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Numerical calculations indicate that by suitably controlling the individual gate voltages of a capacitively
coupled parallel double quantum dot, with each quantum dot coupled to one of two independent non-magnetic
channels, this system can be set into a spin-orbital Kondo state by applying a magnetic field. This Kondo regime,
closely related to the SU(4) Kondo, flips spin from one to zerothrough cotunneling processes that generate
almost totally spin-polarized currents with opposite spinorientation along the two channels. Moreover, by
appropriately changing the gate voltages of both quantum dots, one can simultaneously flip the spin polarization
of the currents in each channel. As a similar zero magnetic field Kondo effect has been recently observed by Y.
Okazakiet al. [Phys. Rev. B84, (R)161305 (2011)], we analyze a range of magnetic field values where this
polarization effect seems robust, suggesting that the setup may be used as an efficient bipolar spin filter, which
can generate electrostatically reversible spatially separated spin currents with opposite polarizations.

PACS numbers: 72.15.Qm,72.25.-b,73.63.Kv,85.75.Hh

Introduction.—Traditional spintronic devices rely on the
use of ferromagnetic source and drain leads to produce and de-
tect polarized spin-currents, like, for example, the Datta-Das
spin field-effect-transistor1. More recently, the manipulation
of single spins has become one of the paradigms for quan-
tum information2. To achieve easier integration with current
technology, the use of semiconducting lateral single quantum
dots (QD) has been suggested as a means to produce spin
filtering and spin memory devices3, which can be controlled
through the use of electrostatic gates, without the need of fer-
romagnetic contacts4, nor highly inhomogeneous static mag-
netic fields, or AC fields. Its experimental realization5, using
a single QD and a large magnetic field to produce abipolar
electrically tunable spin filter, has spurred a multitude ofpro-
posals, e.g., two QDs embedded in an Aharonov-Bohm ring6,
a double QD (DQD) in parallel7, or in a T-shape geometry8, to
cite a few. More related to the results presented here, Bordaet
al.9 suggested the possibility of spin-filtering in a DQD de-
vice at quarter-filling, by exploiting spin and orbital degrees of
freedom simultaneously through an SU(4) Kondo state. Right
after that, Feinberg and Simon10, by extending the ideas de-
scribed in9 to a similar DQD device, suggested the interest-
ing possibility of a “Stern-Gerlach” spin filter effect athalf-
filling. In this work we use two fully independent channels,
and present detailed numerical results confirming the high ef-
ficiency of the spin filtering effect and suggest experimental
ways of observing it.

The utilization of the Kondo effect11 in a single-QD12 has
the potential to add an extra dimension to spintronics, as
now the localized moment in a QD participates in a many-
body state that may provide new functionalities to spintronic
devices13. More complex Kondo-like regimes, like the so-
called SU(4) Kondo state14,15, may provide even additional
latitude to create, manipulate, and explore spintronic devices
using QDs. In this work, we extend a recently observed
variant of the SU(4) Kondo effect16 (dubbed the spin-orbital
Kondo effect) to propose a device based on a capacitively cou-
pled parallel DQD which, when in the Kondo regime (through
the application of a magnetic field — see below), functions as
a bipolar spin filter that can produce currents with opposite

polaritiessimultaneously(one in each channel of the DQD
system). In addition, their polarities can be reversed by tuning
the gate voltages of the QDs, i.e., the proposed bipolar spin
filter is electrically tunable. As mentioned above, a similar
device had been suggested before10. Here, we provide exten-
sive numerical results to stimulate experimental groups totry
and observe this effect.

Device and Hamiltonian.—The proposed setup is that of
capacitively coupled parallel DQDs16,17 connected tocom-
pletelyindependent metallic leads [see Fig. 1(a)]18. Through
an even-odd transformation, two leads decouple from the
DQD and the system is reduced to that shown in Fig. 1(b).
Note that this transformation does not involve the QDs, there-
fore the interacting part of the Hamiltonian [(Eq. (2) below]
remains unchanged. Then, the two-impurity Anderson Hamil-
tonian modeling our system is

Htot = HDQD +Hband +Hhyb, (1)

HDQD =
∑

λ=1,2;σ

[

U

2
nλσnλσ̄ + (Vgλ − σH)nλσ

]

+

U ′
∑

σσ′

n1σn2σ′ , (2)

Hband = t
∑

λ=1,2

∞
∑

i=1;σ

(c†λiσcλi+1σ + H.c.), (3)

Hhyb =
∑

σ;λ=1,2

tλ

[

d†λσcλ1σ + H.c.
]

. (4)

The operatord†λσ (dλσ) creates (destroys) an electron in QD
λ = 1, 2 with spinσ = ±, while operatorc†λiσ (cλi+1σ) does
the same at sitei (i+1) in a non-interacting semi-infinite chain
λ = 1, 2; nλσ = d†λσdλσ is the charge per spin at each QD,
and both QDs have the same charging energyU . We include
the effect of a magnetic fieldH acting just on the QDs3, and
coupling just to the spin degree of freedom19. For simplic-
ity, we take the hybridization parameterst1 = t2 = t′. It is
important to note that, contrary to Ref.10, theonly interaction
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between electrons in different channelsλ = 1, 2 is the inter-
dot capacitive couplingU ′. Finally, as our setup consists of
semiconducting lateral QDs, each of them can have different
gate potentialsVg1 andVg216,18, and we will concentrate on
the experimentally relevant regimeU ′/U < 1.0 (the so-called
SU(2)⊗SU(2) regime)14. All results shown were calculated
usingU as our unit of energy. The width of the one-body
resonance for each QD is given byΓ = πt′2ρ0(EF ), where
ρ0(EF ) is the density of states of the leads at the Fermi energy
EF . Throughout the papert = 1.0 and all the other parameter
values are indicated in the figures or in the text.
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FIG. 1: (Color online) (a) DQD connected to four metallic leads so
that conductance through them can be measuredindependently. The
QDs are subjected to an inter-(intra-)QD Coulomb repulsionU ′ (U ).
(b) After an even-odd transformation, two of the leads decouple and
the system is reduced to just two leads coupledonly throughU ′.

This model has been studied extensively in previous works,
and it is well known that forU ′/U = 1.0 and zero-field it
has an SU(4) Kondo fixed point14, experimentally observed
in Refs.20,21. Here, we want to address a completely different
regime, although we will also show that our Density Matrix
Renormalization Group (DMRG)22 calculations faithfully de-
scribe the SU(4) Kondo regime as well.

Density Matrix Elements.—The results presented in this
work were calculated using the DMRG23 and the Friedel Sum
Rule (FSR)11,24–26. The validity of the FSR for the system
studied here is discussed in the supplemental material27. In
order to characterize and identify different regimes, we use
the reduced density matrix elements (DME), calculated with
the DMRG. The ground state wave-function can be written as

|Ψ0〉 =
∑

γ,δ

ψγ,δ|γ〉|δ〉, (5)

whereγ stands for the 16 possible DQD configurations (0-0,
σ-0, 0-σ, σ-σ′, 2-0, 0-2,σ-2, 2-σ, and 2-2), whileδ represents
the states associated with the Fermi sea. Summing over the
band statesδ we obtain the weight projection of the different
DQD configurations in the ground state.

ργ,γ′ =
∑

δ

ψγ,δψ
∗
γ′,δ. (6)

As will be shown in Fig. 4, the diagonal DME can be used
as a ‘proxy order parameter’ for the typical correlations that
characterize a many-body state like, for example, the Kondo
state. This is very useful in the case of an unusual (or exotic)
Kondo effect, where it may not be clear at first what are the
relevant correlations that one should look for (from now on
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FIG. 2: (Color online) Conductance (in units ofG0) for U ′ = 0.5,
Γ = 0.02, H = 0.0 (a) andH = 0.05 (b). (n1, n2) specifies the
occupancies of each QD [same values apply to (b)]. (b)H = 0.05
suppresses the spin Kondo effect (note that color scales in each panel
are different). We show that the bright (yellow) lines intercepted by
the (white) dashed line, whereG = G0, correspond to a peculiar
Kondo effect. Pointsα andβ are discussed in detail in Figs. 3 and 4.

we generally refer to thediagonalmatrix elements as DME
weight, or simply DME).

Numerical Results.—Figure 2(a) shows the conductance
G = G1 +G2 (G1,2 is the conductance for each channel) ob-
tained through the FSR27 in theVg1 − Vg2 plane forU ′ = 0.5
at zero magnetic field. The different QD occupancies are in-
dicated by the notation(n1, n2). In Fig. 2(b) we present the
conductance results for finite fieldH = 0.05, where the sup-
pression of spinSU(2) Kondo in each channel can be clearly
observed [color scales are not the same for panels (a) and (b)].
The (white) dashed line is the region of gate voltage variation
in theVg1 − Vg2 plane that interests us. It is parameterized by
the expressionVg2 = −Vg1 − (1+2U ′). Conductance results
along this line for0.0 ≤ H ≤ 0.04 are shown in Fig. 3, where
the (black) solid line shows results at zero magnetic field, with
a well defined plateau aroundVg1 = −1.0 [it corresponds to
a cross section of the bright (yellow) region in Fig. 2(a)]. As
the field increases, in steps of∆H = 0.025 (dotted lines), the
conductance at (and around) the particle-hole (p-h) symmetric
point (Vg1 = −1.0) is suppressed very quickly, while narrow
peaks start to form close to the charge degeneracy points [(red)
dashed line], denotedα [(2,0)-(1,1)] andβ [(0,2)-(1,1)] points
in Fig. 2(b), whereG = G0. Note that these peaks are nar-
row along the (white) dashed line in Fig. 2(b), but along the
charge degeneracy lines [the diagonal (yellow) bright lines in
Fig. 2(b)] they present a clear plateau structure.

Now, in Fig. 4 we present one of the central results in this
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FIG. 3: (Color online) Effect of magnetic field over conductance
along the (white) dashed line in Fig. 2(b).U ′ = 0.5, andΓ = 0.02,
0.0 ≤ H ≤ 0.04 (field increases in steps of 0.0025). Half-filling
conductance (aroundVg1 ∼ −1.0) in theSU(2)⊗ SU(2) regime is
suppressed faster than in the SU(4) regime (not shown). The dashed
(red) line (H = 0.04) reaches unitary conductanceG = G0 at values
of Vg1 corresponding to the pointsα andβ in Fig. 2(b).

work. As an illustration of the use of DMEs to trace the possi-
ble existence of a Kondo regime, panel (a) shows the DME
for half-filling (n1 + n2 = 2) configurations of the DQD
for U ′ = 1.0 and zero magnetic field (SU(4) fixed point),
as a function ofVg1 for Vg2 = −Vg1 − (1 + 2U ′) [equiva-
lent to the dashed (white) line in Fig. 2(b), but forU ′ = 1.0
(see supplemental material)27]. At the p-h symmetric point
(Vg1 = Vg2 = −U ′ − U/2 = −1.5) in Fig. 4(a), i.e., at
the half-filled SU(4) fixed point, one sees that the six possible
two-electron configurations have all the same DME weight
in the ground state, highlighting the fact that orbital and spin
degrees of freedom are perfectly equivalent in the half-filled
SU(4) Kondo state, i.e., spin and orbital degrees of freedom
aremaximallyentangled21. This result is well known, but it
serves to illustrate the use of the DME calculation to ‘look
for’ possible Kondo states. This is what is done in panel (b),
where we present the DME results forU ′ = 0.5 and finite
field H = 0.04 (same parameters as the ones for the (red)
dashed line in Fig. 3). In this case, we have two different val-
ues ofVg1 for which we have two half-filling configurations
with the same DME weight (sameVg1 values as theα andβ
points in Fig. 3). The crossing in theα (β) point in panel (b) is
between configurations↑-↑ and 2-0 (0-2). The important fact
to note is thatexactlyat these crossingsG = G0 (see Fig. 3),
indicating the possibility of a Kondo effect.

Indeed, in Fig. 5 we show eight cotunneling processes (four
in the upper panel and four in the lower) that shift the totalSz

spin of the DQD fromSz = 1 to Sz = 0 (and vice-versa).
The top processes correspond to the degenerate states↑-↑ and
2-0 [α point in Fig. 4(b)], while the bottom processes cor-
respond to the degenerate states↑-↑ and 0-2 (β point). The
virtual states contain either one or three electrons. The re-
markable fact about these cotunneling processes is that they
generate spin polarized currents in each channel, with oppo-
site polarizations. In addition, once one sweepsVg1 fromα to
β, the polarization direction of thespin filteredcurrent in each
right-side lead is reversed:↓ (↑) and↑ (↓) in channels 1 and
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FIG. 4: (Color online) (a) DMEvs.Vg1 for Vg2 = −Vg1−(1+2U ′),
Γ = 0.02, U ′ = 1.0, andH = 0.0. At the p-h symmetric point
(Vg1/U = −1.5), we have a half-filling SU(4) Kondo regime, char-
acterized by the entanglement of spin and ‘orbital’ degreesof free-
dom, translated here into the equality of all the two-electron DME
DQD configurations atVg1/U = −1.5. (b) Same as in (a), but now
for U ′ = 0.5 (SU(2) ⊗ SU(2) regime) andH = 0.04, correspond-
ing to the situation shown for the (red) dashed curve in Fig. 3. Note
that the DME of the spin configuration↑-↑ [(black) dotted curve]
is the same as the ‘orbital’ configuration2-0 [(red) solid curve] for
Vg1 = −1.29 (α point), as well as for the configuration0-2 [(blue)
dashed curve] forVg1 = −0.71 (β point).

2, respectively, for the upper (lower) processes. Note thatno
other virtual states are connected (byt′) to any of the degen-
erate states [↑-↑ and 2-0 (0-2)] in theα (β) point29. There are
similarities between the Kondo effect described here and the
one in Ref.16: from the lower inset on their Fig. 2 we see that
the magnetic field raises (lowers) the energy of the configura-
tion ↓-↓ (↑-↑), while maintaining the configurations↑↓-0, ↑-↓,
and↓-↑ degenerate (to zero-order int′). By adjusting the gate
potentialsVg1 andVg2, the configurations↑↓-0 and↑-↑ can be
made degenerate (α point). Then, the coherent superposition
of the cotunneling processes in Fig. 5 give origin to the Kondo
effect discussed here28.

In Fig. 6(a), we show conductance per spin type as a func-
tion of Vg1 (same parameters as Fig. 3, (red) dashed curve)
for channels 1 and 2 (see legend). These results confirm that
the conductance at pointsα andβ are almost perfectly polar-
ized, in accordance with the cotunneling processes described
in Fig. 5. Figure 6(b) shows the conductance polarization
Pλ = (Gλ↑ −Gλ↓) / (Gλ↑ +Gλ↓) for channelsλ = 1, 2.
Panels (c) and (d) show polarization results for channels 1 and
2, respectively, for0.0025 ≤ H ≤ 0.04 [other parameters
as in panels (a) and (b)]. The results clearly indicate that the
polarizationeffectis robust and does not require a high value
of magnetic field. Indeed, as indicated in Fig. 5(c), a polariza-
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FIG. 5: (Color online) Top: Schematic representation of thefour
possible processes that flip the total spin fromSz = 1 to Sz =
0, and back toSz = 1, when the singlet state is in channel 1 (α
point). The net effect is the transport of a spin down (up) in channel
1 (2). The coherent superposition of these processes leads to Kondo-
screening of the pseudospin associated to the two degenerate states
with Sz = 1 andSz = 0, and the consequent generation of a spin
down (up) current in channel 1 (2). Bottom: Equivalent processes
for the configuration where the singlet state is in channel 2 (β point).
In this case, the polarity of the currents in channels 1 and 2 (when
compared to top panel) is reversed.
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FIG. 6: (Color online) (a) Channel conductance per spinvs Vg1

[same interval as in Figs. 3 and 4(b), forH = 0.04 andΓ = 0.2:
at point α channel 1 (2) is polarized down (up), and at pointβ
channel 1 (2) is polarized up (down). (b) PolarizationPλ for each
channel calculated using data from (a). (c), (d) Polarization vs
Vg1 (0.0025 ≤ H ≤ 0.04) for channels 1 and 2, respectively.
Panel (c) also shows that forH/U = 0.025 there is a substantial
range∆Vg1 ≈ 0.045 for which the spin polarization varies between
≈ 70% and≈ 90%, indicating that the effect should be experimen-
tally observable.

tion of almost90% can be achieved forH/U = 0.025. Taking
U ≈ 1.0meV for a GaAs QD18 results inH . 1.0T around
theα point. As indicated by the double-head white arrow in
Fig. 5(c), a range of∆Vg1 ≈ 0.045, atH/U = 0.025, has a
polarization varying from≈ 70% to ≈ 90%. This indicates
that there is enough range in the parameters space to allow for
experimental observation of very high polarizations without
the need of very high magnetic fields.

Conclusions.—In summary, we have presented a peculiar
Kondo effect involving a capacitively coupled parallel DQD,
connected to two independent channels. To achieve this effect
it is necessary to apply a moderate magnetic field and adjust
the gate potential of each QD to take the DQD to a half-filling
charge degeneracy point. The cotunneling processes in this
Kondo effect are such that spin polarized currents are gener-
ated in each channel, with opposite polarities. The resultsin
Fig. 6 indicate that the effect should be experimentally observ-
able.
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