in
the two ground states |±〉. Explicitly, they can be written
as

|−〉 = |0〉 ⊗ |PLL = −1〉+ |1〉 ⊗ |PLL = 1〉
|+〉 = |0〉 ⊗ |PLL = 1〉+ |1〉 ⊗ |PLL = −1〉, (43)

Here |PLL = ±1〉 = |Φ = π〉 ± |Φ = 0〉 have well defined
parity in the Luttinger liquid. We note that the decom-
position (43) is only exact in the limit of a semi-infinite
Luttinger liquid and when the Andreev fixed point has
been reached.

In fermionic langauge, the leading perturbation away
from the Andreev fixed point is the potential term

δSu = 2u

∫
dτ
[
ψ†R(x = 0)ψL(x = 0) + h.c.

]
(44)

which promotes normal reflection at the junction. Be-
cause of the Andreev boundary condition ψ†R(x = 0) =
ψL(x = 0) the definition of δSu above is somewhat sub-
tle. When regularized at length scale ε (for example via
point-splitting) the operator ψ†R(x = 0)ψL(x = 0) scales
to 0 linearly with ε, so a divergent factor of 1/ε must be
absorbed in u to obtain a finite result. The bosonized
form of this finite coupling is

δSu ∼ 4u

∫
dτ cos(2Θ), (45)

which is just the instanton operator in the dual action of
Eq. (36) obtained earlier by complementary means.

Since cos(2Θ) has scaling dimension 2g, to leading or-
der the coupling u flows according to

du

d`
= (1− 2g)u. (46)

Provided g > 1/2 this perturbation is therefore irrelevant
and the Andreev fixed point is stable. Note that this
regime includes the non-interacting limit, g = 1, consis-
tent with our scattering analysis above. For g = 1/2 the
perturbation turns out to be exactly marginal: there ex-
ists a line of RG fixed points which interpolate between
normal and Andreev reflection.

For a strongly repulsive wire with g < 1/2, however,
the potential u is relevant. The Andreev fixed point is
then unstable towards the perfect normal reflection fixed
point analyzed previously (which we found is stable in
this range of g). With g < 1/2 the backscattering term
in Eq. (45) pins cos(2Θ) to −1 at low energies (assuming

u < 0 for concreteness), yielding the two possible pin-
ning values of θ(x = 0) identified at the perfect normal
reflection fixed point in Eq. (17). Because of the bound-
ary condition of fixed θ(x = L) these two pinning values,
corresponding to different fermionic parities on the wire,
are not degenerate, and in fact are split by an energy of
order 1/L.

It is interesting to ask about the fate of the Majo-
rana zero-mode at the junction in this strongly repulsive
regime. Although the tunneling t between γ1 and the
Luttinger liquid is irrelevant for g < 1/2, this term nev-
ertheless has a quantitative effect on the zero-mode oper-
ator since any finite t makes the commutator [H, γ1] non-
zero. Let γnew

1 be the operator for the Majorana mode
that arises when t 6= 0. In principle this operator can
be determined by requiring that [H, γnew

1 ] = 0. We will
alternatively deduce the asymptotic form of the probabil-
ity density P (x) associated with γnew

1 using scaling. [It
is tempting to view P (x) as deriving from the Majorana
wavefunction corresponding to γnew

1 —which is certainly
legitimate in the free-fermion limit but rather subtle in
the interacting case. In the regime of interest here with
g < 1/2, γnew

1 does not generally admit a single-body ex-
pansion in terms of microscopic fermion operators. Ref-
erence 52 discusses this issue and demonstrates that even
for a strongly interacting system a Majorana ‘wavefunc-
tion’ yielding a probability P (x) can be extracted from
matrix elements of a fermion operator at position x with
respect to opposite-parity ground states.]

Dimensional analysis together with Eq. (29) lead to
the following scaling ansatz for P (x),

P (x) =
1

L
P
(
x/L; tL1−(2g)−1

)
, (47)

where L is the length of the Luttinger liquid. Note that
P is a symmetric function of t that vanishes when t = 0.
For g < 1/2 it suffices to treat t perturbatively since
this coupling is irrelevant; at lowest nontrivial order one
obtains

P (x) ∼ 1

L

[
tL1−(2g)−1

]2
P̃(x/L). (48)

In the perturbative regime we expect the Majorana wave-
function to be normalizable in the L → ∞ limit (as op-
posed to plane-wave-like as it is when t is relevant). Un-
der this assumption the probability density P (x) must
be independent of L in the thermodynamic limit which
requires the asymptotic form

P̃(x/L) ∼
( x
L

)1−1/g

. (49)

As an important self-consistency check, we note that for
g = 1/2 (where t is marginal) Eq. (49) yields P (x) ∼
1/x so that the Majorana wavefunction is only quasi-
normalizable. For any g below 1/2, however, one obtains
a normalizable probability distribution consistent with
our ansatz. Thus we conclude that in the g < 1/2 regime
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the irrelevant tunneling between γ1 and the Luttinger
liquid results in a Majorana zero-mode that bleeds into
the wire but remains power-law localized to the interface.
It would be very interesting to test these predictions in
DMRG simulations by adapting the techniques of Ref. 52
to ‘see’ the Majorana wavefunction in this geometry in a
numerical experiment.

We also note as an aside that the critical value of
g = 1/2 coincides with the critical Luttinger parameter
below which pairing induced by proximity in the bulk of
a helical Luttinger liquid is an irrelevant perturbation53.
Thus helical wires with g < 1/2 not only resist Majorana
modes imposed externally by a topological superconduc-
tor as in the junction studied here, but also reject pairing
that would make the wire itself topologically supercon-
ducting.

III. NON-TOPOLOGICAL
SUPERCONDUCTOR–HELICAL LUTTINGER

LIQUID JUNCTIONS

We turn next to junctions formed by ordinary su-
perconductors adjacent to helical Luttinger liquids, as
sketched in Fig. 2(a). One may intuitively expect that
here all traces of Majorana physics captured in the pre-
vious section are simply absent, since the superconduc-
tor no longer supports protected Majorana zero-modes.
While this is indeed true in the non-interacting limit, we
will demonstrate that Majorana modes can generically
appear in the case of interacting helical Luttinger liq-
uids. To establish this counterintuitive result, we first
note that in our analysis of generic properties of the S-
matrix for free fermions in Sec. II A 1, the topological
nature of the superconductor we were considering there
played an irrelevant role. The same analysis [with the
sole modification of dropping the φEγ1 term in Eq. (4)]
applied to present case leads to identical conclusions—in
the E → 0 limit the S-matrix must again be either purely
diagonal or purely off-diagonal. Thus even in the case of
a junction formed with an ordinary superconductor, two
physically allowed fixed points for free fermions remain,
corresponding to perfect normal reflection and perfect
Andreev reflection at the interface. We will adopt a sim-
ilar program to that followed in the previous section, be-
ginning by understanding how to access these two fixed
points for free fermions, and then addressing the stability
of these fixed points when interactions are present using
bosonization.

A. Perfect normal and Andreev reflection fixed
points for free fermions

Let us start by making the (physically reasonable)
assumption that the ordinary superconductor is fully
gapped throughout, so that the helical wire hosts the
only low-energy degrees of freedom. We again write the

Helical LLOrdinary SC γ1γ2

g = 1g = 0

Perfect Andreev Re!ection

Perfect Normal Re!ection

(b)

(c)

g = 2

Helical LLOrdinary SC

(a)

f

FIG. 2: (a) Ordinary superconductor forming a junction with
a helical Luttinger liquid. If the superconductor is fully
gapped throughout, then in the non-interacting limit the he-
lical wire necessarily flows to a fixed point at which perfect
normal reflection occurs at the junction. Accessing the per-
fect Andreev reflection fixed point in the non-interacting limit
requires the presence of a zero-energy Andreev bound state
f = (γ1 + iγ2)/2 at the junction as shown schematically in
(b), with fine-tuning such that the wire couples only to (say)
γ1. (c) Flow diagram for the junction as a function of the
interaction parameter g for the Luttinger liquid. For helical
Luttinger liquids with g < 2, the perfect normal reflection
fixed point is stable. When g > 2, however, this fixed point
is unstable towards the Andreev fixed point. Remarkably,
here the Andreev bound state required to achieve perfect An-
dreev reflection will be generated dynamically, and with no
fine-tuning required.

full Hamiltonian for the problem as H = H0 +δH, where
H0 is the kinetic energy for the wire defined in Eq. (3) [or
equivalently Eq. (1)] and δH contains the terms acting at
the boundary. Retaining only the leading potential and
pairing terms at the junction, one has

δH =

∫ ∞
−∞

dx
[
2uψ†ψ + (i∆ψ∂xψ + h.c.)

]
δ(x), (50)

which simply corresponds to Eq. (12) considered previ-
ously without the Majorana term. The S-matrix for our
Hamiltonian can therefore be read off from Eqs. (13) by
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simply setting t̃ = 0; this yields

SPP = − (ũ+ i)2 + (Ẽ∆̃)2

1 + ũ2 + (Ẽ∆̃)2

SPH =
2iẼ∆̃

1 + ũ2 + (Ẽ∆̃)2
, (51)

where again the tildes denote quantities normalized by
vF .

Notice that when E → 0, ∆ drops out and the S-matrix
takes the form of Eq. (7) corresponding to perfect nor-
mal reflection. No fine-tuning of parameters in δH can
alter this conclusion, nor can additional local perturba-
tions involving only ψ,ψ† (which necessarily carry ad-
ditional derivatives than those already included above,
and are thus unimportant at low energies). Clearly then
the perfect normal reflection fixed point is stable in the
non-interacting limit.

How, then, can one access the physically allowed con-
dition of perfect Andreev reflection? For free fermions,
accessing this fixed point requires the presence of an addi-
tional localized Andreev bound state in the superconduc-
tor, with corresponding operator f , to which the helical
wire can couple; see Fig. 2(b) for a schematic illustra-
tion. (Our conclusions for the general properties of the
S-matrix discussed in Sec. II A 1 again remain unaltered
by the addition of this mode.) To see how this tran-
spires, let us write f in terms of Majorana operators γ1,2

via f = (γ1 + iγ2)/2 and consider the following interface
Hamiltonian,

δH =

∫ ∞
−∞

dx

[
t√
2
γ1(ψ† − ψ) + i

t′√
2
γ2(ψ† + ψ)

]
δ(x)

+ i
δ

2
γ1γ2 (52)

The t, t′ terms encode the most general bilinear couplings
between ψ,ψ† and f, f† (after shifting these operators
by overall phases to make the couplings real), while δ
sets the energy for the Andreev bound state, which will
generically be non-zero. We have dropped the u and ∆
terms considered above for simplicity since these consti-
tute qualitatively unimportant perturbations here. With
this form of δH the S-matrix elements are now given by

SPP = − (t̃t̃′ − iδ̃)2 + Ẽ2

(t̃t̃′)2 + δ̃2 − i(t̃2 + t̃′2)Ẽ − Ẽ2

SPH =
−i(t̃2 − t̃′2)Ẽ

(t̃t̃′)2 + δ̃2 − i(t̃2 + t̃′2)Ẽ − Ẽ2
, (53)

with t̃ = t/vF , etc. in our usual notation. As before, one
finds that in the limit E → 0 the off-diagonal elements
still generally vanish, reflecting stability of the perfect
normal reflection fixed point even in the presence of an
additional Andreev bound state at the junction. One
can, however, now fine-tune couplings in δH to obtain
the desired perfect Andreev reflection at zero energy by

taking δ = 0 and either t = 0 or t′ = 0. For concrete-
ness let us choose t′ = δ = 0, upon which the S-matrix
components become simply

SPP =
Ẽ

it̃2 + Ẽ

SPH =
it̃2

it̃2 + Ẽ
. (54)

Taking E → 0 in this fine-tuned limit produces an S-
matrix of the form in Eq. (8), which indeed corresponds
to perfect Andreev reflection.

More physically, in the non-interacting limit perfect
Andreev reflection in the E → 0 limit can emerge in this
type of junction only when a pair of zero-energy Majo-
rana modes appears at the boundary, with the helical
wire coupling to only one of these. Thus precisely as in
the topological superconductor junction, the absorption
of the Majorana mode γ1 into the helical wire underlies
the onset of perfect Andreev reflection. One crucial dif-
ference of course is that this Majorana’s partner, γ2, is
spatially separated in the topological case, which allows
the Andreev fixed point to be stable for free fermions. In
the present context the coupling t′ to γ2 in Eq. (52) is
generically non-zero, and constitutes a relevant perturba-
tion which drives the system back to the perfect normal
reflection fixed point.

A second, and intimately related, difference relative to
the topological case is that here γ1 and γ2 generally com-
bine to form an Andreev bound state with finite energy δ.
Interestingly, provided t′ = 0 perfect Andreev reflection
nevertheless survives when incident electrons in the heli-
cal wire are resonant with this bound state. This can be
understood from Eqs. (53) by noting that when t′ = 0 the
S-matrix becomes purely off-diagonal at energy E = δ.
Similar behavior has been captured previously by Law et
al.29 in the context of tunneling into discrete Majorana
edge modes in a two-dimensional p+ ip superconductor.
However, we believe this behavior is special to the free
Fermi case g = 1 and does not survive in the interacting
context.

Before turning to the interacting case it will prove ben-
eficial to discuss the t′ and δ perturbations from a slightly
different perspective. At the perfect Andreev reflection
fixed point, the coupling t—which must be treated non-
perturbatively—strongly constrains the behavior of γ1 at
low energies. More precisely, at energies E � t the dy-
namics of γ1 are ‘slaved’ to those of ψ and ψ† such that
the system avoids paying a large energy cost from the t
term in Eq. (52). One can show this explicitly by diago-
nalizing the Hamiltonian H = H0 + δH with t′ = δ = 0,

H =

∫
dx

[
−ivFψ†∂xψ +

t√
2
γ1(ψ† − ψ)δ(x)

]
, (55)

for a finite-size wire and then expanding ψ and γ1 in
terms of the resulting low-energy modes. This calculation
is sketched in Appendix C, and yields the familiar perfect
Andreev reflection boundary condition, ψ(x = 0+) =
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ψR(x = 0) = ψ†(x = 0−) = ψ†L(x = 0), along with the
following constraint on γ1 at low energies:

γ1 = i
vF√

2t
[ψ†(0+)− ψ(0+)− ψ†(0−) + ψ(0−)]. (56)

One can understand this result more intuitively in the
following manner. Let us decompose ψ(x) in terms of
two Majorana modes by writing

ψ(x) =
γr(x) + iγi(x)

2
; (57)

in this new basis the Hamiltonian reads

H = −i
∫
dx

[
vF
4

(γr∂xγr + γi∂xγi) +
t√
2
γ1γiδ(x)

]
.

(58)

While γr(x) is unaffected by γ1, the Majorana γi(x) ex-
hibits a sign change at x = 0 due to the coupling t. Ulti-
mately this sign change gives rise to the perfect Andreev
reflection boundary conditions. Since γi(x) behaves sin-
gularly at the interface it is helpful to introduce a new
Majorana operator γ̃i(x) which is well-behaved every-
where by defining

γi(x) = sgn(x)γ̃i(x). (59)

Differentiating the Euclidean action corresponding to Eq.
(58) with respect to γi yields the following equation of
motion:

0 = (∂τ − ivF∂x)γi + i
√

2tγ1δ(x). (60)

Rewriting this using Eq. (59) yields a second term pro-
portional to δ(x) due to the singular nature of the trans-
formation at x = 0:

0 = sgn(x)(∂τ γ̃i− ivF∂xγ̃i)+ i
√

2t

(
γ1 −

√
2vF
t

γ̃i

)
δ(x).

(61)
At energies E � t, the fields must conspire to eliminate
the boundary terms above so that t disappears entirely
from the equation of motion. This indeed occurs if we
pin γ1 =

√
2vF
t γ̃i, which agrees with Eq. (56) derived by

completely different means.
It follows from Eqs. (52) and (56) that the two leading

perturbations about the perfect Andreev reflection fixed
point, given by turning on t′ and δ, project to the same
operator at low energies.

B. Stability of the perfect normal and Andreev
reflection fixed point with interactions

Having understood how to access the physically al-
lowed perfect normal and Andreev reflection fixed points
for free fermions, we proceed now to assess the stabil-
ity of each when interactions are present, beginning with

the former. Just as in Sec. II B, bosonizing the Hamil-
tonian and imposing perfect normal reflection boundary
conditions pins θ(x = 0) to either 0 or π. Equation (20),
repeated here for clarity,

Snormal =
g

2π

∫
dω

2π
|ω||Φ|2, (62)

again describes the fixed point action for the fluctuating
field Φ ≡ φ(x = 0). Due to the generic absence of Ma-
jorana modes at the junction, however, Eq. (21) no long
provides the leading perturbation away from this fixed
point. Instead, the most relevant perturbation which in-
duces Andreev reflection at the junction corresponds to
processes in which a Cooper pair hops from the helical
Luttinger liquid into the ordinary superconductor:

δS∆ = ∆

∫
dτ [iψ†R(x = 0)ψ†L(x = 0) + h.c.]

∼ 2∆

∫
dτ sin(2Φ). (63)

Equation (63) can be obtained via point-splitting in the
unfolded chiral fermion theory: exp(2iΦ) is the leading
operator appearing in the operator product expansion of
two ψ† fields. Since sin(2Φ) has scaling dimension 2/g,
the coupling ∆ flows according to

d∆

d`
= (1− 2g−1)∆ (64)

and is therefore irrelevant for g < 2. Thus the perfect
normal reflection fixed point is stable not only for free
fermions, but also for helical Luttinger liquids with arbi-
trarily strong repulsive interactions, or attractive inter-
actions below a critical strength. When attractive inter-
actions exceed this critical strength, resulting in g > 2,
∆ then constitutes a relevant perturbation which drives
the system away from this fixed point. Physically, super-
conductivity is induced at the endpoint and spreads to
the rest of the wire, resulting in a ‘topological’ supercon-
ductor, but without exponentially localized end states.
Rather, because the superconductivity was seeded at only
one endpoint, the Majorana modes both effectively live
at that endpoint, with a splitting that turns out to be
power law vanishing in the length of the wire. We will
now argue more precisely that the helical Luttinger liq-
uid flows to perfect Andreev reflection, and explain the
physical consequences.

Duality once again provides an effective tool for iden-
tifying the fate of the system when g > 2. Following
the steps outlined in Eqs. (30) through (36) to dualize
Snormal + δS∆, one obtains the dual action

S′dual =

∫
dω

2π

|ω|
2πg
|Θ|2 − v′

∫
dτ cos Θ. (65)

Here Φ and Θ/π are once again conjugate variables, so
that cos Θ represents an instanton operator which tunnels
between adjacent minima of the sin(2Φ) potential in Eq.
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(63). Thus v′ is expected to be irrelevant when ∆ is rel-
evant (and vice versa), suggesting that S′dual with v

′ = 0
describes the physically allowed perfect Andreev reflec-
tion fixed point that we identified in the free fermion case.
Furthermore, since cos Θ represents the fermion parity in
the helical Luttinger liquid, the dual action above also
suggests the following: 1) at the fixed point with v′ = 0
there is a degeneracy between states with even and odd
fermion number, and 2) the leading perturbations away
from this fixed point split this degeneracy. We will now
put these statements on firmer footing by explicitly con-
structing the fixed point action and leading perturbations
beginning from the fermionic theory.

As in Sec. II C, the perfect Andreev reflection bound-
ary condition pins φ(x = 0) = 0 or π, and the fixed point
action for Θ ≡ θ(x = 0) derived by bosonizing the Hamil-
tonian and integrating out the fields away from x = 0 is
given by

SAndreev =

∫
dω

2π

|ω|
2πg
|Θ|2, (66)

which indeed recovers S′dual in the v′ = 0 limit. One
might naively guess that the most relevant perturbation
that induces normal reflection is the u term in Eq. (44),
but this is incorrect. To properly capture the physics it is
crucial to recall how we accessed the Andreev fixed point
in our scattering analysis for free fermions above. Doing
so required the presence of two zero-energy Majorana
modes at the junction, γ1 and γ2 in Fig. 2(b), along with
fine-tuning such that the helical wire absorbed γ1 (say)
but decoupled completely from γ2. Without interactions
perfect Andreev reflection at zero energy emerges only
in this fine-tuned limit. One can then see that the lead-
ing perturbations correspond to the δ term in Eq. (52)
which lifts the energy of γ1,2 and the coupling between
the Luttinger liquid and the Majorana mode γ2,

δSγ2
= i

δ

2
γ1γ2

+
t′√
2

∫
dτγ2[ψR(x = 0)† + ψR(x = 0)]. (67)

Both perturbations were tacitly neglected by asserting
that the system resided at the perfect Andreev reflection
fixed point. We have explicitly verified in Sec. IIIA
that both of these project to the same operator in the
low energy limit, which corresponds to the one leading
operator cos Θ that appears upon performing the duality
transformation.

Deducing the flow of v′ as discussed in Sec. II B, one
finds

dv′

d`
= [1− g/2]v′. (68)

For g < 2 this coupling is relevant and drives the system
back to the perfect normal reflection fixed point, which
is indeed stable in this regime. More interestingly, for

a helical Luttinger liquid with strong attractive interac-
tions such that g > 2, coupling to this second Majo-
rana mode represents an irrelevant perturbation, imply-
ing stability of the perfect Andreev reflection fixed point.
In other words the fine tuning required to access perfect
Andreev reflection for free fermions is no longer necessary
with strong attractive interactions. Figure 2(c) summa-
rizes the renormalization group flows found in this section
for the ordinary superconductor/helical Luttinger liquid
junction. Similarly to the case of the helical/topological
junction, when g > 2 we expect one of the two dynami-
cally generated Majorana modes to delocalize completely
into the Luttinger liquid, and the other one to be power-
law localized at the junction.

IV. NON-TOPOLOGICAL
SUPERCONDUCTOR—SPINFUL LUTTINGER

LIQUID JUNCTIONS

We now consider a junction between a non-topological
superconductor and a semi-infinite spinful Luttinger liq-
uid [see Fig. 3(a)]. In previous work on this problem54,55,
conductance and local density of states were calculated
at the Andreev fixed point of such a junction. Here we
emphasize that for weakly repulsive interactions such an
Andreev fixed point is ultimately unstable, and the sys-
tem generically crosses over to the normal reflecting fixed
point. This instability of the Andreev fixed point is in
fact crucial for establishing sharp transport signatures of
Majorana modes in the topological case considered in the
next section.

We begin by bosonizing the problem. The two spin
channels α =↑, ↓ are bosonized according to

ψR/Lα = e(iφα±iθα). (69)

Defining the charge and spin fields

φρ/σ = (φ↑ ± φ↓) /
√

2

θρ/σ = (θ↑ ± θ↓) /
√

2, (70)

we then consider the general quadratic bulk action

Sbulk =
v

2π

∫ ∞
0

dx

∫
dτ

[
i

π
∂xθρ∂τθρ +

i

π
∂xφσ∂xθσ

+
gρ
2π

(∂xφρ)
2

+
gσ
2π

(∂xφσ)
2

+
g−1
ρ

2π
(∂xθρ)

2
+
g−1
σ

2π
(∂xθσ)

2

]
.

(71)

Here gρ/σ are the Luttinger parameters characterizing in-
teractions in the charge/spin sectors, and v the velocity.
To facilitate a Luttinger liquid analysis, we first (implic-
itly) assume a single velocity v and also gσ = 1, which
corresponds to a spin-SU(2) invariant system. We then
discuss how the analysis is modified in the experimen-
tally relevant situation where SU(2) breaking terms are
present.
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FIG. 3: (a) Trivial superconductor forming a junction with a
spinful Luttinger liquid. (b) Flow diagram for the junction as
a function of the charge-sector interaction parameter gρ for
the Luttinger liquid, in the limit where the spin-sector inter-
action parameter is gσ = 1. Note that the free-fermion limit
is very special—here there are marginal boundary couplings
which lead to a non-universal zero-bias conductance ranging
anywhere from 0 to 4e2/h depending on parameters. For any
repulsive interaction strength (gρ < 1), however, the junction
flows to the perfect normal reflection fixed point where the
zero-bias conductance vanishes.

There are two natural fixed points: normal reflecting,
with θρ, θσ pinned at x = 0, and Andreev reflecting, with
φρ and φσ pinned. The boundary action for the normal
fixed point is obtained by integrating out all fields except
for φρ/σ(x = 0), resulting in

Snormal =

∫
dω

2π

|ω|
2π

[
(gρ + gσ)

2

(
|Φ↑|2 + |Φ↓|2

)
+ (gρ − gσ)Φ↑(ω)Φ↓(−ω)

]
, (72)

where Φ↑/↓ ≡ φ↑/↓(x = 0). The leading perturbation to
this boundary action is the Cooper-pair tunneling term
cos(
√

2Φρ), which has dimension g−1
ρ and is hence rele-

vant for gρ > 1. In this range of gρ, the resulting Andreev
fixed point to which the system then flows is simply the
dual of Eq. (72):64

SAndreev =

∫
dω

2π

|ω|
2π

[
(g−1
ρ + g−1

σ )

2

(
|Θ↑|2 + |Θ↓|2

)
+ (g−1

ρ − g−1
σ )Θ↑(ω)Θ↓(−ω)

]
,

(73)

with Θ↑/↓ ≡ θ↑/↓(x = 0). The leading perturbation
is now normal backscattering, described by cos(

√
2Θρ),

with scaling dimension gρ.

The key point is that in the physically relevant regime
of weak repulsive interactions, gρ < 1, this normal
backscattering term is relevant—i.e., the Andreev fixed
point is unstable. Thus a junction between a spinful Lut-
tinger liquid and an ordinary non-topological supercon-
ductor is described by a stable normal reflecting fixed
point. This stands in sharp contrast to the free fermion
situation gρ = 1, where these operators are exactly
marginal and allow any value of the zero-bias conduc-
tance between 0 and 4e2/h, as can be seen by explic-
itly solving the free fermion scattering problem. (This is
actually a special case of the free fermion solution for
the topological/spinful junction presented in the next
section; indeed, upon setting the coupling to the Ma-
jorana to zero one obtains the non-universal zero-bias
conductance quoted here.) Arbitrarily weak repulsive in-
teractions drive a crossover to the normal reflecting fixed
point, where the conductance goes to zero. Figure 3(b)
summarizes the renormalization group flows for this case.

Of course, in any proposed physical realization of a Ma-
jorana wire, spin-SU(2) symmetry is broken by the Zee-
man and spin orbit couplings (but in a simple Rashba
model with density-density interactions and spin orbit
coupling gσ = 1 because of a hidden SU(2) symmetry52).
At the level of free fermions, the only modifications these
force on the low energy theory is differing Fermi momenta
and velocities for the two species. The former is simply a
restriction on the types of operators that can appear as
perturbations (i.e. some operators might not be allowed
because of a kF mismatch), while the latter appears di-
rectly in the low energy action. To include interactions
we must bosonize, and it is easiest to do so in a basis
which diagonalizes the velocity; that is, we separately
bosonize the two spin modes with the differing veloci-
ties. The kinetic term then becomes an arbitrary 2 by
2 symmetric matrix which generalizes the two Luttinger
parameters gρ and gσ. In principle we can integrate out
the bulk to obtain a boundary theory and analyze the rel-
evance of Cooper pair tunneling as above. Although the
resulting phase diagram depends in a complicated way on
the three kinetic term coefficients and the two different
velocities, it is still the case that the free fermion point is
exactly marginal for any choice of velocities. Hence there
is a robust region of interaction parameter space near the
free fermion fixed point - roughly speaking the set of re-
pulsive interactions - where we are driven to the perfect
normal reflecting fixed point. Thus, even in the case of
spin-SU(2) symmetry breaking we generically expect no
zero bias peak in the non-topological superconductor /
spinful Luttinger liquid junction.

V. TOPOLOGICAL
SUPERCONDUCTOR—SPINFUL LUTTINGER

LIQUID JUNCTIONS

Finally, we analyze the junction sketched in Fig. 4(a)
between a topological superconductor and a semi-infinite
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spinful Luttinger liquid. As in the helical case we will
first attack the free-fermion limit and then treat the in-
teracting case using bosonization.

A. Scattering problem for free fermions

We start with the free fermion scattering problem and
compute the zero bias tunneling conductance when one
allows for rather general boundary terms in the Hamil-
tonian. Remarkably, we will show that this is robustly
quantized at 2e2/h independent of parameters, so long
as coupling to the Majorana zero-mode at the junction
remains finite. Consider first the case when the spinful
Luttinger liquid exhibits SU(2) spin rotation symmetry
in the bulk. Coupling to the Majorana mode γ at the
junction can then always be gauge transformed to the
form29

δHλ = iλ

∫
dx γ (ψ1 + ψ†1) δ(x), (74)

where ψ1,2 can be obtained from ψ↑,↓ via a rotation and
a phase (we have replaced our previous label γ1 with γ
for future notational clarity). Neglecting terms involv-
ing derivatives, the most general quadratic form of the
boundary Hamiltonian at x = 0 reads

δH =

∫
dx δ(x)

[
iλ γ (ψ1 + ψ†1)

+ (∆12ψ1ψ2 + v12ψ
†
1ψ2 + v11ψ

†
1ψ1 + v22ψ

†
2ψ2 + h.c.)

]
(75)

Because ∆12 and v12 are complex while v11 and v22 are
real, we have a total of 6 real parameters. The conduc-
tance follows upon computing the S-matrix as a function
of these 6 parameters and then summing up the proba-
bilities of the Andreev processes.

Let us now perform the calculation in detail. We first
decompose ψ1,2 in terms of Majorana fermion field oper-
ators γµ as follows:

ψ1 = γ0 + iγ2

ψ2 = γ1 + iγ3 (76)

and rewrite Eq. (75) as

δH = i

∫
dx

[
λγγ0(0) +

1

2

∑
µ,ν

gµνγµ(0)γν(0)

]
. (77)

Here gµν is a real anti-symmetric matrix, encoding the
6 free parameters introducted earlier. Let S0 be the free
fermion bulk action of the spinful wire and δS be the
boundary action corresponding to Eq. (77). The equa-
tions of motion that follow from varying S0 + δS are:

0 =
δ(S0 + δS)

δγ
= iλγ0(0)− Eγ

0 =
δ(S0 + δS)

δγµ
= −i∂xγµ + i

∑
ν

gµνγν(0)δ(x)

− iλγδµ0δ(x)− Eγµ. (78)

Here we have used time translation invariance to restrict
to a solution with energy E. To handle the derivatives
and delta functions at x = 0, we introduce the notation
γi(0

±) = γi(±ε). At E = 0, the first equation of motion
then gives γ0(0+) = −γ0(0−), and thus the remaining
ones become

γi(0
+) = γi(0

−) +

3∑
j=1

gijγj(0) (79)

for j = 1, 2, 3. These can be summarized as

γµ(0+) =
∑
ν

Mµνγν(0−) (80)

where M00 = −1, M0i = Mi0 = 0, and Mij = A−1B,
with Aij = δij−gij , Bij = δij+gij . In fact, the 3×3 ma-
trixMij is just a generic element of SO(3). Equation (80)
gives the scattering matrix in terms of Majorana fields.
Changing basis to complex Fermi fields and calculating
the four Andreev transmission probabilities ψ†i → ψj , we
find that they generically add up to 1; consequently the
zero-bias conductance is indeed quantized at 2e2/h.

What about the physically relevant SU(2) non-
invariant case? For gapless free fermions, the only way to
break SU(2) invariance is to introduce different velocities
v1,2 so that

H0 =

∫ ∞
0

dx
∑
α=1,2

[
−ivα

(
ψ†Rα∂xψRα − iψ

†
Lα∂xψLα

)]
.

(81)
Now we cannot rotate the fields in such a way that only
ψ1 couples to the Majorana mode γ, and are forced to
retain both λ0γγ0(0) and λ1γγ1(0). Proceeding as in the
SU(2)-invariant case we again derive Eq. (80), where now
M = Ã−1B̃. The matrices on the right side are given by
Ã = V + G + L, B̃ = V − G − L, with 4 × 4 matri-
ces V,G,L defined as follows: V = diag(v1, v2, v1, v2),
Lµν = − i

Eλµλν (where λµ = 0 for µ > 1), and Gµν a
general anti-symmetric E-independent matrix containing
the quadratic boundary couplings.

In the case of differing velocities, the matrixM defined
above is no longer equivalent to the scattering matrix,
and in particular is not unitary. Indeed, the unitarity of
the S-matrix follows from the conservation of probability
current, which is proportional to V . The correct S matrix
is then given by

S =
√
V M

1√
V

(82)

Rewriting this equation as

S =

(
1√
V
A

1√
V

)−1(
1√
V
B

1√
V

)
(83)

and noting that

1√
V
A

1√
V

= δµν +
1√
V

(G+ L)
1√
V

(84)
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FIG. 4: (a) Topological superconductor forming a junction
with a spinful Luttinger liquid. (b) Flow diagram for the junc-
tion as a function of the charge-sector interaction parameter
gρ for the Luttinger liquid when the spin-sector interaction
parameter is gσ = 1. For gρ < 1/3 the system flows to a per-
fect normal reflection fixed point characterized by a vanishing
zero-bias conductance. When gρ > 1/3, however, the junction
flows to a novel fixed point corresponding to perfect Andreev
reflection for one species and perfect normal reflection for the
other, yielding a quantized 2e2/h conductance.

and similarly for B, we can now perform the rotation
along µ, ν = 0, 1 to eliminate λ1. Taking the limit E → 0
we recover the same form of the S-matrix as in the SU(2)
non-invariant case, and the same quantized conductance
G = 2e2/h.

As remarked in the preceding section this result breaks
down only when the coupling to the Majorana is fine-
tuned to zero. In this special limit one obtains a
free fermion non-universal zero-bias conductance rang-
ing from 0 to 4e2/h [in contrast to the helical case, Pauli
blocking is absent here so that the ∆12 term in Eq. (75)
can efficiently transmit Cooper pairs into the supercon-
ductor]. From this perspective it is somewhat curious
that when the Majorana coupling is restored, ∆12 is un-
able to enhance the zero-bias conductance beyond 2e2/h.
Evidently one of the channels [ψ1 in the SU(2)-invariant
limit] hybridizes with the Majorana mode γ, leading to
Andreev boundary conditions but also blocking transport
of ψ1ψ2 Cooper pairs. We should emphasize that this re-
sult is specific to having only two conducting channels.

B. Phase diagram with interactions

We now analyze the interacting case. We first bosonize
as in the previous section, obtaining the bulk action in
Eq. (71). Though we write expressions with general gσ,
in the stability analysis we assume gσ = 1, i.e., unbro-

ken SU(2) spin rotation symmetry in the bulk of the
Luttinger liquid. Then we proceed to discuss the physi-
cally relevant SU(2) non-invariant case. As for the heli-
cal/topological junction, we now need to include an ad-
ditional effective spin-1/2 degree of freedom for the Ma-
jorana modes at the ends of the topological superconduc-
tor. For simplicity we assume that the Majorana mode
at the junction only couples to (say) the spin-up electron.
Tunneling onto the boundary Majorana mode bosonizes
to

δSλ = λ

∫
dτσx cos Φ↑. (85)

[As before we define Φ↑/↓ = φ↑/↓(x = 0) and Θ↑/↓ =
θ↑/↓(x = 0)]. Having already dealt with the subtleties of
the spin-1/2 degree of freedom in Sec. II, we now arbi-
trarily fix the eigenvalue of σx to +1 and drop σx from
the subsequent analysis.

We begin with the normal reflecting fixed point real-
ized at λ = 0, where Θα = 0. To determine its stabil-
ity we have to compute the scaling dimension of cos Φ↑,
which using Eq. (72) is (g−1

ρ + g−1
σ )/4. With gσ = 1,

this term is relevant for gρ > 1/3. In this case, the
system flows to a novel Andreev/normal (A ⊗ N) fixed
point where Φ↑ and Θ↓ are simultaneously pinned. Here
the spin-up electrons exhibits perfect Andreev reflection
while the spin-down electrons undergo perfect normal
reflection. Deriving the boundary field theory action
for this new fixed point is somewhat subtle. We again
start with the bulk action (71), but this time we inte-
grate out φ↑ and θ↓, taking care to respect the boundary
conditions φ↑(x = 0) = θ↓(x = 0) = 0 (handling these
boundary conditions incorrectly results in a spurious to-
tal derivative term for the bulk that non-trivially modi-
fies the boundary field theory, yielding the wrong scaling
exponents). This yields

S =

1

2π

∫
dxdτ

[
2

(gρ + gσ)
(∂µθ↑)

2 +
2

g−1
ρ + g−1

σ

(∂µφ↓)
2

]
+
i

π

∫
dxdτ

(
gρ − gσ
gρ + gσ

)
(∂τθ↑∂xφ↓ − ∂xθ↑∂τφ↓) .

(86)

Note that the second (Berry phase) term is a total deriva-
tive, and can be integrated to give

SBerry = − i
π

∫
dτ

(
gρ − gσ
gρ + gσ

)
Θ↑∂τΦ↓ (87)

Integrating out φ↓(x) and θ↑(x) for x > 0 from (86) and
combining the result with (87) finally yields the following
fixed-point action

SA⊗N =∫
dω

2π

|ω|
2π

[
2

(g−1
ρ + g−1

σ )
|Φ↓|2 +

2

(gρ + gσ)
|Θ↑|2

]
+
i

π

(
gρ − gσ
gρ + gσ

)∫
dτ Φ↓∂τΘ↑. (88)
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From Eq. (88) we can determine all of the scaling di-
mensions. In particular, ψ↑∂xψ↑ ∼ e2iΘ↑ has scaling di-
mension 4/(g−1

ρ + g−1
σ ), and is thus relevant precisely for

gρ < 1/3. In that case the system flows back to the nor-
mal reflecting fixed point, whereas for gρ > 1/3 it is the
leading irrelevant operator around the new A ⊗N fixed
point. These renormalization group flows are summa-
rized in Fig. 4(b).

We now perform a more general analysis, involving all
possible bulk perturbations - in particular, we include
SU(2) breaking terms. Such bulk perturbations are im-
portant to analyze because they may qualitatively change
the starting point for the boundary RG from which the
A⊗N fixed point was derived. At the free fermion fixed
point, the leading physical perturbations are marginal:
they involve various combinations of bilinears in ∂φ

L/R
α

and e±iφ
L/R
α , where φL/Rα , α = 1, 2 are the two left/right

moving bosonic fields in an appropriately normalized ba-
sis. Some of these operators correspond to changes in
Luttinger parameters as well as perturbations away from
the equal velocities case. In the free fermion limit this
does not open any bulk gaps, and we conjecture that this
is the case even with interactions. Hence they likely do
not destabilize the boundary A ⊗ N fixed point. There
is also the operator cos(

√
2θσ), which corresponds phys-

ically to an attractive U Hubbard interaction inducing
power-law superconducting long range order and the for-
mation of a spin gap. At this bulk RG fixed point electron
tunneling onto the Majorana mode becomes highly irrel-
evant: the electrons are bound up in Cooper pairs. Of
course, the entire lead has then already become super-
conducting, so there is no meaningful way to discuss a
zero bias anomaly due to Majorana modes in this case.
The remaining operators break the SU(2) spin symmetry
to a Z2 Ising symmetry which in turn is spontaneously
broken, resulting in a ferromagnetic bulk. This situation
is dual to the one in which cos(

√
2θσ) condenses, so the

A⊗N fixed point does not survive here either. However,
for all physical SU(2) breaking perturbations, such as
spin orbit coupling and magnetic field, the A ⊗ N fixed
point is stable.

VI. DISCUSSION

In light of the intense current effort to realize Majorana
fermions in condensed matter systems, it is important to
understand the experimental signatures of these topolog-
ically protected zero modes. In this work, we focused on
tunnel junctions from normal Luttinger liquid leads to
superconductors in order to probe the existence of Majo-
rana zero modes in the latter. Our approach was based
on universality, and the low energy fixed points we found
govern a wide variety of experimental setups—not just
junctions in the limit of weak tunneling. In particular,
from a low energy universality point of view, it makes
sense to consider four general junction archetypes, where
in addition to the binary choice of topological or trivial

superconductor one can also make the normal lead either
helical (effectively spinless) or spinful. We found that the
transport signatures of such junctions are radically dif-
ferent and allow a robust distinction between topological
and trivial superconductors.

Specifically, we found distinct low energy fixed points
corresponding to perfect normal and perfect Andreev
reflection, and determined their regimes of stability in
the different junction archetypes. Crucially, for the
most physically relevant case of weak repulsive interac-
tions we found that the stability of the normal reflect-
ing fixed point is equivalent to the absence of a Majo-
rana zero mode. Conversely, the presence of a Majo-
rana zero mode in this regime can be uniquely detected
through a quantized conductance G = 2e2/h character-
istic of the Andreev fixed point. We showed that such
a quantized conductance is indeed a ‘smoking-gun’ sig-
nature of topological superconductivity. It should be
again stressed that this distinction is not necessarily cap-
tured in the free fermion case—scattering theory in the
non-interacting limit allows for similar conductances in a
spinful/topological and spinful/non-topological junction.
Fortunately, repulsive interactions restore the sharp con-
ductance dichotomy between these setups.

Let us summarize the physical consequences of the
renormalization group flows for each of the junction
archetypes.

A. Helical wire—topological superconductor
junction

Let us first discuss the helical/topological junction,
which in the regime g > 1/2 should manifest a zero-
bias anomaly associated with tunneling onto a Ma-
jorana fermion. Typically captured in terms of free
fermions26–30,32,33,35 (but see Refs. 56,57), we found the
zero-bias anomaly to be robust to rather strong repul-
sive interactions and arbitrarily strong attractive inter-
actions. To calculate the value of the zero-bias conduc-
tance, we compute the imaginary time current-current
correlation function

Π(τ) = 〈I(τ)I(0)〉, (89)

which determines the conductance through the Kubo for-
mula

G =
1

~
Π(iω → ω + iδ)

iω
. (90)

Since Θ/π gives the total charge on the Luttinger liquid,
the current is I = eΘ̇/π. Using the fixed-point bound-
ary action of Eq. (36) (with v = 0) it is straightforward
to show that Π(iω) = e2g|ω|/π, which apparently yields
G = g

(
2e2/h

)
. However, this result fails to take into ac-

count the finite extent of the helical wire and the fact that
it must ultimately be contacted by Fermi liquid leads [see
Eq. (36)]. This is a familiar problem in Luttinger liquid
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FIG. 5: Sample dI/dV curve as a function of voltage V (in
arbitrary units) for g = 0.95 in a helical nanowire/topological
superconductor junction. The blue and red portions are the
perturbative results around the normal and Andreev fixed
points respectively, calculated according to Eq. (91).

theory, and can be resolved in various ways by correctly
modeling the wire together with the leads58,59. A partic-
ularly convenient scheme is to continuously interpolate
the Luttinger parameter between its interacting value of
g and its free fermion value of 1. [One can implement
this interpolation scheme with a spatially varying g(x)
that takes on a value of g close to the junction and 1
far away. In our boundary theory for the junction, this
produces a frequency-dependent g(ω) that goes to one
at zero frequency and g at high frequency.] This simple
model already exhibits a crossover of the frequency de-
pendent conductance G(ω) from g

(
2e2/h

)
for ω > vF /L

to 2e2/h for ω < vF /L (assuming this energy scale is
smaller than the other relevant scales in the problem).
Hence, even in interacting junctions, the zero-bias con-
ductance is expected to be quantized at G = 2e2/h.

Universality also gives the line-shape of the finite bias
conductance curve dI/dV as a function of V . The RG
flow from the unstable normal reflecting fixed point to the
stable Andreev one defines a crossover voltage V ∗, which
is roughly the width of the zero bias anomaly. The entire
dI/dV curve can in principle be determined from univer-
sality. Although the general calculation is involved, it is
easy to calculate dI/dV for V � V ∗ and V � V ∗ by
performing perturbation theory around the normal and
Andreev fixed points respectively. We obtain

G ∼

{
(V/V ∗)−2(1−1/(2g)), V � V ∗

2e2/h− (V/V ∗)2(2g−1), V � V ∗,
(91)

with the corresponding conductance line-shape illus-
trated in Fig. 5. Equation (91) is valid down to voltage
~vF /(eL), which we assume to be much smaller than V ∗.
Extracting the same value of g from fitting experimental
results to Eq. (91) for both high and low V would provide
a non-trivial check of our results.

In fact, there is some subtlety involved in the derivation
of (91). Indeed, for V � V ∗, general scaling arguments
show only that

G(V, t) = G̃

(
t/t0

(V/V0)1−1/(2g)

)
(92)

where G̃ is a scaling function and t0 is defined at the
cutoff scale V0. G̃(x) is an even function of x, so gener-
ically we expect G̃(x) ∼ x2. However, for free fermions,
(13) and (10) show that G̃(x) ∼ x4, i.e. the coefficient
of the quadratic term in G̃ vanishes. We believe this to
be highly non-generic, and expect that as soon as inter-
actions are turned on, the coefficient becomes non-zero.
We can also consider finite temperature, in which case
we have a two-parameter scaling function

G(V, T, t) = ˜̃G(t/V 1/2, t/T 1/2) (93)

Again, while in the free fermion case G̃(x) has a non-
generic vanishing of the quadratic term in x, the lin-
ear response conductance at high T has a non-vanishing
quadratic term. That is, ˜̃G with the first argument set
at infinity has non-zero second derivative with respect
to the second term. This qualitative distinction between
zero temperature free Fermi and generic results again un-
derscores the power of universality and the utility of our
approach.

Apart from the conductance, the fixed points studied
here can be further distinguished by the behavior of the
local density of states at the junction. Following Ref. 55
the junction’s local density states at frequency ω evalu-
ated at each fixed point is given by

ρLDOS(ω) ∼

{
ω1/g−1 (perfect normal reflection)
ωg−1 (perfect Andreev reflection).

(94)
For the helical/topological junction, normal reflection is
stable in the regime g < 1/2, and the local density of
states vanishes as a power law in ω. More interestingly,
for 1/2 < g < 1, which is likely the most physically
accessible regime for solid state systems, the Andreev
fixed point is stable and results in a divergent density
of states at low energies. This remarkable feature has
also been predicted for a spinful Luttinger liquid-ordinary
superconductor junction with perfect Andreev reflection
boundary conditions (but see the discussion below), and
may be observable in tunneling measurements55. At-
tractive interactions corresponding to g > 1 remove this
divergence, despite the perfect Andreev reflection fixed
point remaining stable there as well.

B. Helical wire—non-topological superconductor
junction

In the case of a helical/non-topological junction, the
normal reflecting fixed point is stable for g < 2. Thus,
in the physical regime of weak repulsive interactions, the
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FIG. 6: Sample dI/dV curve as a function of voltage V
(in arbitrary units) for g = 0.7 in a helical nanowire/non-
topological superconductor junction. The red portion is cal-
culated according to Eq. (95), while at sufficiently low volt-
ages (blue curve) the Fermi liquid leads dominate and we have
a crossover to g = 1 scaling.

zero-bias tunneling conductance is predicted to vanish.
We can again use perturbation theory to extract the finite
bias conductance for small V . We obtain the power law
vanishing form

G ∼ (V/V ∗)2(2/g−1). (95)

We expect this form to be valid down to voltages eṼ ∼
~vF /L, below which point the finite length of the inter-
acting Luttinger liquid becomes important. Indeed, if
we model the helical wire as a Luttinger liquid whose
Luttinger parameter changes continuously from its inter-
acting value of g to the free Fermi value 1 at x ∼ L, then
for eṼ ∼ ~vF /L we are mostly sensitive to the long dis-
tance free Fermi part of the lead, and thus we expect the
conductance to cross over to the behavior given by (95)
with g = 1 (see Fig. 6).

The stability of the normal reflecting fixed point in the
physical regime 1/2 < g < 1 also yields a different local
density of states for the helical/non-topological junction.
Indeed, Eq. (94) shows that

ρLDOS(ω) ∼ ω1/g−1 (96)

vanishes at zero energy.

C. Spinful junctions

The analysis of the spinful junctions proceeds analo-
gously to that of the helical junctions. In the case of a
topological superconductor we once again have a zero-
bias anomaly, and we can compute the shape of the con-
ductance curve for high and low V from the scaling di-
mensions of the leading perturbations to the normal and
Andreev fixed points respectively. Using the results of
the previous section, and assuming gσ = 1 (i.e., spin

SU(2) invariance) for simplicity, we obtain

G ∼

 (V/V ∗)−
3−g−1

ρ
2 , V � V ∗

2e2/h− (V/V ∗)
6gρ−2

gρ+1 , V � V ∗,
(97)

The local density of states at the junction in the
physically relevant regime of gρ < 1 can be computed
by evaluating the fermion two point function. For the
spinful/non-topological junction, we must evaluate the
two point function at the normal reflecting fixed point,
resulting in

ρLDOS(ω) ∼ ω1/(2gρ)−1/2, (98)

which goes to zero at low energy. This is a generic fea-
ture of the gρ < 1 regime of the spinful/non-topological
junction, resulting from the instability of the perfect An-
dreev reflecting fixed point. On the other hand, for the
spinful/topological junction, the two point function must
be evaluated at the Andreev fixed point, at least for
gρ > 1/3, resulting in

ρLDOS(ω) ∼ ωgρ/2−1/2. (99)

The local density of states thus diverges for weakly re-
pulsive interactions in this case.

D. Future directions

Although we have shown that perfectly quantized con-
ductance is a universal property of the low-energy/long-
distance limit in topological junctions, a relevant issue for
experiments is how closely one can approach this limit in
practice. In particular, in our analysis we have assumed a
semi-infinite Luttinger liquid lead, and an arbitrarily long
topological superconductor. In a physical setup, neither
assumption is valid. In particular, a finite topological su-
perconductor of length LSC will have additional couplings
δ and t′ (c.f. the discussion at the end of Sec. III A) of
magnitude ∼ exp(−LSC/ξ), where ξ is the induced co-
herence length. These couplings are relevant (for g < 2
in the helical case) and ultimately drive the system to
the normal reflecting fixed point, with zero conductance.
However, if they are small to begin with, the crossover
will occur at low energies and an intermediate regime
with enhanced conductance is to be expected.

There exist many directions for further investigation.
One has to do with the nature of the crossover of the
quantized conductance from G = 2e2/h to G = g(2e2/h)
as a function of the driving frequency ω, which is ex-
pected to occur for ω ∼ vF /LLL, where LLL is the length
of the Luttinger liquid lead. Extracting the full depen-
dence on both ω and the temperature T is subtle and
may require use of the Keldysh formalism. Another is to
study the fate of the Majorana zero mode for g < 1/2 in
the helical/topological junction. Here we expect the Ma-
jorana mode to be hybridized with the degrees of freedom
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in the wire but nevertheless to remain power-law local-
ized near the junction. It would be interesting to study
the form of this Majorana zero-mode using DMRG sim-
ulations. Yet another direction would be to extend the
present analysis to the case of the multi-channel case,
which may be an experimentally relevant regime. An-
other potentially experimentally relevant issue is the role
of disorder in the Luttinger liquid lead, and its effect on
the conductance. Finally, it would be interesting to in-
vestigate multi-terminal junctions and possible universal
signatures here.
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Appendix A: Derivation of the effective action for Φ

We start with the action

S =

∫
dτ

(
H(φ, θ) +

i

π

∫ ∞
0

dx ∂τθ∂xφ

)
(A1)

with

H =

∫ ∞
0

dx
v

2π

[
g(∂xφ)2 + g−1(∂xθ)

2
]

(A2)

The normal reflection fixed point pins θ(x = 0). Consider
the right and left moving fields:

φR = φ+ θ/g, φL = φ− θ/g (A3)

The boundary condition θ(x = 0) = 0 gives

φL(x = 0) = φR(x = 0). (A4)

We define a new field φ̃(x) as

φ̃(x) = φR(x), x > 0 (A5)

φ̃(−x) = φL(−x), x < 0 (A6)
(A7)

Note that φ̃(0) = φR(0) = φL(0) = φ(0). We have

S0 = g

∫
dxdτ

[
v

4π
(∂xφ̃)2 +

i

4π
∂τ φ̃∂xφ̃

]
(A8)

We introduce a variable Φ(τ) and a Lagrange multi-
plier Λ as

SΛ = i

∫
dτΛ(τ)(Φ(τ)− φ̃(x = 0, τ)) (A9)

We now integrate over the modes φ̃k,ω. Note that

S0 =

∫
dk dω

(2π)2
G−1(k, ω)φ̃k,ωφ̃−k,−ω (A10)

with

G−1(k, ω) =
gv

4π

[
(k + i

ω

2v
)2 +

ω2

4v2

]
(A11)

Performing the gaussian integral over φ̃k,ω yields

S = i

∫
dω

2π
ΛωΦ−ω +

∫
dk dω

(2π)2

1

4
G(k, ω)ΛωΛ−ω (A12)

Performing the integral over k gives

S =

∫
dω

2π

[
iΛωΦ−ω +

π

2g|ω|
ΛωΛ−ω

]
(A13)

Finally, performing the functional integral over Λω yields

Sλ =

∫
dω

2π

g|ω|
2π

ΦωΦ−ω (A14)

as desired.

Appendix B: Derivation of the path integral at the
perfect normal reflection fixed point

Here we will derive the path integral representation for
the partition function in Eq. (30), beginning from the full
action that includes bulk degrees of freedom in the helical
Luttinger liquid. This is done by inserting resolutions of
the identity between intermediate imaginary time steps,
using the dual orthonormal bases

1 =
∑
sx,φ

|sx φ〉〈sx φ| =
∑
sz,θ

|sz θ〉〈sz θ|. (B1)

Here sx,z denote the eigenvalues (= ±1) of the corre-
sponding Pauli operators σx,z, and φ, θ are shorthand
for eigenvalues of φ(x), θ(x), 0 ≤ x ≤ L. To obtain the
partition function we need the overlaps between these
states. Using

|sx = ±1〉 =
1√
2

(|sz = 1〉 ± |sz = −1〉) (B2)

we obtain

〈sx|sz〉 =
1√
2

exp

[
iπ

(1− sx)

2

(1− sz)
2

]
(B3)
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which together with the fact that φ(x) and ∂xθ(x)/π are
dual variables yields (up to unimportant constants)

〈φ sx|θ sz〉

= exp

[
iπ

(1− sx)

2

(1− sz)
2

+
i

π

∫ L

0

dxφ ∂xθ

]
. (B4)

It follows that the partition function can be expressed as

Z =

∫
DφDθ

∑
{sx(τ)∈±1}

∑
{sz(τ)∈±1}

e−SE+iSB (B5)

with SE the usual Euclidean action

SE =
v

2π

∫
dx dτ

[
1

g
(∂xθ)

2 + g(∂xφ)2

]
+ 2t

∫
dτ cos

[
φ(x = 0) + π

1− sx

2

]
(B6)

and SB the Berry phase contribution

SB =
π

4

∫
dτ(1− sz)∂τsx +

1

π

∫
dx dτ ∂τφ∂xθ. (B7)

Suppose that we sum over sx in Eq. (B5). To do so it
is convenient to first rewrite the path integral exchanging
φ(x, τ) for the new variable

φ̃(x, τ) = φ(x, τ) +
π

2
(1− sx(τ)) . (B8)

Integration by parts shows that sx then appears only in
the following contribution to the action:∫

dτ
(1− sx)

2
∂τ

[
−θ(x = 0) +

π

2
(1− sz)

]
. (B9)

Summing over sx, at each discrete time step, gives a
vanishing contribution to the partition function unless
∂τ [−θ(x = 0) + π/2 (1− sz)] = 0 modulo 2π at each
τ . Hence the exponential of 2πi times this quantity
is conserved. Converting to operator notation, this is
σz(τ) exp [iθ(0, τ)]—which is just the fermionic parity of
the superconductor plus Luttinger liquid system.

Let us now instead sum over sz in Eq. (B5). Using Eq.
(B7), it follows that sx is a conserved quantity, so the
path integral sums over only two imaginary time config-
urations of sx: sx = +1 for all τ and sx = −1 for all
τ . Integrating out everything but Φ = φ(x = 0) yields
the action Snormal +δSt derived above [see Eqs. (20, 28)].
The partition function then becomes

Z =

∫
DΦ

∑
sx=±1

e−Snormale−2t
∫
dτsx cos Φ, (B10)

which indeed recovers Eq. (30).

Appendix C: Solution of a non-interacting helical
wire coupled to a single Majorana mode

In this Appendix we will sketch the solution of the
following Hamiltonian,

H =

∫ L

−L
dx

[
−ivFψ†∂xψ +

t√
2
γ1(ψ† − ψ)δ(x)

]
, (C1)

which describes a non-interacting helical wire of length L
coupled to a single Majorana mode γ1 at one end. This
Majorana’s ‘partner’ γ2 is assumed to decouple entirely
from both the wire and γ1. At the other end of the
wire we will impose perfect normal reflecting boundary
conditions, requiring

ψ(x = L) = ψ(x = −L). (C2)

Our goal will be to find the low-energy wavefunctions of
H in the limit E � t and expand ψ and γ1 in terms of
the corresponding modes.

As a first step we write H in terms of Ψ†(x) =
[ψ†(x)ψ(x)f†f ], where f = (γ1 + iγ2)/2:

H =
1

2

∫ L

−L
dxΨ†HΨ. (C3)

H =


−ivF∂x 0 − t√

2
δ(x) − t√

2
δ(x)

0 −ivF∂x t√
2
δ(x) t√

2
δ(x)

− t√
2
δ(x) t√

2
δ(x) 0 0

− t√
2
δ(x) t√

2
δ(x) 0 0

 .(C4)
The wavefunctions ΦE(x) with energy E can be immedi-
ately written for x 6= 0 as

ΦE(x > 0) =


e
iExvF a>E
e
iExvF b>E
cE
dE

 ,ΦE(x < 0) =


e
iExvF a<E
e
iExvF b<E
cE
dE

 .(C5)
The elements above are constrained by normalization,
the boundary condition of Eq. (C2) which requires

e
iELvF a>E = e

−iELvF a<E

e
iELvF b>E = e

−iELvF b<E , (C6)

and the following relations needed to satisfy the Hamil-
tonian at x = 0,

0 = (a>E − a
<
E) + (b>E − b

<
E)

0 = ivF (a>E − a
<
E) +

t√
2

(cE + dE) (C7)

EcE = EdE =
t√
2

(b>E − a
<
E).

Equations (C6) and (C7) admit a non-trivial solution
provided the energies satisfy

0 =
EvF
t2

[
cos

(
2EL

vF

)
− 1

]
+ sin

(
2EL

vF

)
. (C8)
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For E � t the energies are well-approximated by

En =
nπvF

2L
(C9)

for integer n; the associated wavefunction components
can be found to leading order in En/t from Eqs. (C6)
and (C7).

One can deduce by inspection that one of the zero-
energy wavefunctions supported by H is

Φγ2
=

1√
2


0

0

i

−i

 , (C10)

which simply corresponds to the decoupled Majorana
mode γ2. The wavefunctions carrying energy En with
n even are given by

ΦEn =
1√
Nn


e
iEnxvF

e
iEnxvF

0

0

 (n even), (C11)

where Nn is the normalization. Note that ΦE0
corre-

sponds to the zero-energy Majorana mode which is ab-
sorbed into the helical wire due to the tunneling t. Fi-
nally, the n odd wavefunctions read

ΦEn =
1√
Nn


isgn(x)e

iEnxvF

−isgn(x)e
iEnxvF√

2vF
t√
2vF
t

 (n odd). (C12)

With these wavefunctions in hand one can now expand
ψ(x) and γ1 in terms of low-energy modes for the system:

ψ(x) ∼
∑
n even

e
iEnxvF

√
Nn

Γn + isgn(x)
∑
n odd

e
iEnxvF

√
Nn

Γ′n

γ1 = f† + f ∼ 2
√

2vF
t

∑
n odd

1√
Nn

Γ′n. (C13)

Here Γ†n = Γ−n and Γ′†n = Γ′−n respectively create energy
En excitations with n even and odd. Equations (C13)
encode two important relations. First, it follows that at
low energies

ψ(x = 0+) = ψR(x = 0) = ψ†(x = 0−) = ψ†L(x = 0),
(C14)

which is the familiar perfect Andreev reflection bound-
ary condition induced by the coupling to γ1. Second,
γ1 and ψ,ψ† are not independent at low energies; using
Eq. (C14) their relation can be expressed in the following
symmetric form

γ1 ∼ i
vF√

2t
[ψ†(0+)− ψ(0+)− ψ†(0−) + ψ(0−)]

= i
vF√

2t
[ψ†R(0)− ψR(0)− ψ†L(0) + ψL(0)]. (C15)

Appendix D: Solution of an interacting helical wire
coupled to a single Majorana mode

We now treat the interacting helical wire. We first
redo the calculation for the non-interacting case directly
in terms of the bosonic modes, and then generalize to
g 6= 1. It is useful to bosonize both the Luttinger liquid
and the two-level system formed by γ1, γ2, as done in
Section II B:

γ1 = σy (D1)
γ2 = σx. (D2)

Also, because the Jordan-Wigner string goes to the left
in (26), the bosonized form of the continuum Fermi
fields includes an extra factor of σz, which is simply the
Fermionic parity of the γ1, γ2 system. The tunneling term
is Ht = 2tσx cos(φ(x = 0)), but for convenience in this
Appendix we shift the phase of φ(x) by π/2, so that the
tunneling term becomes

Ht = 2tσx sin(φ(x = 0)). (D3)

From now on we work in the low energy Hilbert space
Hlow ⊂ H where φ(x = 0) is pinned at ±π/2, i.e. we
assume we are exactly at the Andreev fixed point. The
state of the spin-1/2 representing the topological super-
conductor is then completely determined by φ(x = 0), so
that we need only retain the Luttinger liquid degrees of
freedom to describe all the states and operators in Hlow.

In particular, the operator γ2 = σx, representing the
decoupled Majorana mode, is given by sin(φ(x = 0)).
Now, if the fermionic Hamiltonian were quadratic, we
would necessarily have a partner Majorana mode for γ2,
i.e. another fermionic operator which commuted with the
Hamiltonian and squared to 1. Indeed, this operator is a
zero momentum “plane-wave" solution of the Bogoliubov-
de Gennes equation (see Eq. C11). What about the
interacting case? In this section we derive a bosonized
expression for the partner Majorana mode in such an
interacting helical wire, for all g > 1/2. Furthermore,
we check that this expression is correct perturbatively to
leading order in g − 1.

We begin by redoing the calculation for g = 1 in
the bosonic framework, and then generalize to g 6= 1.
The normal reflecting boundary condition at θ(L) = 0 is
equivalent to ∂φ(L)

∂x = 0. A general φ field configuration
can thus be expanded as

φ(x) = ±π/2 +

∞∑
n=0

φn sin
(2n+ 1)πx

2L
. (D4)

The Hamiltonian for g = 1 reads

H =
vF
2π

∫ L

0

dx

[
(∂xφ)

2 −
(
π

∂

∂φ(x)

)2
]
. (D5)

Expanding

∂

∂φn
=

∫ L

0

dx sin

(
(2n+ 1)πx

2L

)
∂

∂φ(x)
(D6)
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and inverting, we obtain

H =
πvF
L

∑
n≥0

[
−1

2

(
∂

∂φn

)2

+
ω2
n

2
φ2
n

]
(D7)

with ωn = (2n + 1)/4. We define creation and annihila-
tion operators

φn =
1√
2ωn

(
an + a†n

)
(D8)

∂

∂φn
=

√
ωn
2

(
an − a†n

)
, (D9)

and expand out the field operators φ(x) and

θ′(x) = −πi
∫ L

x

dy
∂

∂φ(y)
. (D10)

Here θ′(x) = θ(x)−θ(L) sends the Jordan-Wigner string
to the right, and thus preserves the boundary condition
φ(0) = ±π/2. We obtain:

φ(x) = ±π
2

+
i

2

∑
n

e−iknx − eiknx√
2ωn

(
a†n + an

)
(D11)

θ′(x) =
i

2

∑
n

e−iknx + eiknx√
2ωn

(
a†n − an

)
, (D12)

where kn = 2πωn/L. We can exchange θ for θ′ at
the expense of introducing an extra factor of PLL =
exp(θ(0)− θ(L)), so that the bosonization now becomes

ψR/L ∼
(

1− 2b†−1b−1

)
ei(φ±θ)

= PLLe
i(φ±θ′). (D13)

For the sake of efficiency, we now change notation
(ψR(x), ψL(x))→ (r(x), `(x)). For a quadratic Fermionic
Hamiltonian (g=1), one can easily verify that

δ1 = − i

4L

∫ L

0

dx
(
r − r† + `− `†

)
(D14)

is the partner “plane-wave" Majorana mode for γ2. δ1 is
the result of γ1 leaking into the Luttinger liquid via the
coupling t, with (D14) valid in the low energy Andreev
limit. (D14) bosonizes to

δ1 =
PLL
2L

∫ L

0

dx [sin(φ+ θ′) + sin(φ− θ′)] . (D15)

It is instructive to expand out (D15) in oscillator modes
and verify explicitly that the bosonized expression com-
mutes with the bosonized Hamiltonian, anti-commutes
with δ2, and squares to 1. We represent δ1 as

δ1 =

(
0 δ−+

1

δ+−
1 0

)
(D16)

with respect to the decomposition of Hlow into the two
φ(0) = ±π2 sectors. Note that δ1 is purely off-diagonal
because the factor of PLL in (D15) exchanges the two
sectors. This immediately shows that δ1 anti-commutes
with

δ2 =

(
I 0

0 −I

)
. (D17)

The bosonized expressions for both δ+−
1 and δ−+

1 are sim-
ply (D15) with the factor of PLL stripped off, but it is
useful to re-write them as

δ+−
1 =

∫ L

0

dx
cos((φ− π

2 ) + θ′) + cos((φ− π
2 )− θ′)

2L

δ−+
1 = −

∫ L

0

dx
cos((φ+ π

2 ) + θ′) + cos((φ+ π
2 )− θ′)

2L
.

This form removes the constant ±π2 from φ and in par-
ticular shows that only terms with an even number of
creation/annihilation operators appear with non-zero co-
efficients. Furthermore, the coefficient of a potentially
energy-violating term would be the real part of an oscil-
latory integral which is purely imaginary; hence δ1 com-
mutes with the Hamiltonian. Similarly one can compute
δ2
1 directly and see that it equals 1, though it is instruc-
tive to check this explicitly on some low energy subspaces.
The lowest lying states are

|0〉 : E = 0

a†0|0〉 : E =
πvF
4L

1√
2

(a†0)2|0〉 : E =
πvF
2L

{ 1√
6

(a†0)3|0〉, a†1|0〉} : E =
3πvF
4L

(D18)

One can explicitly compute that on the lowest 3 sub-
spaces δ+−

1 acts as +1,−1,−1 respectively, whereas on
the E = 3πvF

4L subspace it acts as(
− 1

3 − 2
√

2
3

− 2
√

2
3

1
3

)
, (D19)

a non-trivial matrix that squares to +1.
When g 6= 1, we have

H =
πvF
gL

∑
n≥0

−1

2

(
∂̂

∂φn

)2

+
(gωn)2

2
φ̂2
n

 .(D20)

We can still expand φ in modes as in (D4), but this time

φn =
1√

2gωn

(
an + a†n

)
∂

∂φn
=

√
gωn

2

(
an − a†n

)
. (D21)
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To get rid of unwanted g’s we define

φg(x) = ±π
2

+
√
g

∫ x

0

dy ∂yφ(y). (D22)

φg(x) is thus diagonal with respect to the φ(0) = ±π/2
sector decomposition, with the choice of sign in (D22)
corresponding to the choice of sector. Essentially, we
have used the fact that φ(0) is pinned to give well-defined
meaning to the operator √gφ(x). Similarly we can use
the fact that θ′(L) = 0 to define

θ′
g
(x) = − 1

√
g

∫ L

x

dy ∂xθ
′(y) (D23)

The virtue of the operators φg(x), θ′g(x) is that their
mode expansions are identical to those of φ(x), θ′(x) in
the free case, given by (D11) and (D12). Thus δg1 , defined
by

δg1 =
PLL
2L

∫ L

0

dx
[
sin(φg + θ′

g
) + sin(φg − θ′g)

]
,

(D24)
has all the necessary properties: it anti-commutes with
δ2, commutes with H, and squares to 1. It can also be
written in terms of the fermions. Let us see how that
works explicitly for small ε = g−1. We expand to leading
order:

φg(x) ≈ φ(x) +
ε

2

∫ x

0

dy ∂yφ(y) (D25)

θ′
g
(x) ≈ θ′(x) +

ε

2

∫ L

x

dy ∂yθ
′(y), (D26)

so that

sin(φg + θ′
g
) ≈ sin(φ+ θ′)

+
ε

2
cos(φ+ θ′)

[∫ x

0

dy ∂yφ(y) +

∫ L

x

dy ∂yθ
′(y)

]
.

(D27)

We now rewrite (D27) in terms of fermions using

∂xφ = π
(
r†r − `†`

)
(D28)

∂xθ
′ = π

(
r†r + `†`

)
, (D29)

to obtain:

PLL sin(φg(x) + θ′
g
(x)) = − i

2
(r(x)− r†(x))

+
πε

4
(r(x) + r†(x))

[∫ L

0

dy (r†r + `†`)− 2

∫ x

0

dy `†`

]
.

(D30)

A subtle point is that (D28) has to be normal ordered
with respect to the ground state of the free fermions with
the tunneling term included; in practice this means re-
placing r†r → (r†r + rr†)/2, etc. With a similar ex-
pression for PLL sin(φg(x)− θ′g(x)) we finally obtain the
interacting Majorana mode

δg1 = δ1 + δ′1 (D31)

with

δ′1 =
πε

8L

∫ L

0

dx (r + r† − `− `†)
∫ L

0

dy (r†r + `†`)

+
πε

4L

∫ L

0

dx

∫ x

0

dy
[
(`(x) + `†(x))r†r(y)

− (r(x) + r†(x))`†`(y)
]
. (D32)

Likewise we can also expand the Hamiltonian in
Fermions:

H = H0 +H ′ (D33)

with

H0 =
ivF
2

∫ L

0

dx
(
−r†∂xr − r∂xr† + `†∂x`+ `∂x`

†)
(D34)

and

H ′ = −2πεvF

∫ L

0

dx r†r`†`. (D35)

Note that the H0 we have differs from the usual one by
a boundary term; again this boundary term effectively
takes into account the tunneling at x = 0. We now need
to check [H, δg1 ] = 0, which at leading order reduces to
checking that

[H0, δ
′
1] = [δ1, H

′] (D36)

(D36) can be explicitly verified with some algebra, show-
ing that (D32) is the correct leading order interacting
correction to the Majorana mode δ1.
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