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We study a ν = 1 topological system with one twisting edge-state band and one normal edge-
state band. For the twisting edge-state band, Fermi energy goes through the band three times,
thus, having three edge states on one side of the sample; while the normal edge band contributes
only one edge state on the other side of the sample. In such a system, we show that it consists of
both topologically protected and unprotected edge states, and as a consequence, its Hall resistance
depends on the location where the Hall measurement is done even for a translationally invariant
system. This unique property is absent in a normal topological insulator.

PACS numbers: 73.43.-f, 73.20.-r, 73.23.Ad

I. INTRODUCTION

The topological system has attracted much atten-
tion in recent years1,2. About twenty years ago, by
proposing the quantum anomalous Hall effect (QAHE)
in graphene3, Haldane gave a simple two-band model to
study a topological system. Recently, the topological in-
sulator material is first predicted and then experimen-
tally observed in some two-dimensional (2D) systems4–6.
The three-dimensional topological materials are also dis-
covered soon after7.
In research of the robustness of topological system, the

analysis of edge states is to be an effective approach8.
The helical edge states for 2D topological systems are
shown to have the topological protection of Z2,

9 and the
scattering between them is prohibited without breaking
time reversal symmetry. While with edge bands distor-
tion, they may cross the Fermi surface more than one
time, which may also give rise to some extra edge states1.
However, these extra edge states can not bring new topo-
logical phases, and are not protected by the topology10.
They are thought easy to be affected and are treated as
unimportant in the earlier studies.

In this paper, we show a nontrivial effect from the
topological unprotected edge states. While a system is
with both the topological protected and unprotected edge
states, the Hall conductance depends on the measure-
ment location even for a translationally invariant system.
This novel property survives at a finite disorder, however,
it is absent in both topological trivial systems and nor-
mal topological systems. Thus, this unique property is
the hallmark of a topological system with a twisting edge
band.
The rest of the paper is organized as follows. In Sec. II,

we introduce the AB-stacked square lattice QAHEmodel,
which is the ν = 1 topological system. In Sec. III, we
show that by choosing proper parameter, one edge band
is twisted while another one keeps normal. The breaks of
translational invariance symmetry of the Hall resistance
of this system is discussed in Sec. IV. Finally, a brief
conclusion is presented in Sec. V.

II. MODEL AND HAMILTONIAN

The band structure of our system is shown in Fig.
2(A). Below we provide one example of how to achieve
this band structure. Without loss of generality, we take
the simple ν = 1 topological system as an example, which
consists of one pair of topological protected edge states.
The AB-stacked square lattice QAHE system11 is chosen,
in which the two type of atoms are needed. As shown in
Fig. 1(A), we can assume atom A at s level and atom B
at the lowest p level12. Generally, this p-orbital may not
along the direction of lattice structure, here we choose
it along ±~e1-direction. The check board magnetic field
is also applied by the Peierls phase φ0 = π/2 when an
electron jumps from A to B along ±~ey-direction. Sup-
posing the on-site energy of A and B are the same, set to
be the zero energy point. The tight-binding Hamiltonian
can thus be written as H = H1 +H2, with H1 (H2) the
nearest (next-nearest) hopping Hamiltonian:

H1 = −tab
∑

i

[

b†
i+δxai + eiφ0b†

i+δyai +H.C.
]

+tab
∑

i

[

a†
i+δxbi + e−iφ0a†

i+δybi +H.C.
]

(1)

H2 = −
∑

i

[

ta1a
†
i+δe1ai + ta2a

†
i+δe2ai +H.C.

]

−
∑

i

[

tb1b
†
i+δe1bi + tb2b

†
i+δe2bi +H.C.

]

(2)

The sign of hopping energies are determined by the sign
of overlap integrals of two atomic wave functions centered
at different sites13. In Fig. 1(A), the shape and sign of
atomic wave functions are shown. In the first line of
Hamiltonian (1), tab is the hopping term from A to B
along the +x and +y-directions, i.e. from s-orbital of A
to the positive part of p-orbital of B, set to be positive.
While in the second line of (1), the hopping from B to
A along the same direction is from the negative part of
p-orbital of B to s-orbital of A, so it gets a negative
sign. ta1 and ta2 are the next nearest neighbor hopping
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FIG. 1: (Color online) (A) The lattice structure of the system.
(B) The twisting edge band (Fig. 2(A2)) can be treated as
the mix of the topological protected and unprotected systems.

at A sublattice along ~e1 and ~e2, respectively. tb1 and
tb2 are the counterparts for the B sublattice. One can
check ta1, ta2, tb2 > 0 and tb1 < 0. Besides, we also have
ta1 = ta2 and |tb1| 6= |tb2|, due to the anisotropy of the p
level.

It is easy to discuss this tight-binding Hamiltonian in
k-space. Because the system is translationally invari-
ant, we have H(k) = h0(k) + σ · p(k). Here px(k) =
2tab sin(kya0), py(k) = −2tab sin(kxa0). The next near-
est hopping gives pz(k) = −[(ta1−tb1) cos(kxa0+kya0)+
(ta2 − tb2) cos(kxa0 − kya0)] and a nonconstant h0(k) =
−[(ta1+tb1) cos(kxa0+kya0)+(ta2+tb2) cos(kxa0−kya0)].
Here a0 is the distance between the nearest neighbor
atoms A and B. The Chern number of the system can
be calculated in k-space1,14 by ν =

∫

d2kF/2π. For our
system, when there exists a real gap, the Chern number
of the lower band gives ν = 1.

III. TWISTING EDGE BAND

The coexistence of distorted edge band and normal
edge band originates from the symmetry breaking of the
eigenvalue λ± = h0 ± |p|. These two eigenvalue corre-
spond separately to the upper and down bands. Because
of the next nearest hopping, the symmetry of λ± reduces
from C4 to C2. The Dirac points at (0, 0) and (±π,±π)
have different energy values as the Dirac points at (0,±π)
and (±π, 0). If the system is constrained at ~ex or ~ey di-
rection, each projected Dirac point in fact contains two
type of Dirac points, so the projected Dirac points re-
mains the same. However, if the system is constrained
at ~e1-direction [see Fig. 1(A)], i.e., if with the zigzag
edge, each projected Dirac point contains only one type of
Dirac point, the two projected Dirac points are different
with each other. Consequently, as shown in Fig. 2(A),
the two edge bands may have different group velocities
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FIG. 2: (Color online) (A) The energy band structures of
zigzag-edge ribbon of topological system, with the ribbon
width W = 50a and a =

√
2a0. We choose the parameters

tab = 10 and ta1 = ta2 = tc + 0.1, tb1 = −tc − ts, tb2 = tc for
all the subplots. (A1) indirect semi-metal with tc = 1.4 and
ts = −0.4, (A2) the twisting edge band system with tc = 1.4
and ts = 0.4, and (A3) the normal topological system with
tc = 0.7 and ts = 1. (B) The distribution |ψ|2 of the four
edge states of (A2). (C) The schematic diagram of the four
edge states of (A2).

|∂ε(k)/∂k|. In this way, the edge bands are distorted.

To get a twisting edge band, we need a little more
effort. Define At = (ta1 + ta2) and Bt = (tb1 + tb2), we
can get the bulk gap of the system as ∆ = 2(|At −Bt| −
|At+Bt|). While AtBt > 0 gives an indirect negative gap
∆. In this case, although the system has a twisting edge
band [see red solid curve in Fig. 2(A1)], but it is without
a bulk gap, which creates an indirect semi-metal. The
bulk insulator needs ∆ > 0 thus AtBt < 0. When gap ∆
is large, the system may only have a distorted edge band
but no twisting edge band [see Fig. 2(A3)], which is the
normal 2D topological insulator. When gap ∆ is positive
but small, we may have a twisting edge band [Fig.2(A2)].
We also have another bigger ‘gap’ ∆2 = 2(|At−Bt|+|At+
Bt|), corresponding to the normal edge band [see the blue
dash-dot curve in Fig. 2(A)]. In our system At > 0, and
it’s no harm to set At > |Bt|, then we can get ∆ = −4Bt

and ∆2 = 4At. This means that the twisting and normal
edge bands are independently determined by Bt and At,
respectively. If we choose tb1 = −tc − ts, tb2 = tc with
tc, ts > 0, the gap ∆ is simplified to ∆ = 4ts.

Due to the edge band being twisted, it can cross Fermi
surface EF three times, marked by a, c and d [see Fig.
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2(A2)]. The other normal edge band meets Fermi surface
at b. Fig. 2(B) shows the distribution |ψ|2 v.s. location
for these four states. We can see that, all four states
are localized on the edges of the sample, the distribution
is almost zero inside the bulk. Among them, the three
states a, c and d are localized on the upper edge, while
state b is localized on the lower edge [see also Fig. 2(C)].
As the Chern number of the system is ν = 1, only one pair
of the edge states are protected by the topology, while
another two are not protected. There is no doubt that b
is protected by topology since it is the only one edge state
on the lower edge. The other topology protected state is
a mixture of these three degenerated edge states a, c and
d on the upper edge. Here we notice that the present
system can be treated as the combination of the normal
topological system plus a topological trivial system with
one pair of unprotected edge states, as shown in Fig.
1(B).

IV. THE TRANSLATIONAL INVARIANCE

SYMMETRY BREAKING OF THE HALL

RESISTANCE

Now, let us study the transport property of the system
using the 6-lead set-up. As shown in Fig. 3(c), lead-1 and
lead-4 are made by the same materials of the sample,
which can support the well-defined edge states inside the
gap of sample. The vertical leads 2, 3, 5, 6 are made of a
metal, which can afford as much modes as possible. A
small longitudinal voltage gradient is applied by setting
the lead-1 at V/2 and the lead-4 at −V/2, providing the
longitudinal current I1. We use the zero temperature

Landauer-Büttiker formula Ip = e2

h

∑

q 6=p(Vp − Vq)Tp,q,
with Tp,q the transmission coefficient from the lead q to
p15. The vertical voltage Vp can thus be obtained by
using the open boundary condition, i.e. by letting the
corresponding leads to have zero current: Ip = 0 with p =
2, 3, 5, 6. Finally, the Hall and longitudinal resistances
can be obtained from Rp,q ≡ (Vp − Vq)/I1.
For the three sets of parameters used in Fig. 2(A), by

changing the Fermi energy, in Fig. 3(b) we plot the Hall
resistance R2,6, measured on the left side of the sam-
ple, and R3,5, on the right side. We also draw in Fig.
3(a) the longitudinal resistance R2,3 for the upper edge,
and R6,5 for the bottom edge. For the parameters used
in Fig. 2(A1) with an indirect negative gap, the coex-
istence of twisting edge band and bulk band does not
directly show a topological property. Two Hall (longi-
tudinal) resistances are very small and almost equal, be-
cause that the system is translationally invariant. For the
parameters used in Fig. 2(A3), though the edge band is
already somewhat distorted with two edge currents hav-
ing different speeds, the measurement can give no new
information other than the normal topological insulator.
The Hall (longitudinal) resistances measured at different
place (edge) are the same. Within the gap, the Hall re-
sistances give a quantized plateau (h/e2) characterized
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FIG. 3: (Color online) For the three sets of parameters used
in Fig. 2(A), the corresponding resistances of the system v.s.
the Fermi energy: (a) the longitudinal resistances and (b) the
Hall resistances. The wide lines are for R6,5 and R2,6, the
narrow lines are for R2,3 and R3,5. In both figures, the pair
of lines with the broadest quantized plateau (−2 ∼ 2) are for
Fig. 2(A3): R6,5 and R2,6 (the wide black dotted line), R2,3

and R3,5 (the narrow red dashed line); the pair of lines only
have plateau within −0.8 ∼ 0.8 are for Fig. 2(A2): R6,5 and
R2,6 (the wide green solid line), R2,3 and R3,5 (the narrow
black dotted line); for Fig. 2(A1), the pair of lines have no
plateau: R6,5 and R2,6 (the wide red dashed line), R2,3 and
R3,5 (the narrow blue solid line). Other parameters used for
the calculation: the ribbon width W = 50a, the distance
between vertical leads L = 20a. (c) is the schematic diagram
of the 6-lead measurement we used for (a) and (b).

by the topological number ν = 1, and two longitudinal
resistances are zero, because of the absence of back scat-
tering.

For the parameters used in Fig. 2(A2), the twisting
edge band case, the results are very different and inter-
esting. When the Fermi energy EF is within the gap
but out of the range of the twisting of edge band, all
measurements still show normal topological property by
giving the plateau. When the Fermi energy goes within
the twisting area, the situation is totally changed. Let
us first look at the longitudinal resistance. We still have
R6,5 = 0, because there is only one edge state b on the
bottom edge of the sample, no back scattering is allowed
there, the voltage drop is zero with V6 = V5. However, on
the upper edge, R2,3 is nonzero and it is about 0.25h/e2.
This is because we have three edge states on the up-
per edge, two of them move to the right and the other
one moves to the left. As one pair of them moves in
the opposite directions, not topologically protected, the
back scattering is allowed. Thus, the voltage may drop,
V2 6= V3 to give a nonzero resistance R2,3 on the upper
edge. Specifically, as lead-2 is on the left side of the lead-
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FIG. 4: (Color online) For the parameters used in Fig. 2(A2),
the resistances v.s. Fermi energy for sample widthesW = 50a
(the broadest black dashed line), 60a (the red solid line), and
80a (the thinnest green dotted line).

3, we have V/2 = V1 > V2 > V3 > V4 = −V/2. The
two Hall resistances also change and they are no longer
equal to the value h/νe2, although the Chern number of
the system is still ν = 1. In particular, as V2 6= V3 and
V6 = V5, we can see that the left side Hall resistance
R2,6 = (V2 − V6)/I1 is no longer same as the right side
Hall resistance R3,5 = (V3−V5)/I1: |R2,6| is decreased to
about 0.7h/e2 within the twisting-edge-band region but
|R3,5| is larger than 0.9h/e2. It should be emphasized
again that the present system is translationally invari-
ant. However, from the results above, the Hall resistance
does break the translational invariance. This novel phe-
nomenon, the breaking of the translational invariance of
the Hall resistance in a translationally invariant system,
origins from the twisting edge band and the combination
of the topological protected and unprotected edge states.
This property is unique to the topological system with
a twisting edge band and can not be observed in either
normal topological insulators or non-topological systems.
In addition, we also witnessed the oscillation of R3,5 and
R2,3 for the parameters used in Fig. 2(A2). This is be-
cause of the Fabry-Perot interference between the lead-2
and lead-3. The number of oscillation are determined by
the distance between them.

In order to confirm that the breaking of the trans-
lational invariance of Hall resistance is due to the edge
states, we show the Hall and longitudinal resistances ver-
sus the width of the sample in Fig. 4. The change
of width only has the effect on the bulk bands and
should not affect the edge bands when the sample is wide
enough. From Fig. 4, it can be seen that outside the
gap, all the four resistances are changed when the width
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FIG. 5: (Color online) For the parameters used in Fig. 2(A2),
the 4-lead measurement of Hall resistances v.s. the position
to measure at EF = 0. From top to bottom, the blue solid,
red dotted, green dashed, and black dash-dot lines are for the
disorder strength Dis = 0, ∆/8, ∆/4, and ∆/2, respectively.
Here the gap is ∆ = 0.16|tab|. The results are calculated with
the width of sample W = 70a, by the average of 700 disorder
configurations.

changes. However, within the gap, the resistances main-
tain the same for different widthes. It clearly shows that
the breaking of the translational invariance of the Hall
resistance does come from the twisting edge band.

One may argue that the 6-lead measurement itself al-
ready breaks the translational invariance, as the left Hall
bar is close to the higher voltage side and the right Hall
bar is close to the lower voltage side16. Following we
consider the 4-lead set-up of Hall resistance [see the in-
set in Fig. 5] and vary the measurement position. In
addition, disorder effect is also studied. Let us suppose
the system having a uniform distributed Anderson dis-
order, that does not break the translational invariance.
In the presence of disorder, the Hall resistance |R2′,4′ |
increases with the measure position moving from the left
to the right [see Fig. 5]. This clearly implies that the
Hall resistance depends on the measure position, break-
ing the translational invariance. In addition, on the left
edge of the sample, the Hall resistance is almost not af-
fected by the disorder. When the sample is long enough,
the Hall resistance measured on the right edge is close
to |R2′,4′ | = h/νe2, quantized by the topological number
ν = 1.

(a) (b) (c)

E=0Antiband

Crossing
S.O.I

FIG. 6: (Color online) The schematic diagram of another
method to realize twisting edge bands.
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We should point out that though our results are ob-
tained from an ideal model, the twisting edge bands can
be found in some real systems. For example, supposing
we initially have the two band system as shown in Fig.
6(a), whose symmetry axis of upper band is shifted from
that of the lower band. Then with the anti-band crossing
[Fig. 6(b)], the pseudo spin-orbital interaction may open
a gap and leads to a twisting edge band [Fig. 6(c)].

V. CONCLUSION

In conclusion, we have shown that, with the twisting
edge bands, the system has both the topological pro-

tected and unprotected edge states. In such a system,
the Hall resistance is not determined by the topological
number alone. In particular, the Hall resistance depends
on the measure position even for a translationally invari-
ant system.
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