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We study the acoustic phonon response of crystals hosting a gapped time-reversal symmetry
breaking electronic state. The phonon effective action can in general acquire a dissipationless “Hall”
viscosity, which is determined by the adiabatic Berry curvature of the electron wave function. This
Hall viscosity endows the system with a characteristic frequency, ωv; for acoustic phonons of fre-
quency ω, it shifts the phonon spectrum by an amount of order (ω/ωv)

2 and it mixes the longitudinal
and transverse acoustic phonons with a relative amplitude ratio of ω/ωv and with a phase shift of
±π/2, to lowest order in ω/ωv. We study several examples, including the integer quantum Hall
states, the quantum anomalous Hall state in Hg1−yMnyTe quantum wells, and a mean-field model
for px + ipy superconductors. We discuss situations in which the acoustic phonon response is di-
rectly related to the gravitational response, for which striking predictions have been made. When
the electron-phonon system is viewed as a whole, this provides an example where measurements of
Goldstone modes may serve as a probe of adiabatic curvature of the wave function of the gapped
sector of a system.

I. INTRODUCTION

One of the most important discoveries in condensed
matter physics has been that there are distinct states
of matter that are distinguished not by their patterns
of symmetry breaking, but by their topological order.1

Such topological states of matter (TSM) cannot be de-
scribed by local order parameters, but can sometimes be
characterized by quantized topological responses to ex-
ternal fields. For example, the quantum Hall states2,3—
the first topological states discovered in nature—can be
characterized by their quantized Hall conductance. The
three-dimensional time-reversal invariant topological in-
sulators discovered more recently4–6 can be characterized
by a topological magneto-electric effect7,8. More gener-
ically, topological insulators in arbitrary dimensions can
be characterized by topological responses to electromag-
netic fields7. However, many TSM cannot be character-
ized by electromagnetic response. For example in topo-
logical superconductors the charge conservation symme-
try is effectively broken, and the electromagnetic field is
screened. Thus more generic response properties need to
be investigated in order to distinguish different topolog-
ical states.9–11

In this paper, we propose a response property, the
“phonon Hall viscosity,” for gapped states that break
time-reversal symmetry. For a quantum liquid, the
viscosity tensor ηijkl is defined by the linear response
Tij = −pijηijklvkl, with Tij the stress tensor, pij the
pressure tensor, and vij = 1

2 (∂ivj + ∂jvi) the gradient
of the velocity field vi. Usually, a finite viscosity indi-
cates dissipation in the system, similar to a finite re-
sistivity. However the viscosity can have a dissipation-
less component, associated with the part of ηijkl that is
anti-symmetric under exchange of the first and second
pair of indices.12 This Hall viscosity can only exist in a
system that breaks time-reversal symmetry and is anal-
ogous to the dissipationless Hall resistivity. The Hall
viscosity has appeared in the hydrodynamic theory of
the A-phase of He-313 and was studied for quantum Hall

liquids by J. E. Avron et. al.
14,15. It has since been stud-

ied for various (2+1)-d topological states including IQH
states14, the (2+1)-d Dirac model16, fractional quantum
Hall (FQH) states17–20 and px + ipy-paired topological
superconductors17. The Hall viscosity provides a probe
of gapped time-reversal symmetry breaking states in the
charge neutral channel, which does not require charge
conservation and thus may be a suitable response for
TSC and more generic TSM that cannot be characterized
by topological electromagnetic response. In particular, it
was recently proposed that the Hall viscosity of a ro-
tationally invariant system is related to the angular mo-
mentum carried by each quasi-particle of the system17,21,
which is in turn proportional to the “topological shift” of
the topological field theory on the sphere22. However, the
Hall viscosity is only defined for a liquid in continuum,
since the stress tensor is a momentum current which is
ill-defined if continuous translation symmetry is broken
by the lattice. The discussions of Hall viscosity in the
literature have been treating the electron system as a
liquid without explicitly considering the lattice effects.
This approximation is in general problematic since the
Hall viscosity intrinsically depends on a length scale, and
there are two natural length scales in a gapped system: a
length scale associated with the energy gap, and a differ-
ent length scale associated with the electron density. In
general, the Hall viscosity will depend on both of these
length scales and will therefore depend on non-universal
short range physics. Even if the results in the contin-
uum approximation are applicable in some cases, we are
facing another problem of how to observe the Hall viscos-
ity in general since it is difficult to measure the velocity
and stress of the electron liquid. To distinguish the Hall
viscosity defined in this traditional way with the phonon
Hall viscosity that we study in this work, we refer to
the Hall viscosity of the continuum electron liquid as the
gravitational Hall viscosity since the viscosity tensor of
the electron liquid can be considered as a response to an
external deformation of the spatial metric gij

14.

To solve these problems of the gravitational Hall vis-
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cosity, we alternatively define the phonon Hall viscosity,
which is the adiabatic response of the electron state to
the deformation of the crystal, i.e., to acoustic phonons.
Instead of the stress tensor which couples to the defor-
mation of the spatial metric and is only well-defined in
the continuum, the deformation of the crystal and the
electron-phonon coupling are always well-defined. The
linear response of the electron liquid to the crystal defor-
mation leads to a correction to phonon dynamics. The
strain field uij = 1

2 (∂iuj + ∂jui) plays the role of the
spatial metric gij , with ui the displacement field of the
nuclei. The phonon Hall viscosity is defined by the linear

response
〈

∂H
∂uij

〉

= λijklukl+ηijklu̇kl with H the electron

Hamiltonian depending on the lattice strain uij , λijkl the
elastic moduli, and ηijkl the phonon Hall viscosity. The
phonon Hall viscosity is well-defined for all gapped states
with a regular lattice background, and is physically ob-
servable through phonon dynamics.

In the rest of this paper, we will first give a general def-
inition of the phonon Hall viscosity in Sec. II and show
how it relates to the adiabatic Berry curvature of the
many-body electron wave function. In Sec. III we study
the phonon Hall viscosity in several example systems such
as quantum Hall states, quantum anomalous Hall states
and (p+ ip) superconductors. We make comparisons be-
tween the phonon Hall viscosity and the gravitational
Hall viscosity in the continuum limit, and in certain ex-
amples, we analyze features of the Hall viscosity that are
universal or depend only on the low-energy theory of the
electronic system. Finally in Sec. IV we will discuss the
physical consequences of the phonon Hall viscosity, give
order of magnitude numerical estimates, and discuss ex-
perimental prospects for the observation of phonon Hall
viscosity.

II. DEFINITION OF THE PHONON HALL

VISCOSITY

A. Effective action of acoustic phonons

In this section we will define the phonon Hall viscosity
based on a generic discussion of acoustic phonon dynam-
ics. The dynamics of acoustic phonons can be described
using the long-wavelength effective action in terms of
the displacement fields u(r), which describe the displace-
ment of an atom from its original location. For a gapless
state, such as a metal or a magnet, the phonon effective
action will not be a local theory in terms of the strain
fields. For an insulator, dissipation can be ignored at fre-
quencies below the energy gap and the long-wavelength
elastic response is described by an effective action for
the displacement fields u, which can be obtained by inte-

grating out the electrons: e−Seff [u] =
∫

Dc†Dce−S[u,c,c†].
For a time-reversal invariant insulator, the phonon effec-

tive action is, to lowest order,

Seff =
1

2

∫

ddxdt(ρ∂tuj∂tuj − λijkl∂iuj∂kul), (1)

where λijkl = λklij = λjikl are the elastic moduli; its
symmetry under interchange of the first or second pair
of indices follows from invariance of the energy under
rigid rotations. In the presence of time-reversal symme-
try breaking, additional “Hall” viscosity terms are al-
lowed:

δSH =
1

2

∫

ddxdtηijkl∂iuj∂ku̇l, (2)

where ηijkl = −ηklij . The total effective action is given
by Seff + δSH . As we discuss further in the follow-
ing sections, we expect that for a gapped system, such
time-reversal symmetry breaking terms in the phonon
effective action will be dominated by contributions from
the many-body electron state. For an inversion symmet-
ric system, this is the only additional term that can be
added, to cubic order in momenta. Anharmonic correc-
tions to the acoustic phonon dynamics go like (∂u)4, so
they are O(k4), implying that the Hall viscosity term
may be distinctly measurable since it is lower order in
momenta. Impurities in the crystal may be difficult to
treat, but as we discuss in the Section IVB, their contri-
butions are not sensitive to the sign of the time-reversal
symmetry breaking of the electronic system and may be
separated from Hall viscosity contributions.
Up to total derivatives, (2) only depends on ηijkl+ηkjil:

δSH =
1

2

∫

ddxdt[η+ijkl∂iuj∂ku̇l + η−ijkl∂i(uj∂ku̇l)], (3)

where η±ijkl =
1
2 (ηijkl ± ηkjil). The boundary terms may

have interesting consequences for the surface waves of a
medium with such a Hall viscosity, but we will ignore
them in this paper. In some cases it will be conceptually
more clear to write the above action in terms of the strain
tensor uij ≡ 1

2 (∂iuj+∂jui) and the rotation tensormij ≡
1
2 (∂iuj − ∂jui):

δSH =
1

2

∫

ddxdt[ηSS
ijkluij u̇kl + ηAA

ijklmijṁkl

+ 2ηSA
ijkluijṁkl], (4)

where ηSS
ijkl = ηSS

jikl = −ηSS
klij , η

AA
ijkl = −ηAA

jikl = −ηAA
klij ,

and ηSA
ijkl = ηSA

jikl = −ηSA
ijlk can all be deduced from

ηijkl . For an isotropic three-dimensional system, ηijkl
must vanish. In two dimensions, ηAA always vanishes;
for an isotropic 2D system, or one with π/4 rotation
symmetry, ηSS and ηSA each reduce to a single num-
ber: ηH ≡ ηSS

xxxy = ηSS
xyyy

14,15 and ηM ≡ ηSA
xxxy = ηSA

yyxy.
In this case,

δSH = 2

∫

d2xdt[ηH(uxx − uyy)u̇xy

+ ηM (uxx + uyy)ṁxy], (5)



3

where ηH = 1
2 (ηxxxy + ηxxyx) = 1

2 (ηxyyy + ηyxyy) and

ηM = 1
2 (ηxxxy−ηxxyx) = 1

2 (ηxyyy−ηyxyy). It also follows
that, up to boundary terms, (5) is equivalent to:

δSH =

∫

d2xdt[ηxxxy(uxx − uyy)u̇xy

+ ηxxxy(uxx + uyy)ṁxy]. (6)

To obtain this, we have used the fact that, up to bound-
ary terms, ηxxyx does not contribute to the action.

B. Phonon Hall viscosity as a response property of

the electron system

In the adiabatic approximation, it is assumed that the
motion of the lattice is infinitely slow compared with the
motion of the electrons, so that at any moment, the elec-
trons are in their ground state with respect to that par-
ticular instantaneous configuration of the lattice. Within
this approximation, the effect of lattice displacements is
to alter the parameters in the effective Hamiltonian of
the electron system. The dependence of these parame-
ters on the atom positions can be calculated using stan-
dard ab initio methods. Thus, in the adiabatic approx-
imation, the electrons will be described by an effective
Hamiltonian where the lattice displacements appear as
external parameters: H [{ui}]. un is the displacement
of the nth atom from its original location. We may
also view H as a function of the Fourier components
uq = 1√

Nsite

∑

n
une

iq·n. Then, the following linear re-

sponse formula

ηab(q, ω) =
1

ω

1

Ld

∫

dteiωt

〈[

∂H

∂uq,a
(t),

∂H

∂u−q,b
(0)

]〉

(7)

gives an additional term to the acoustic phonon effective
action of the form

δS =
1

2

∫

dd+1xdd+1x′ηab(x− x′)ua(x)u̇b(x
′), (8)

where x here is a (d + 1)-component vector including
space and time, ηab(x) is the Fourier transform into real
space-time of ηab(q, ω), and we have taken the continuum
limit to get the displacement field u(x). The leading
order term that is independent of uniform displacements
u → u+ a is given by (2). Starting from (8), we find

ηijkl =
1

2
lim
ω→0

lim
q→0

∂

∂qi

∂

∂qk
ηjl(q, ω) (9)

For spatially homogeneous deformations, the distortion
tensor wij ≡ ∂iuj is a constant. To calculate ηijkl, it will
be more convenient to take wij to be a constant and to
treat it as a parameter in H . Then,

ηijkl =
1

2
lim
ω→0

1

ω

1

Ld

∫

dteiωt

〈[

∂H

∂wij
(t),

∂H

∂wkl
(0)

]〉

+ (i↔ k) (10)

For spatially inhomogenous deformations, we can con-
tinue to use the DC response (10) instead of the exact
AC response, as long as the acoustic phonon frequency
is much less than the electronic energy gap.
It is well-known that the adiabatic response of a Hamil-

tonian to changes in some parameter is directly related
to Berry curvature23 of the ground state wave function.
For a Hamiltonian H [{λi}] that depends on a set of pa-
rameters {λi}, we have

〈

∂H

∂λi

〉

=
∂E

∂λi
+Ωij λ̇j , (11)

where Ωij is the Berry curvature of the ground state wave
function. Thus ηijkl is given by the Berry curvature as-
sociated with adiabatically varying the distortion tensor
wij ≡ ∂iuj as external parameters:

iηijkl =
1

2

(

∂

∂wij
〈ψ| ∂

∂wkl
|ψ〉 − ∂

∂wkl
〈ψ| ∂

∂wij
|ψ〉+ (i↔ k)

)

,

(12)

where |ψ〉 is the ground state of the Hamiltonian H .

III. EXAMPLES

In this section, we will study some examples of systems
with a phonon Hall viscosity, including electrons hopping
among the s-orbitals of a square lattice in a background
magnetic field, a simple model for the quantum anoma-
lous Hall state in HgMnTe quantum wells, and a simple
mean-field model of a spinless px + ipy superconductor.
In certain limits we compare the phonon Hall viscosity
of these systems with their conventional Hall viscosity
studied in the literature.

A. Hofstadter Model

Consider a square lattice with nearest and next-nearest
neighbor hopping:

H = −1

2

∑

〈ij〉
tije

iAij c†icj −
1

2

∑

〈〈ij〉〉
t̃ije

iAijc†i cj + h.c.

(13)

Consider hopping among s-wave orbitals, in which case
tij and t̃ij depend only on the distance |rj − ri| be-
tween atoms. To leading order in the crystal defor-
mations, ti,i+x̂ ≃ t + t′uxx, ti,i+ŷ ≃ t + t′uyy, and
t̃i,i+x̂±ŷ = t̃+ t̃′(12 (uxx + uyy)± uxy). If t(r) is the hop-
ping matrix element between the s-wave orbitals that are
a distance r apart, t ≡ t(a), t̃ = t(

√
2a), t′ = a ∂t

∂r |a,
t̃′ ≡

√
2a ∂t

∂r |√2a, where a is the lattice spacing in the ab-
sence of lattice deformations. In the absence of a back-
ground electromagnetic field and for constant lattice dis-
placements, the Hamiltonian can be written in momen-

tum space as H =
∑

k ǫkc
†
kck. We note that a significant
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effect of the strain fields on the energy of the system is to
change the on-site energy of atomic orbitals. However,
this contribution does not affect the Hall viscosity below,
so we ignore it.
In the continuum limit, the dispersion is, up to a con-

stant,

ǫk ≃ 1

2m∗ kikjgij − (t′ + t̃′)(uxx + uyy), (14)

where the effective mass is defined by 1
2m∗ ≡ (t/2 + t̃),

and gij = δij + δgij ,

δg = 2m∗ t̃
′

2

(

(1 + t′

t̃′
)uxx + uyy 2uxy
2uxy (1 + t′

t̃′
)uyy + uxx

)

(15)

In the presence of a gauge field, we take k → −iD ≡
−i(∂ − iA), so the effective theory becomes

H = − 1

2m∗ gijDiDj − (t′ + t̃′)(uxx + uyy). (16)

The phonon Hall viscosity is then related directly to the
gravitational Hall viscosity of the electronic fluid14. We
find

ηH ≡ ηSS
xxxy = (t/2 + t̃)−2 t̃

′t′

4
ηHgr . (17)

For NL filled Landau levels, ηHgr = NL~n/4, where n is
the density of electrons, is the Hall viscosity of the elec-
tron liquid when the crystal is ignored.14,17 The prefac-
tor (t/2+ t̃)−2t̃′t′ can explicitly be verified to be of order
one for typical s-wave orbitals and typical separations
between atoms; it can also be calculated fairly precisely
using ab initio methods. Note that since the Hamiltonian
depends only on the strain field uij , the phonon effective
action also only depends on uij and there is no depen-
dence on the rotation tensor mij ; i.e. η

SA = ηAA = 0.
Therefore, we see that the result of14,24 for integer

quantum Hall (IQH) states has a direct effect in the
phonon response, which, as will be discussed in Sec. IV,
is a directly measurable physical quantity. For higher
density systems, we cannot take the continuum limit; the
phonon Hall viscosity is still a well-defined quantity that
is calculable through linear response theory, but the pre-
viously defined “gravitational Hall viscosity”of Ref. 14
and 24 is not well-defined.

B. Quantized anomalous Hall state and

Hg1−yMnyTe quantum wells

Here we will calculate the phonon Hall viscosity for
Hg1−yMnyTe quantum wells, which exhibit a quantized
anomalous Hall (QAH) state for certain thicknesses of
the quantum well and spin polarization of the Mn ions25.
The QAH state is a band insulator that exhibits a quan-
tized Hall conductance in the absence of a net magnetic

field. The first lattice model for such a state was intro-
duced by Haldane26, and since then it has been proposed
to be realized in Hg1−yMnyTe quantum wells.27–29 As the
quantum well thickness and the magnetization of the Mn
ions is tuned, the system can be tuned between differ-
ent topological states: a quantum spin Hall state, QAH
states, and the topologically trivial state.
At the topological phase transitions, the phonon Hall

viscosity exhibits non-analyticities that can be accounted
for in the continuum Dirac approximation. In what fol-
lows, we will calculate the phonon Hall viscosity for phys-
ically realistic parameters, we will isolate the universal
contributions that depend only on the low energy physics
near the Dirac cones and we make contact with the cal-
culations of Ref. 16 for the regularized gravitational Hall
viscosity of the continuum Dirac model.
The model for Hg1−yMnyTe quantum wells is given by

a four-band Bloch Hamiltonian:

H(k) =

(

h+(k) 0
0 h−(k)

)

, (18)

where the two-band Bloch Hamiltonians can be expanded
in terms of Pauli matrices h±(k) = ǫ±(k)I + d±(k) · σ,
and h−(k) = h∗+(−k). In the continuum limit and in the
absence of lattice distortions, expanding near the Γ point
k = (0, 0), we have

d±,x + id±,y = A(±kx + iky),

d±,z =M± −B(k2x + k2y),

ǫ(k) = C± −D(k2x + k2y), (19)

where M± = M ± δM/2. The parameters A, B, C, D,
M , and the lattice spacing a are given in Ref. 30 and 31
for HgCdTe/HgTe quantum wells and the relevant ones
are listed in Table I. δM depends on Mn doping and spin
polarization, as discussed in Ref. 25.
The phonon Hall viscosity will be a sum of the contri-

butions of each of the two blocks:

ηijkl = η+ijkl + η−ijkl , (20)

where

η±ijkl =
1

2

~

8π2

1

a2

∫

d2kd̂± ·
(

∂d̂±
∂(∂iuj)

× ∂d̂±
∂(∂kul)

)

+ (i↔ k) (21)

In order to calculate ηijkl , we need to obtain the Hamil-
tonian as a function of lattice distortions. To do this,
observe that the blocks h±(k) are composed of the spin-
orbit coupled states |s,± 1

2 〉 and |px±ipy;± 1
2 〉.30 Concen-

trating on a single 2× 2 block – for definiteness consider
h+ – the Hamiltonian is written as:

H+ =
1

2

∑

n,i

c†n(t̃iI+ tiσ
z + ei · σ)cn+î

+m+

∑

n

c†nσ
zcn + h.c., (22)
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where i = x, y and n labels the sites of a two-dimensional
square lattice. σ is the vector of Pauli matrices and the
hopping parameters are, to first order in lattice distor-
tions,

t̃i = t̃+ at̃′∂iui,

ti = t+ at′∂iui,

ex = i(λ+ aλ′∂xux)(x̂+ ∂xuy ŷ)

ey = i(λ+ aλ′∂yuy)(∂yuxx̂+ ŷ) (23)

The lattice parameters λ, t, t̃, and m used above are
related to the continuum parameters A, B, C, D, andM
through: λ = A/a, M± = m± + 2t, B = a2t/2, C = 2t̃,
and D = t̃/2. The hopping parameters are functions
of the distance between neighboring atoms; the prime
indicates a derivative with respect to this distance. The

upper 2 × 2 block has topological phase transitions as
a2M+

2B is tuned. The Chern number C1 of the lower of the
two bands is:

C1 =











1 for 2 < a2M+

2B < 4

−1 for 0 < a2M+

2B < 2
0 otherwise

(24)

and similarly for the lower 2× 2 block.
From the Kubo formula (21), we see that the only non-

zero terms are η+xxxy = −η+yyyx. The full effective action
is given by (6); making the physically reasonable approx-
imation aλ′ ≈ λ and at′ ≈ t, we find

η+xxxy =
~

8πa2
f

(

aA

2B
,
a2M+

2B

)

, (25)

where f is a function of dimensionless parameters:

f(α, β) =

∫

α2 sin2 kx(β − 2 + cos ky)d
2k

[α2(sin2 kx + sin2 ky) + (β − 2 + (cos kx + cos ky))2]3/2
. (26)

In Fig. 1, we plot the function 1
8π2 f(α, β) as a function

of β for various choices of α. Note f has non-analyticities
at the quantum phase transitions β = 0, 2, and 4.
The full Hall viscosity is given by the sum of contri-

butions from the two blocks (see 20), which corresponds
to taking the difference of the curve in Fig. 1 for two
different values of m:

ηxxxy =
~

8π2

1

a2
(f+ − f−), (27)

where f± = f
(

Aa
2B ,

a2M±

2B

)

. We may view ηxxxy as a

function ofM = (m++m−)/2−4B/a2 and δM ≡ m+−

α = 0.1

α = 0.3

α = 0.7

α = 1.5

β
3 410

FIG. 1. The function 1

8π2 f(α, β), plotted as a function of β
for various choices of α.

A (eV · Å) B (eV · Å2) a (Å) M (eV)

3.645 -68.6 6.46 -0.01

TABLE I. Realistic parameters for HgTe quantum wells,
taken from Ref. 31

m−. In Figs. 2 - 3, we plot ηxxxy as a function of either
M or δM , using physically realistic parameters (Table
I) and focusing on the region near one of the transitions
into the QAH state.

In Fig. 2, we fix M and plot ηxxxy(δM); experimen-
tally this can be done by tuning an external magnetic
field. We observe a discontinuity in the slope of ηxxxy as
a function of δM at the transition into the QAH state.

We denote this discontinuity ∆
∂ηxxxy

∂δM . In Fig. 3, we fix

a2δM/2B ≪ 1 and plot ηxxxy(M). This shows a disconti-
nuity ∆η(M). While a full lattice calculation is required
to compute the Hall viscosity, the properties of these non-
analyticities can be accounted for in the continuum Dirac
approximation to the above lattice model. In this approx-
imation, we take sink ≈ k and cos k ≈ 1− k2/2 in (26);
near the topological phase transition at β = 0, we have:

f(α, ǫ) ≈ −2πα2|ǫ|(ǫ− 1)

(α2 − ǫ)2
+O(Λ), (28)

where Λ is a high-energy cutoff. While the Hall viscosity
will in general depend on Λ, the first term above is re-
sponsible for the non-analyticities of f and consequently
of ηxxxy. Using (28), we can estimate the discontinuity
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in ∂ηxxxy/∂δM at the transition, as shown in Fig. 2:
∣

∣

∣

∣

∆
∂ηxxxy
∂δM

∣

∣

∣

∣

=
~

π

|B|
a2A2

. (29)

Similarly, the discontinuity in ηxxxy(M) for fixed
a2δM/2B ≪ 1 at the transition is found to be

|∆ηxxxy| =
∣

∣

∣

∣

~

π

B

a2A2
δM

∣

∣

∣

∣

. (30)

Finally, we note that the discontinuity in the derivative

of ηxxxy(M) can also be computed using (28): ∆
∂ηxxxy

∂M ∝
[∂

2f
∂ǫ2 |ǫ=0+ − ∂2f

∂ǫ2 |ǫ=0− ]. We find:

∆
∂ηxxxy
∂M

≈ ~

π
δM

(

2

A2
− a2

4B2

)

. (31)

The first term above depends only on parameters of the
low-energy theory of the state and is independent of the
lattice spacing and other high-energy details. This is es-
sentially the contribution that was found for the gravita-
tional Hall viscosity in the regularized Dirac model stud-
ied in Ref. 16. We see that the other contributions to the
Hall viscosity that we find are dependent on the lattice
spacing and other high energy details, which is why they
are missed in the regularization of the continuum Dirac
model of Ref. 16.

C. Interacting states and px + ipy superconductors

For interacting systems, while there is no universal re-
lationship between phonon Hall viscosity and the gravita-
tional Hall viscosity, a major exception occurs in systems

with only on-site interactions: H =
∑

ij(tije
iAijc†i cj +

h.c.) + U
∑

i ni↑ni↓. If the hopping involves s-wave or-
bitals, then in the dilute limit, where the system can be

δM (meV)

100 200 300-100-200-300

-0.0015

-0.0010

0.0015

0.0010

0.0005

FIG. 2. Plot of ηxxxy/~ as a function of δM for fixed M and
for realistic parameters (Table I). There is a discontinuity in
the slope at the transition to the quantum anomalous Hall
state, which occurs at δM = ±2M .

M (eV)

0.04

0.03

0.02

0.01

-0.04 -0.02 0.02 0.04 0.06 0.08

FIG. 3. Plot of ηxxxy/~δM as a function of M for fixed δM =
10−7eV and for realistic parameters (Table I). There is a
discontinuity at the transition to the quantum anomalous Hall
state, which occurs at δM = ±M .

described by a continuum interacting theory, the effect
of a strain in the lattice is equivalent to a deformation of
the gravitational metric. For such systems, the phonon
Hall viscosity is then directly related to the gravitational
Hall viscosity, through a proportionality factor of order
unity, as in (17).
As an example of an interacting state with a phonon

Hall viscosity, we consider a BCS mean-field description
for a px+ ipy superconductor, since such a model may be
relevant for the chiral superconductor Sr2RuO4

32. First
consider the interaction between the nearest and the next
nearest neighbors,

U = −V
∑

〈ij〉
c†i cic

†
jcj − Ṽ

∑

〈〈ij〉〉
c†i cic

†
jcj . (32)

Taking only the Cooper channel of the interaction yields:

U = −
∑

k,k′

Vkk′c†k′c
†
−k′c−kck, (33)

where

Vkk′ =
1

N
[2(V + Ṽ ) + (V ′ + Ṽ ′)(uxx + uyy)

− (V/2 + Ṽ )(ki − k′i)(kj − k′j)g̃ij ]. (34)

g̃ij = δij +
Ṽ ′

2(V/2+Ṽ )
δg̃ij has the same form as gij in eq.

(15), with t and t̃ replaced by V and Ṽ :

δg̃ij =

(

(1 + V ′

Ṽ ′
)uxx + uyy 2uxy

2uxy (1 + V ′

Ṽ ′
)uyy + uxx

)

. (35)

V ′ = a∂V
∂r |r=a and Ṽ ′ =

√
2a∂Ṽ

∂r |r=√
2a, where V (r) and

Ṽ (r) are the nearest and next-nearest neighbor interac-
tions, which only depend on the distance r between the
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nearest or next-nearest neighbor sites. As will be dis-
cussed below, the phonon Hall viscosity is proportional
to the gravitational Hall viscosity only when the two met-
rics, gij and g̃ij are the same.
To study the simplest possible scenario, we assume the

electrons hop among a single s-wave orbital of the atoms.
The BCS mean-field Hamiltonian is then

HBCS =
∑

k

(ǫk−µ)c†kck+
1

2

∑

k

[∆kc
†
kc

†
−k+H.c.], (36)

where ǫk is given by Eq.(14). For px + ipy pairing, we
take the order parameter to be,

∆k =∆(sin kx + i sin ky)

+ ∆̃(sin kx cos ky + i sinky cos kx). (37)

The order parameter must satisfy a self-consistency equa-
tion:

∆k = −
∑

k′

Vkk′

∆k′

2Ek′

, (38)

where Vkk′ is the Cooper channel of the interaction and
Ek =

√

(ǫk − µ)2 + |∆k|2.
To calculate the phonon Hall viscosity for this system,

we need to obtain the effect of the lattice deformation on
the order parameter ∆k. For simplicity, we consider the
long-wavelength continuum limit, where

HBCS =
1

2

∑

k

Ψ†
kHBdG(k)Ψk, (39)

where Ψ†
k = (c†k, c−k), and

ĤBdG =

[

ǫk − µ ∆(|k|)(k̂iexi + ik̂jeyj)

∆∗(|k|)(k̂iexi − ik̂jeyj) −ǫk + µ

]

.

(40)

k̂i is a unit vector, and ∆(|k|) is chosen to fall to zero
far away from the Fermi surface (the cutoff scheme is
explain in Fig.4), µ is their chemical potential, and eij =
δij + δeij where δeij is a linear combination of the lattice
distortions wkl ≡ ∂kul. It is convenient to define an
“order parameter metric” g∆ij = eiaeja, which we can
fix in terms of g and g̃ using the BCS self-consistency
equation. In the continuum limit, where the system is
rotationally invariant, it is simple to show (see Appendix
A) that

g∆ij = γgij + (1− γ)g̃ij , (41)

where γ is a constant that can be determined from the
self-consistency equations (see Appendix A). To first or-
der in wij , we have g

∆
ij = δij +(δeij + δeji), so the above

equation does not fix δeij − δeji. We may fix δeij − δeji
by observing that the only affect of a rigid rotation of
the crystal should be to rotate kx and ky into each other.
Thus: eij − eji = 2mij . These considerations fix the

dependence of the order parameter on the lattice defor-
mations. Thus we can now use the Kubo formula and
explicitly obtain the Hall viscosity:

ηijkl =
1

2

~

8π2

∫

d2kd̂ · ( ∂d̂

∂wij
× ∂d̂

∂wkl
) + (i↔ k) (42)

In Appendix B, we present some details of the calcula-
tion. In the case where g̃ij = gij , the calculation simpli-
fies considerably and we find a simple result

ηH =
t̃′t′

4(t/2 + t̃)2
1

4
~n =

t̃′t′

4(t/2 + t̃)2
ηHgr , (43)

where the gravitational Hall viscosity is ηHgr = 1
4~n. The

constant of proportionality ηH/ηHgr is typically of order
one. In Fig. 4, we show the Hall viscosity calculated
from the results presented in Appendix B for gij 6= g̃ij .
While this does not modify the Hall viscosity in the weak
pairing limit much, the behavior close to the weak to
strong pairing transition is dependent on completely non-
universal features, such as the frequency dependence of
the pairing gap.
For a system with a circular Fermi surface, the px +

ipy state has another interesting feature: the U(1)φ ×
U(1)Lz

symmetry associated with particle number and
angular momentum conservation is spontaneously broken
to a diagonal subgroup, U(1)Lz−φ. This implies that in
the effective action, mxy and φ, the angle through which
the crystal is rotated about the z direction and the overall
phase of the order parameter, respectively, should appear
together as mxy+φ. This means that the effective action
of the crystal involves the phase of the order parameter
as well:

δSH = 2

∫

ddxdt[ηH(uxx − uyy)u̇xy

+ ηM (uxx + uyy)(ṁxy + φ̇)]. (44)

Physically the U(1)Lz−φ symmetry requires Lz to in-
crease by ~ when two electrons are adiabatically added.
Since mxy and φ are conjugate variables to Lz and the
number of Cooper pairs, the above effective action con-
tains the Berry phase term for this adiabatic process:

~
δn

2
=
∂LH

∂φ̇
=

∂LH

∂ ˙mxy
= δLz. (45)

The physical consequences of the coupling between the
uniform compression, uxx + uyy, and φ means that the
change in particle density is given by

δn = 4ηM (uxx + uyy) = 4ηM
δA

A
, (46)

where A is the area of the 2D system and n is the particle
density, when µ is held constant. A generic superconduc-
tor of course has

δn/n = α(µ)δA/A, (47)
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FIG. 4. The px + ipy superconductor phonon Hall viscosity.
The filled curves are for the cases with gij 6= g̃ij , while the dot-
ted curves are for gij = g̃ij . We have set V ′/V = 2t′/t, t̃/t =

−t̃′/t = 0.75, and Ṽ /V = −Ṽ ′/V = 0.40. The pairing gap

was set to have a Gaussian cutoff ∆ = ∆̂k exp[−k2/2(δk)2],

with δk = 1/a and ∆̂(2meffa/~
2) = 0.3, 0.4, 0.6 for the

blue, purple and red curves respectively. Note that while
ηH converges to the same asymptotic values in the weak-
pairing limit, in the strong-pairing phase and near the quan-
tum phase transition, it is not proportional to the density n
when gij 6= g̃ij .

where α(µ) is a constant depending on the chemical po-
tential; note that we would have α = −1 if the total par-
ticle number had been fixed. The additional symmetry in
this problem, which relates phase rotations to rotations
of the crystal, sets α(µ) = −4ηM/n. This suggests a
way to experimentally measure ηM in systems that have
an additional symmetry involving spatial rotations of the
crystal.

IV. PHYSICAL CONSEQEUNCES OF PHONON

HALL VISCOSITY

A. Acoustic phonon dynamics

Consider the effective long-wavelength elasticity the-
ory of a crystal, given by (1) and (2). Note that this
is an expansion in the displacement fields and its gra-
dients. Since for the sound waves ω ∝ |k| + · · · , the
Hall viscosity terms are actually of order k3, so for
consistency one must also include a term of the form
δS3 =

∫

ddxdtλijklm∂m∂iuj∂kul, but such a term van-
ishes in the presence of inversion symmetry. As we noted
in Section IIA, anharmonic effects are O(k4), so Hall
viscosity may be distinctly measurable because its effects
appear at lower order in k. We briefly mention the effects
of impurities later. The physical consequences of Hall
viscosity terms can be analyzed most simply by consid-
ering 2D systems whose long-wavelength elastic theory is
isotropic. This would be directly physically relevant for

2D systems with square lattice symmetry; the considera-
tions directly apply for layered 3D crystals as well, where
the 2D layers have a square lattice symmetry and where
we consider phonons with wave-vector oriented parallel
to the 2D layers. For such systems, the elastic theory
simplifies and one obtains for the equation of motion:

üi = c2t∇2ui + (c2l − c2t )∂i∇ · u+ η∇2ǫij u̇j/ρ, (48)

where the indices i, j run over the 2D spatial coordinates,
ct and cl are the transverse and longitudinal sound veloci-
ties, respectively, and η ≡ ηxxxy is the Hall viscosity. It is
simple to show that such a wave equation does not admit
purely transverse or purely longitudinal solutions. Let us
denote e± as the eigenmodes of the system, and let the

basis
(

1 0
)T

and
(

0 1
)T

correspond to the longitudinal

and transverse acoustic phonon modes, respectively. In
this basis, the eigenmodes of the system in the presence
of the Hall viscosity are

e+ ∝
(

1

−ix

)

+O(x2), e− ∝
(

−ix
1

)

+O(x2), (49)

where x ≡ ω
ωv

= ηω
ρ(c2t−c2

l
)
is a dimensionless parameter.

This defines the characteristic frequency ωv =
ρ(c2t−c2l )

η ∼
B
η , where B is the bulk modulus of the crystal. (Note

that for a crystal, cl > αct, for some constant α of order
unity, which is why ρ(c2t − c2l ) ∼ ρc2l ∼ B). Observe that
to linear order, there is a π

2 sgn(η) phase shift between
the longitudinal and transverse modes. The dispersion
relation is

ω2 =
k2

2
[c2l + c2t + η2k2/ρ2±

√

c4l + (c2t + k2η2/ρ2)2 + 2c2l (k
2η2/ρ2 − c2t )]. (50)

The shift in frequency for a given acoustic phonon mode
for finite η is ∆ω/ω(η = 0) ∼ x(ω(η = 0))2. In principle
then the shift in frequency can determine η. However,
since this is not sensitive to the sign of the Hall viscosity,
it may not be a useful method in practice for determining
the Hall viscosity.
An analysis of surface (Rayleigh) waves of a 3D

medium with non-zero ηxxxy = ηyyyx displays similar be-
havior. For a medium with surface at z = 0, a surface
wave travelling in the x-direction must have uy = 0 in
the absence of Hall viscosity, due to stress-free boundary
conditions. In the presence of a Hall viscosity, the surface
wave acquires a uy component, which to linear order in
ηω/ρc2 differs by a phase shift of π/2 and has a relative
amplitude of ηω/ρc2.

B. Numerical estimates and discussion of possible

experimental detection

As explained above, the physical consequences of a Hall
viscosity in the phonon effective action is the mixing of
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longitudinal and transverse sound modes, which at a fre-
quency ω is determined by ω/ωv, with ωv = ρc2/ηH a
characteristic frequency scale associated with the Hall
viscosity. To lowest order in ω/ωv, there is a phase shift
of π/2. For the bulk modes, a more precise value of ωv

is ωv = ρ(c2l − c2t )/η
H , and the amplitude ratio between

the two modes in the elliptical polarization is ω/ωv. It
is not clear what the minimal experimentally measurable
value of the Hall viscosity is. From elementary consid-
erations, we can put a rough bound on what may real-
istically be measured. First, for the sound waves to not
destroy the crystal, we expect that the strain is small:
|∂u| ≪ 1, which implies that |ku| ≪ 1. Since we have
roughly ω ∼ ck, this implies ωu≪ c. The amount of mix-
ing is determined by ω/ωv, so the amount of amplitude
from the other mode that is mixed in is (ω/ωv)u. For
this to be realistically measurable, this should be much
larger than the size of the quantum fluctuations of the
wave function of an atom, which is on the order of 0.1 Å.
That is, |ωu| ≫ ωv × 0.1Å. Thus we have the conditions
ωv × 0.1Å ≪ ωu ≪ c. For a typical sound velocity of
5× 105 cm/s, this implies

ωv ≪ 5× 1014s−1. (51)

For smaller sound velocities, this bound will be smaller.
This is not a fundamental bound, but a practical one.
This is because in principle it is possible to measure os-
cillations of the center of the wave function of an atom
at a resolution that is smaller than the characteristic size
of its wave function.
The two-dimensional mass density of the crystal is ρ ∝

Amp/a
2, where A is the atomic number of atoms of the

crystal. Typically, A ∼ 10, and a ∼ 4× 10−8cm, so ρ ∼
10−8g/cm2. Furthermore, c2l − c2t ∼ (α2 − 1)1010cm2/s2,
where α = cl/ct and typically α ∼ 2. ηH ∼ ηHgr ∼ ~ne,
where ne is the electron density. Thus, for a typical
2D electron density of 1015cm−2, with α ∼ 2, we see
ωv ∼ 1014s−1. For a 1 GHz measurement, ω/ωv ∼ 10−5;
at 100 GHz, ω/ωv ∼ 10−3 and, depending on material pa-
rameters, could be closer to 10−2. Note that the acoustic
phonon frequencies must be much less than the energy
gap of the electronic state, which for a 10 K gap trans-
lates to approximately 0.2 THz, and also less than the
phonon Debye frequency, which is close to 10 THz.
For quantum Hall states induced by an external mag-

netic field, the electron densities are usually low, ne ∼
1011cm−2, yielding immeasurably small values for ω/ωv.
An exception may be graphene, where recent advance-
ments in applying extremely large gate voltages may
allow for much larger densities of electrons participat-
ing in quantum Hall states.33 The necessary values of
ne ∼ 1015cm−2 usually appear in states that sponta-
neously break time-reversal symmetry, such as quantum
anomalous Hall states, ferromagnetic insulators, or chiral
superconductors, where the effective magnetic moment
per lattice site is much larger than could be produced by
an external magnetic field.
The effects discussed here would most easily be mea-

surable in bulk, layered 3D crystals, for phonons propa-
gating along an in-plane high-symmetry direction. While
there are a number of examples of 3D IQH states34–39,
the value of the Hall viscosity is probably too small
to be measured, since the particle density is too small,
though not typically as low as in 2D quantum wells.
More promising systems are those that spontaneously
break time-reversal symmetry, because those typically
will have much higher angular momentum densities. One
promising candidate may be the chiral superconductor
Strontium Ruthenate, which exists as a 3D crystal and
may have a large enough Hall viscosity because it spon-
taneously breaks time-reversal. Another promising set
of materials to measure a phonon Hall viscosity are 3D
ferromagnetic insulators, for example those discussed in
Ref. 40–42 . Note that in cases where the spin gap is
small, an external magnetic field can be used to ensure
the electronic state is fully gapped.

In principle, one way to measure such an effect would
be through pulsed echo ultrasound meaurements, which
have been successful in detecting circular polarization
between transverse sound waves. However, while bulk
pulsed ultrasound seems to be limited to frequencies on
the order of 1 GHz, it is not clear what the ultimate
bounds are on an experimentally accessible amplitude ra-
tio between transverse and longitudinal waves. A more
promising experimental technique appears to be time-
dependent x-ray diffraction43. Such techniques have been
developed only recently over the last decade and have
been used to directly image acoustic phonon modes44,45.

One complication of measuring the phonon Hall vis-
cosity is related to the effects of crystal disorder, which
can also mix transverse and longitudinal waves. How-
ever, the effects of disorder are not sensitive to the sign
of the time-reversal symmetry breaking of the electronic
state; this dependence on the sign of the time-reversal
symmetry breaking is unique to the Hall viscosity, and
can be used to extract the phonon Hall viscosity even for
imperfect crystals.

We would like to point out that related phenomena
occur in various other time-reversal breaking systems.
The phonons in a ferromagnet, for example, can ex-
hibit acoustic Faraday rotation, where the two trans-
verse modes acquire a circular or elliptic polarization46,47.
However such systems cannot be described by a simple
local effective action in terms of the strain fields because
they are coupled to magnons, which are gapless; inte-
grating out the magnons will result in non-local terms in
the crystal effective action. The physical manifestations
of such phenomena are also quite different; they occur
as resonances when the frequency and wavelength of the
phonons and magnons are matched. More directly re-
lated phenomena have been considered in the case of ionic
crystals in an external magnetic field48, and in Tkachenko
modes of vortex lattices in rotating superfluids49–51. In
these situations, one obtains a related equation of motion
as in (48).
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V. CONCLUSION

We have proposed the acoustic phonon Hall viscosity
as a novel probe into the adiabatic Berry curvature of
the many-body electron wave function for gapped, time-
reversal symmetry breaking electronic states, and we
have computed it and studied its behavior in a number of
theoretical models. It is important to note that while the
phonon Hall viscosity appears as a general higher order
term in the acoustic phonon effective action, its contri-
bution is dominated by the Berry curvature of the elec-
tronic wave function. Additional contributions besides
the electronic one would require the atoms of the crystal
to directly couple to a time-reversal breaking field; such
an effect may be appreciable only in ionic crystals in a
large magnetic field, where locally the charge of the ions
is not entirely screened by the electrons. In more generic
situations, there is no net charge locally as it is com-
pletely screened by the electrons, and therefore the only
time-reversal symmetry breaking effects occur through
the adiabatic change of the electron Hamiltonian as the
phonons are excited.
In some simple cases, we have found that the phonon

Hall viscosity is proportional, with a numerical factor of
order 1, to the gravitational Hall viscosity of the contin-
uum electronic theory. Our numerical estimates indicate
that this is a measurable effect and there may be a num-
ber of materials, particularly the ferromagnetic insula-
tors or chiral superconductors, which might be suitable
candidates for experimentally detecting the phonon Hall
viscosity by measuring time-reversal symmetry breaking
corrections to acoustic phonon dynamics. Since the ef-
fects are expected to be small and their measurement
would require high spatial resolution, it appears that
time-dependent x-ray diffraction may be currently the
most promising probe. As phonon Hall viscosity is de-
veloped into a more mature experimental probe, we hope
that it can eventually be useful as a novel lens into the
possible topological behavior of electron systems.
We thank A. Auerbach, J.Avron, T. Deveraux, T.

Hughes, S. Kivelson, R.B. Laughlin, S. Riggs, D. T. Son,
J. Tranquada and C. Varma for helpful discussions. This
work is supported by the Alfred P. Sloan Foundation
(XLQ), the Simons Foundation (MB), and the DOE un-
der contract DE-AC02-76SF00515 (SBC). We thank the
Aspen Center for Physics (NSF grant No. 1066293) and
the KITP ( Grant No. NSF PHY05-51164) for hospital-
ity while this work was being completed.

Appendix A: p+ ip BCS self-consistency

The BCS mean-field Hamiltonian is:

HBdG =
∑

k

(ǫk − µ)c†kck −
∑

k

∆kc−kck, (A1)

where

∆k =∆(sin kx + i sinky)

+ ∆̃(sin kx cos ky + i sinky cos kx) (A2)

and the kinetic energy is that of Eq.(14). ∆k satisfies a
self-consistency equation:

∆k = −
∑

k′

Vkk′

∆k′

2Ek′

, (A3)

where Vkk′ is the Cooper channel of the interaction and
Ek =

√

(ǫk − µ)2 + |∆k|2.
When the crystal is strained, the order parameter will

take the following form in the continuum limit:

∆k = ∆(k̂iexi + ik̂ieyi), (A4)

where eab[{∂iuj}] are functions of the distortion tensor
wij ≡ ∂iuj. In order to obtain the phonon response, we
need to obtain this function to linear order in ∂iuj. First,
observe that due to the U(1)Lz

×U(1)φ → U(1)Lz−φ sym-
metry breaking, φ spatial rotation is equivalent to the
gauge transformation ∆ → ∆exp(iφ). Therefore

exy − eyx = wxy − wyx. (A5)

Next, observe that exx, eyy, and exy + eyx are symmetric
in x and y, so they can only depend on the strain tensor
uij . The self-consistency equation can be thought of as
a constraint on the “order parameter metric” g∆:

f(g∆, g, g̃) = 0. (A6)

Considering the variations of this:

δg∆ij
∂f

∂g∆ij
+ δgij

∂f

∂gij
+ δg̃ij

∂f

∂g̃ij
= 0. (A7)

For a rotationally invariant system, ∂f/∂gij ∝ δij , and
similarly for ∂f/∂g̃ij. This implies that δg∆ii = γδgii +
γ̃δg̃ii, where γ and γ̃ are constants. Now observe that
when gij = g̃ij , we are merely implementing a coordi-
nate transformation, so we should have g∆ij = gij , which
implies γ + γ̃ = 1. Furthermore, for a rotationally in-
variant system, the deformations δgxx = −δgyy = e and
δg̃xx = −δg̃yy = ẽ are equivalent to the deformations
δgxy = e and δg̃xy = ẽ, because for a rotationally invari-
ant system, the two types of deformations simply differ
by a rotation. Thus, we conclude:

g∆ij = γgij + (1 − γ)g̃ij . (A8)

The constant γ can be found from the self-consistency
equation.
To actually calculate γ from the self-consistency equa-

tion, we note that the assumption we made above tells us
that the effect of change in the kinetic metric gij should
be proportional to the effect of coordinate transforma-
tion δij → gij . This means that, if we consider the case
δgxx = −δgyy = e1 and δg̃ = 0, the change in the order

parameter should come out as δ∆k = γe1∆(k̂x − ik̂y)/2.
Thus, to the self-consistency condition
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∂∆k

∂e1
= −

∑

k′

Vkk′

[

1

2Ek′

∂∆k′

∂e1
− ∆k′

2E2
k′

(

ǫk′ − µ

Ek′

∂ǫk′

∂e1
+

|∆k′ |
Ek′

∂|∆k′ |
∂e1

)]

, (A9)

we can insert

∂∆k

∂e1
=
1

2
γ∆(k̂x − ik̂y),

∂ǫk
∂e1

=ǫk(k̂
2
x − k̂2y), (A10)

to obtain

1

2
γ∆(k̂x − ik̂y) = −1

2
γ
∑

k′

Vkk′

∆(k̂′x − ik̂′y)

2Ek′

+
∑

k′

Vkk′

∆k′ǫk′(ǫk′ − µ)

2E3
k′

(k̂2x − k̂2y) +
∑

k′

Vkk′

∆k′ |∆′
k|

2E3
k′

∂|∆k′ |
∂e1

(A11)

and solve for γ. For this step, it is convenient to eliminate ∂|∆k′ |/∂e1 through a coordinate transformation argument,
which makes use of the fact that in the integral over k′, we can do a coordinate transformation (k′x, k

′
y) → (k′x, k

′
y) +

γe1(k
′
x,−k′y)/2 without changing the value of the integral because the Jacobian of this transformation is one, to linear

order in e1. This gives us

∑

k′

Vkk′

∆k′ |∆′
k|

2E3
k′

∂|∆k′ |
∂e1

=
∑

k′

Vkk′

(

1

2Ek′

∂∆k′

∂e1
− ∆k′

2E2
k′

ǫk′ − µ

Ek′

∂ǫk′

∂e1

)

−
∑

k′

∂Vkk′

∂e1

∆k′

2Ek′

. (A12)

We can obtain the derivatives on the right-hand side by noting that this coordinate transformation gives us

∆k′ → ∆k′ +
1

2
γ∆(k̂′x − ik̂′y), ǫk′ → ǫk′ + γǫk(k̂

2
x − k̂2y), Vkk′ → Vkk′ − γV (k̂xk̂

′
x − k̂yk̂

′
y) (A13)

where we used Vkk′ = −2V (k̂ · k̂′). Since the change in |∆k′ | is same, we can insert this result from the coordinate
transformation into Eq.(A9).

We find at the weak coupling limit

γ = −1− ln(2ǫc/|∆0|)
1 + ln(2ǫc/|∆0|)

, (A14)

where ǫc is the cutoff energy of the pairing and |∆0| is
the value of ∆ at the Fermi surface. The negative sign
of γ is because our kinetic metric deformation increases
the density of state around (0,±kf ) compared to (±kf , 0)
and therefore it is energetically advantageous to have the
py pairing to be stronger than the px pairing.

Appendix B: p+ip BCS Hall viscosity calculation

Now we would like to calculate the Hall viscosity for
the px + ipy BdG Hamiltonian. We want:

ηH =
1

2
(ηxxxy + ηxxyx) =

~

16π2

∫

d2kd̂ ·
(

∂d̂

∂wxx
× ∂d̂

∂uxy

)

(B1)

From HBdG = d · τ , we have

dx = ∆(k̂xexx + k̂yexy),

dy = ∆(k̂yeyy + k̂xeyx),

dz =
1

2m∗ kikjgij − µ; (B2)

note that in a flat metric, d‖ ≡
√

d2x + d2y and dz would

depend only on k. In this section, since d‖ has explicit
dependence only on eij while dz has explicit dependence
only on gij , we will treat eij and gij as independent vari-
ables.
For our calculation, we want to write the derivatives

in terms of gij and eij , which gives us

∂d‖
∂wxx

=
1

2

(

ã
∂d‖
∂exx

+ b̃
∂d‖
∂eyy

)

=
1

2

(

ãkx
∂d‖
∂kx

+ b̃ky
∂d‖
∂ky

)

,

∂dz
∂wxx

=a
∂dz
∂gxx

+ b
∂dz
∂gyy

=
1

2

(

akx
∂dz
∂kx

+ bky
∂dz
∂ky

)

,

∂d‖
∂uxy

=b̃

(

∂d‖
∂exy

+ b̃
∂d‖
∂eyx

)

= b̃

(

kx
∂d‖
∂ky

+ ky
∂d‖
∂kx

)

,

∂dz
∂uxy

=2b
∂dz
∂gxy

= b

(

kx
∂dz
∂ky

+ ky
∂dz
∂kx

)

, (B3)
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where

a = meff

(

t′ + t̃′
)

,

b = meff t̃
′,

ã = γ[meff (t
′ + t̃′)] + (1− γ)

V ′ + Ṽ ′

V/2 + Ṽ
,

b̃ = γ(meff t̃
′) + (1− γ)

Ṽ ′

V/2 + Ṽ
, (B4)

and we used

∂dz
∂gij

=
1

4

(

ki
∂dz
∂kj

+ kj
∂dz
∂ki

)

gij=δij

,

∂d‖
∂eij

=ki
∂d‖
∂kj

∣

∣

∣

∣

eij=δij

(B5)

To see this, first observe:

∂d‖
∂wij

=
∑

kl

∂ekl
∂wij

∂d‖
∂ekl

,

∂dz
∂wij

=
∑

kl

∂gkl
∂wij

∂dz
∂gkl

. (B6)

Assuming wxy−wyx = exy−eyx, all ∂gkl/∂wij , ∂ekl/∂wij

vanish except for

a =
∂gxx
∂wxx

=
∂gyy
∂wyy

,

b =
∂gxx
∂wyy

=
∂gyy
∂wxx

=
∂gxy
∂wxy

=
∂gxy
∂wyx

, (B7)

and

ã =2
∂exx
∂wxx

= 2
∂eyy
∂wyy

,

b̃ =2
∂exx
∂wyy

= 2
∂eyy
∂wxx

=2
∂exy
∂wxy

− 1 = 2
∂exy
∂wyx

+ 1

=2
∂eyx
∂wxy

+ 1 = 2
∂eyx
∂wyx

− 1. (B8)

Now we need to calculate

ηH =
~

16π2

∫

d2kd̂ ·
(

∂d̂

∂wxx
× ∂d̂

∂uxy

)

=
~

32π2
ab

∫

d2k
1

d2
d̂ ·
[

kx
∂d′′

∂kx
×
(

kx
∂d′

∂ky
+ ky

∂d′

∂kx

)]

+
~

32π2
b2
∫

d2k
1

d2
d̂ ·
[

ky
∂d′

∂ky
×
(

kx
∂d′

∂ky
+ ky

∂d′

∂kx

)]

=
~

32π2
ab

∫

k2xd
2k

1

d2
d̂ ·
(

∂d′′

∂kx
× ∂d′

∂ky

)

+
~

32π2
b2
∫

k2yd
2k

1

d2
d̂ ·
(

∂d′

∂ky
× ∂d′

∂kx

)

(B9)

where d
′ = (b̃d‖/b, dz) and d

′′ = (ãd‖/a, dz). Then,
using

∂

∂kx
=cosφ

∂

∂k
− sinφ

k

∂

∂φ
,

∂

∂ky
=sinφ

∂

∂k
+

cosφ

k

∂

∂φ
, (B10)

we obtain:

ηH =C1

∫

k2dk
∂d̂z
∂k

+ C2

∫

k2dk

[

d̂z(1− d̂2z)
1

d

∂d

∂k
− d̂2z

∂d̂z
∂k

]

+ C3

∫

k3dk

[

(1− d̂2z)
1

d

∂d

∂k
− d̂z

∂d̂z
∂k

](

∂d̂z
∂k

+ d̂z
1

d

∂d

∂k

)

=8πC1n− 2

3
C2

∫

kdk(1− d̂3z) + C2

∫

k2dkd̂z(1 − d̂2z)
1

d

∂d

∂k
+ C3

∫

k3dk

[

(1− d̂2z)
1

d

∂d

∂k
− d̂z

∂d̂z
∂k

](

∂d̂z
∂k

+ d̂z
1

d

∂d

∂k

)

,

(B11)

where

C1/~ =
1

128π
(ãb+ 3ab̃− 4bb̃),

C2/~ =C1/~−
1

32π
b̃(ã− b̃),

C3/~ =
1

256π
(ab̃− ãb). (B12)

Now note that when the kinetic and interaction metrics are equal, we have a = ã, b = b̃, which means C1/~ =
b(a− b)/32π and C2 = C3 = 0. Inserting these into Eq.(B11) gives us

ηH = 8πC1n = b(a− b)~n/4 = (t/2 + t̃)−2 t
′t̃′

4

~n

4
. (B13)
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In the weak pairing limit, even when the kinetic and interaction metrics are different, we have ηH ∝ n under some
reasonable assumptions. First, note that

∫

kdk(1− d̂3z) =

∫

kdk(1− d̂z) = 4πn,

∫

k2dk
dzd

2
‖

d5

(

dz
∂dz
∂k

+ d‖
∂d‖
∂k

)

=

∫

kdk
dzd

2
‖

d5
k
∂dz
∂k

= k2f

∫ ∞

−µ

dξ
ξ2∆2

(ξ2 +∆2)5/2
=

2

3
k2f =

8π

3
n, (B14)

in this limit. Meanwhile, if we assume |∆k| ∝ k near the Fermi surface, we have

∫

k3dk
d‖
d3
∂dz
∂k

∂d‖
∂k

=

∫

kdk
d2‖
d3

2(dz + µ) = k2f

∫ ∞

−µ

dξ
∆2

(ξ2 +∆2)3/2
= 2k2f = 8πn. (B15)

At the quantum critical point, the ratio of the phonon Hall viscosity to the gravitational Hall viscosity becomes
different from what we have for the weak-pairing limit. We can see this from

∫

kdk(1− d̂z) =

∫

kdk
d2‖

d(d+ dz)
=

1

2

∫

dk2
∆̂2k2

d(d+ dz)
=

1

4

(

2m∗

~2

)2 ∫ ∞

0

dξ
∆̂2

ξ +m∗∆̂2/~2
= 4πn,

∫

k2dk
dzd

2
‖

d5

(

dz
∂dz
∂k

+ d‖
∂d‖
∂k

)

=

∫

kdk
dzd

2
‖

d5
(2d2z + d2‖) =

(

2m∗

~2

)2 ∫ ∞

0

dξ
∆̂2

ξ + 2m∗∆̂2

~2

√
ξ(ξ + m∗∆̂2

~2 )

(ξ + 2m∗∆̂2

~2 )5/2
>

8π

3
n,

∫

k3dk
d‖
d3
∂dz
∂k

∂d‖
∂k

=

∫

kdk
d2‖
d3

2dz =

(

2m∗

~2

)2 ∫ ∞

0

dξ
∆̂2

ξ + 2m∗∆̂2

~2

√

ξ

ξ + 2m∗∆̂2

~2

> 8πn, (B16)

where d‖ = ∆̂k. We also have

4πn <

∫

kdk(1− d̂3z) =

∫

kdk(1− d̂z)(1 + d̂z + d̂2z) < 12πn. (B17)

In the strong-pairing limit, we do not find asymptotic limit to the ratio of integrals to n that is independent of cutoff.
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