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Motivated by recent experiments [Vera-Marun et al., Nature Physics, Advance Online Publication
(2012)], we formulate a non-linear theory of spin transport in quantum coherent conductors. We
show how a mesoscopic constriction with energy-dependent transmission can convert a spin current
injected by a spin accumulation into an electric signal, relying neither on magnetic nor exchange
fields. When the transmission through the constriction is spin-independent, the spin-charge coupling
is non-linear, with an electric signal that is quadratic in the accumulation. We estimate that gated
mesoscopic constrictions have a sensitivity that allows to detect accumulations much smaller than
a percent of the Fermi energy.

PACS numbers: 72.25.Dc, 73.50.Fq, 75.76.+j, 73.23.-b

Introduction.—Spin current detection and measure-
ment protocols are for the most part based on ferro-
magnetic contacts [1–7] or Zeeman fields [8–11]. While
efficient and well controlled, these schemes are not op-
timized for miniaturization, because exchange and mag-
netic fields have low spatial resolution and because they
cannot detect the weak spin accumulations achievable
in two dimensional electron gases such as GaAs het-
erostructures, the platform of choice for sub-micron spin-
tronics. To unleash the full potential of spintronics at
the nanoscale, it is therefore imperative to find novel,
all-electric protocols. In sub-micron structures, how-
ever, reciprocity and other symmetry relations constrain
the detection of spin currents in the linear response
regime [12–14]. In the absence of time-reversal symmetry
breaking field and focusing on two-terminal geometries,
these constraining rules can only be waived by going be-
yond the linear response regime. At the nanoscale, this
presents important theoretical challenges as local electric
potentials must be determined self-consistently to ensure
gauge invariance [15].

In this manuscript we construct a mean-field non-linear
theory of spin transport through sub-micron scale struc-
tures. We use it to propose a protocol which converts
the spin current injected by a spin accumulation into a
charge signal via the energy-dependent transmission of
a mesoscopic structure. While our scheme is general,
we focus our discussion on quantum point contacts and
Coulomb blockaded quantum dots, whose transmission
is easily tunable by electric gate potentials. We show
that the electric response is quadratic in the spin accu-
mulation δµ when the transmission is energy-dependent.
A linear response arises only if the transmission is spin-
dependent, which usually requires an external magnetic
field. We foresee that our scheme has sufficient sensi-
tivity to detect weak spin accumulations such as those
that can be generated magnetoelectrically in GaAs het-
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FIG. 1: Measurement scheme: A mesoscopic constriction
separates two non-magnetic terminals with spin accumu-
lations δµs1,2. The transmission coefficient through the
constriction is gate tunable (voltage Vg), and when it is
energy-dependent, an electric signal that is non-linear in
δµs1,2 arises.

erostructures [16], to which the magnetic spin detection
schemes are notoriously difficult to apply.
We consider the standard measurement setup depicted

in Fig. 1. One aims to detect the non-equilibrium spin
accumulation drop below the two terminals, δµs1 6= δµs2,
as an electric signal. The spin accumulation origin is not
specified, be it ferromagnetic, magnetoelectric, or optical.
A recent pioneering work, Ref. [17], demonstrated that
non-linear effects make the detection possible in graphene
even without using ferromagnetic terminals, on which
the linear Johnson-Silsbee method relies [3]. A volt-
age quadratic in the spin accumulation arises due to the
energy-dependence of the graphene conductivity near the
Dirac point. The bottom-line of our theory is that, while
the drift-diffusion approach of Ref. [17] is appropriate
for bulk systems, it cannot be directly exported to sub-
micron structures, where gauge invariance requires spe-
cial care [15]. Furthemore, unlike in graphene, the den-
sity of states in GaAs heterostructures is mostly energy-
independent, thus non-linear effects emerge only if fur-
ther constrictions induce energy-dependent transmission
T (E). The constriction, such as a Coulomb blockaded
quantum dot, a resonant tunneling barrier, or a quan-
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tum point contact (QPC), is the active element in our
scheme, converting the spin to charge in proportion to
∂ET (E). This quantity, and this is the crucial point, is
fully tunable electrically and independently of the spin
accumulation itself, providing our method with versatil-
ity necessary for practical spintronics.
Theory calculation.–We model the detection circuit in

Fig. 1 as a quantum scatterer connected to two elec-
tron reservoirs, each with its own electrochemical poten-
tial and spin accumulation, via two leads. We start by
writing the current in lead i = 1, 2 in the spin subband
σ =↑, ↓ (alternatively σ = ±1) [15]

Iσi =
e

h

∫

dE
∑

jσ′

{Nσ
i δσσ′δij − T σσ′

ij [E,U(r)]}fσ′

j (E).

(1)
The transmission T σσ′

ij =
∑

αβ T
σ σ′

iαjβ is a sum over proba-
bilities that a particle with spin σ′ injected from transver-
sal channel β in lead j exits the system with spin σ into
channel α in lead i. It depends on the particle energy E
and the local electrostatic potential U(r). We consider a
spin conserving transmission T σσ′ ∝ δσσ′ with

T σσ
12 (E) = T (E) + σδT (E) . (2)

For a spin insensitive structure, the transmission differ-
ence is zero, δT = 0, and T = T ↑↑ = T ↓↓. Each lead is
characterized by the number Nσ

i of transmission chan-
nels it carries (whose weak energy-dependence we ne-
glect), and the particle distribution fσ

i (E) = f(E − µσ
i ),

at the corresponding terminal, with the Fermi function
f(x) = {exp[(x − µF )/kBT ] + 1}−1. The electrochemi-
cal potential of the spin subband σ, measured from the
Fermi energy µF , is (e is the electron charge)

µσ
i = eVi + σ δµsi, (3)

where Vi is the applied voltage.
Equation (1) is current conserving due to the unitarity

condition
∑

j,σ T
σσ′

ji = Nσ′

i . To guarantee gauge invari-
ance (i.e. that currents are invariant under an overall
voltage shift) one has to take into account that U(r) is a
function of the applied voltages. Up to second order in
µ’s, the current is [15]

Iσ1 =
e

h

∫

dE [−∂Ef(E)]
{

T σσ
12 (E)(µσ

1 − µσ
2 )

+ (1/2)∂ET
σσ
12 (E)[(µσ

1 )
2 − (µσ

2 )
2]

+

∫

dr [δU(r)T
σσ
12 (E)]δU(r)(µσ

1 − µσ
2 )
}

.

(4)

Though the first linear term is explicitly gauge invariant,
self-consistent conditions have to be imposed on U(r) in
order to ensure that the non-linear terms also are gauge-
invariant. This is taken care of by the last term where the
functional derivative of the transmission with respect to
U(r) couples to the deviation of the electrostatic profile

from its equilibrium value, U(r) = Ueq(r) + δU(r). The
deviation δU(r), which results from applied voltages and
spin accumulations and the way they are injected into the
scattering region, can be parametrized by characteristic
potentials [15], which generally speaking are determined
by self-consistent solutions to the Schrödinger and Pois-
son equations. To restrain from these (here unnecessary)
complications we neglect the spatial dependence of the
potential changes, δU(r) = δU , and calculate the func-
tional derivative of T σσ′

12 using the identity

∫

dr [δU(r)T
σσ′

12 (E)] = −e∂ET
σσ′

12 (E) . (5)

To solve for δU , we assume a symmetric probe, with
equal, spin-independent coupling to both leads

e δU = (µ↑
1 + µ↓

1 + µ↑
2 + µ↓

2)/4 . (6)

Using Eqs. (2–6) we get our main result, that the electri-

cal current I ≡ I↑1 + I↓1 is

I =G1 e δV +G2(δµ
2
s1 − δµ2

s2) +G3(δµs1 − δµs2)

+G4(δµs1 + δµs2) e δV.
(7)

The formula is explicitly gauge invariant, as it depends
only on δV = V1−V2. The calculation is furthermore cur-
rent conserving, with I2 = −I1 obtained by substituting
δµs1 ↔ δµs2 and δV → −δV . We see the emergence of a
non-linear spin to charge coupling term G2(δµ

2
s1 − δµ2

s2),
even in the absence of any rectification term∝ δV 2. That
such a term is absent follows from our choice of a sym-
metric potential δU , in agreement with Ref. [15]. There
are four contributions to the current, with conductances

G1 =
2e

h

∫

dE (−∂Ef)T (E), (8a)

G2 =
e

h

∫

dE (−∂Ef)[∂ET (E)], (8b)

G3 =
2e

h

∫

dE (−∂Ef)δT (E), (8c)

G4 =
e

h

∫

dE (−∂Ef)[∂EδT (E)], (8d)

which we discuss in detail below, first for a spin-
insensitive, second for a spin-sensitive constriction.
Spin insensitive constriction.–We first consider δT =

0 in Eq. (2), in which case G3 = 0 = G4, and focus
our discussion on a gate-defined QPC in a 2DEG GaAs
heterostructure, with energy-dependent transmission [18]

T (E) = {1 + exp[−2π(E − eαVg)/~ω]}−1
. (9)

The transmission is easily tuned by an external gate
voltage Vg, with a sensitivity set by the QPC charac-
teristic energy scale ~ω and α the ”lever arm” convert-
ing gate voltage into energy. We take typical values
~ω = 180µeV, corresponding to the Zeeman energy of
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FIG. 2: a) Non-linear conductance G2 given in Eq. (8b). b-
d) Current, Eq. (7) for zero bias, δV=0, as a function of b)
gate voltage determining the QPC transmission [See Eq. (9)],
c) temperature and d) QPC energy resolution in units of the
magnetic field.

8 Tesla field at the g-factor g = −0.39, and α = 0.05.
We further fix µF = 8 meV, T = 0.1 K, and spin accu-
mulations δµs2 = 0, and δµs1 ≡ δµs = 0.1% µF , which
should be magnetoelectrically achievable [16].
We are now ready to investigate the electric response of

the circuit. First, we assume that both leads are held at
the same potential. Even in this case, the spin accumula-
tion generates a finite current, due to the second term in
Eq. (7). Its magnitude is determined by the non-linear
conductance G2 in Eq. (8b), which we plot in Fig. 2a.
It is proportional to ∂ET , and thus maximal when the
QPC is half open, T = 0.5. The current is then

I = G2δµ
2
s ∼ e/h

max(kBT, ~ω/2π)
δµ2

s, (10)

and we plot it in Fig. 2b. For our choice of parame-
ters, the current is of the order of tens of pA, which
is well above the experimental detection limit. The de-
pendence of the current signal on max(kBT, ~ω/2π) is
demonstrated in Fig. 2c and d. Decreasing kBT at fixed
~ω (~ω at fixed kBT ), the signal first increases before it
saturates when kBT ≃ ~ω.
Alternatively, terminal 2 can be operated as a floating

probe. In this case, a finite voltage drop develops, which
we find by setting I1 = 0. One obtains

e δV = −G2δµ
2
s/G1 . (11)

We see that the current is converted into a voltage by the
linear conductance G1, given in Eq. (8a) and plotted in
Fig. 3a. This agrees with the already mentioned absence
of a rectification term in our symmetric QPC [15]. We
plot the signal voltage in Fig. 3b. In the region where
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FIG. 3: a) Linear conductance G1, Eq. (8a). b) Voltage,
calculated according to Eq. (11) (dashed line) and adding a
constant 0.1 e2/h to G1 (solid line). c) Current in external
magnetic field antiparallel (solid line) and parallel (dashed
line) to the spin polarization direction. The arrow denotes
the zero current position, the thin line is a guide to the eye.
d) Second derivative of the current with respect to V and B.

the QPC is closed (Vg ≪ −~ω), Eq. (11) gives an un-
physical saturation of δV (dashed line). To remove this
artifact, we add a small constant to G1, which enforces
that δµs1 does not influence V2 if the QPC is closed.
Then the electric signals (current or voltage), in the two
protocols just discussed behave similarly, I, V ∝ G2δµ

2
s.

For spin-insensitive constrictions, we see that the elec-
tric response is quadratic in the spin accumulation. The
qualitative picture for this effect is the following. At zero
bias, V = 0, a finite spin accumulation, δµs, on one side
of the constriction drives two counterpropagating cur-
rents in the two spin subbands. Since these two currents
flow at different energies, they do not cancel exactly when
the conductance is energy dependent.

This result is not specific to a QPC, which we next
replace by a Coulomb-blockaded quantum dot. Ne-
glecting inelastic processes and near resonance, its low-
temperature transmission is given by [19] T (E) =
Γ(1)Γ(2)/[(E−E0)

2/~2+(Γ/2)2], with the tunneling rates
Γ(1) and Γ(2) of the resonant level to the left and right
leads, Γ = Γ(1) + Γ(2) and the resonance peak position
E0. At E − E0 = ±~Γ/2

√
3, ∂ET (E) takes its maximal

value ±9Γ(1)Γ(2)/
√
3Γ3. Because T (E) differs from its

QPC expression, Eq. (9), in its energy-dependence, the
shape of the quantities plotted in Fig. 2 will be different;
most notably, the signal changes sign upon crossing the
resonance. However, the maximal current magnitude is
still given by Eq. (10) with Γ replacing ω.

Spin sensitive constriction.–We next consider the case
when δT 6= 0 in Eq. (2), when the QPC is made spin
sensitive, e.g. by an external Zeeman field. We assume
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that the field is parallel to the spin accumulation δµs1

and that it is sufficiently weak that the latter is not in-
fluenced. Equation (9) becomes

T σσ(E) = {1 + exp[−2π(E − σµB − eαVg)/~ω]}−1
,

(12)
where the Zeeman energy µB is added/subtracted from
the electron’s energy depending on its spin. Here, B is
the magnetic field, µ = (g/2)µB and µB is the Bohr
magneton. To linear order in B, we then have δT =
−µB ∂ET . We see that a term linear in the spin accu-
mulation has appeared, whose magnitude is given by the
conductance G3, Eq. (8c). This is a linear response term,
similar to the one reported in Ref. [11], giving an odd
magnetoresponse of the electric current through a QPC
in the presence of a spin current. This term allows to find
the sign of the spin accumulation, which is impossible for
a spin insensitive probe. This is demonstrated in Fig. 3c,
where we plot the current as a function of the magnetic
field. Applying the field antiparallel (for g < 0 as in GaAs
heterostructures) to the spin polarization direction, the
Zeeman energy penalty compensates for larger transmis-
sion at higher energies. The compensation is exact (the
current becomes zero), if

δµs = gµBBc . (13)

Remarkably, determining the compensation field Bc

alone allows to measure both the magnitude and direc-
tion of the spin accumulation.
For spin-sensitive constrictions, the conductance G4

gives an interesting contribution to the current, which is
coupled to the average spin accumulation δµs1+δµs2 and
the voltage bias δV . We rewrite this contribution as

G4(δµ2 + δµ1) e δV = G4

(µ↑
1 + µ↑

2

2
− µ↓

1 + µ↓
2

2

)

e δV ,

(14)
which makes it clear that this term describes two differ-
ent rectification currents in the two spin subbands which
are uncompensated if (i) the transport in the subbands
happens at different energies, (ii) there is a finite bias
and (iii) the probe transmission is both spin and energy
sensitive. Experimentally, this contribution can be iden-
tified from the current derivative with respect to both
the applied bias and the external field, as in Ref. [20].
We plot this contribution in Fig. 3d where the antisym-
metric shape of G4 ∝ ∂2

ET , strongly contrasts with the
symmetric conductances G2, and G3.
Conclusions.–We have shown how spin accumulations

can be converted into electric signals in mesoscopic sys-
tems with energy-dependent, but spin-conserving trans-
mission. When transport is spin-independent and in the
absence of voltage bias, the conversion occurs in the non-
linear regime, and the electric signal is quadratic in the
spin accumulation. In sub-micron structures, such non-
linearities have to be treated self-consistently in local

electrostatic potentials generated by the finite applied
biases. We did that within a simplified mean-field ap-
proach, which resides in neglecting the spatial structure
of the potential changes δU(r). It is reassuring that the
non-linear signal arises within this approximation, which
restrains from details of the constriction. Further, device
specific, spin rectifying effects may arise from the spa-
tial effects in δU(r), along the lines of Refs. [15] We also
note that for no applied bias our approximation becomes
exact since δU → 0.

In the case of transmission through a QPC, Eq. (10)
suggests that it is its energy resolution, with ~ω ≃ 2 −
3K typically, rather than the temperature, which limits
the signal magnitude and hence the sensitivity of our
approach. Alternatively, a Coulomb-blockaded quantum
dot can be used, where the resolution is given by the
tunneling width which can easily reach hΓ ≃ 0.1K or
less (see e.g. [21]). Close to resonance, we would expect
such a quantum dot to enhance the signal by at least
one order of magnitude compared to the results shown in
Fig. 2d.

Acknowledgements.–This work was supported by
the EU project Q-essence, meta-QUTE ITMS NFP
26240120022, APVV-0646-10, CE SAS QUTE, the NSF
under grant DMR-0706319 and the Swiss Center of Ex-
cellence MANEP. J. F. acknowledges support from the
DFG SFB 689 and SPP 1285.
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