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Abstract

Single Fe adatoms and clusters of Fe adatoms on graphene are studied through first-principles

calculations using density functional theory (DFT) and spin density functional theory (sDFT).

First, we consider computational cells containing various numbers of C atoms and one Fe adatom.

We calculate the binding energy, adatom height, and magnetic moment of the adatom above a few

high-symmetry positions in the cell. In all cases, the binding energy increases with decreasing cell

size, suggesting that clustering of the Fe adatoms is energetically favored. We also calculate the

energy of various clusters of two to four Fe atoms on graphene in computational cells of various

sizes, using both DFT and sDFT. These calculations again show that, both in DFT and sDFT, the

Fe adatoms strongly prefer to form clusters. The energy barrier for an isolated Fe adatom to diffuse

from the center of one graphene hexagon is calculated to be 0.49 eV. This barrier is reduced for an

Fe atom which is one of a pair of neighboring adatoms. Finally, by including spin-orbit interactions

within sDFT, we calculate the magnetic anisotropy energy of a single Fe adatom on graphene. We

find that the in-plane anisotropy energy is close to zero, while the out-of-plane anisotropy energy

is ∼ DS2 cos2 θ where S ∼ 2.0, θ is the angle between the magnetic moment and the perpendicular

to the graphene plane, and D ∼ 0.25 meV.
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I. INTRODUCTION

In recent years, graphene (a two-dimensional honeycomb lattice of C atoms) has been

extensively investigated1–3 both for its many potential applications and for its unique phys-

ical properties. These potential applications run the gamut from photovoltaic cells4 and

ultracapacitors5,6 to spin transport electronics7. Graphene also has many novel physical

properties. These include a band gap of zero at the so-called Dirac point, a dispersion rela-

tion equivalent to that of massless Dirac fermions near the Dirac point, and low spin-orbit

coupling. In addition to the intriguing characteristics of the continuous graphene sheet,

the zig-zag edges of a graphene ribbon may allow only a single spin state for conduction

electrons8.

The presence of adatoms or impurities on graphene further influences its conductive and

magnetic properties9,10. Such impurity atoms are almost always present as contaminants.

They can also be introduced deliberately to tune the properties of the graphene sheet.

For example, adsorbed F atoms produce a significant magnetic moment on the graphene

C atoms11, as can hydrogenation12. Adatoms also influence the electronic properties of

graphene13, e. g., by shifting the energy of the Dirac point, changing the density of states

near that point, and altering electron and hole mobility9.

The effects of isolated adatoms on graphene have also been investigated theoretically14–16,

largely using density functional theory (DFT) and related methods. Adatom binding ener-

gies on graphene, their heights above graphene, their effects on the local density of states

(LDOS), and the effects of graphene on the magnetic moments of isolated adatoms have all

been computed.

But little attention has been paid to clusters of two or more adatoms on graphene. There

are several reasons for theoretically studying such clusters. First, several experiments9,17

suggest that clusters do form in the case of Au and Ti adatoms. In some cases (e. g., Au14),

such cluster formation may be aided kinetically by small energy barriers for adatom diffusion

across the graphene. These indications of clustering are our main motivation for calculating

the binding energies of small clusters of adatoms.

A second reason for looking at adatom clusters, especially of ferromagnetic species, is

that any application of graphene to spintronics must include a ferromagnetic spin injector.

The metal atoms in such a small electrical contact could diffuse across the surface if it were
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energetically favorable, thereby influencing the electronic properties of the device. Further-

more, the adatom clustering could reduce the intended effects of the adatoms on the sheet

conductivity. In either case, clustering could greatly affect the long-term device stability.

Small ferromagnetic leads have been proposed18 and established as spin injectors19, and

indeed, are already used in graphene-based spintronics devices20–23.

In this work, we study Fe atoms and clusters adsorbed onto graphene using density

functional theory (DFT)24,25, and spin density functional theory (sDFT). Both are carried

out using the generalized gradient approximation (GGA).

We also discuss the magnetic properties of Fe adatoms on graphene. Besides computing

the magnetic moments of the adatoms as done previously14, we approximately calculate the

in-plane and out-of-plane magnetic anisotropy energies for an Fe adatom above the center

of a graphene hexagon. We find that the in-plane anisotropy energy is approximately zero,

while the out-of-plane anisotropy energy is small but positive, in the sense that the magnetic

moment of an Fe adatom prefers to lie parallel to the graphene plane.

The remainder of this paper is organized as follows. In Section II, we give an overview

of our computational methods. In Section III, we present our numerical results for single Fe

atoms and clusters of Fe atoms on graphene. Section IV describes our method of estimating

the magnetic anisotropy energy of a single Fe atom on graphene, and presents our calculated

anisotropy parameters. Finally, in Section V, we give a concluding discussion.

II. OVERVIEW OF METHODS

In this work, we use primarily spin density functional theory (sDFT). In some instances

we compare sDFT results to those obtained using the version of DFT in which the density of

states is assumed to be the same for both spin up and spin down electrons (denoted simply

DFT). For systems including Fe, sDFT is certainly more appropriate. DFT was employed to

investigate whether a clustering preference might strongly depend on magnetic interactions.

In both cases, we use the Vienna Ab Initio Simulation Package (VASP)26–29. The ionic

cores are modeled using either ultrasoft pseudopotentials (US-PPs)30 or the projector-

augmented wave method31,32. In some of our calculations, the positions of the ions were

varied to minimize the overall free energy, while in others they were held fixed. If the ionic

positions are varied, then between each ionic step the electronic states of the system are
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relaxed self consistently to minimize the Kohn-Sham energy functional24,25. In this work,

US-PPs were used for all calculations which did not include spin interactions, while the

projector-augmented wave method of Perdew, Burke, and Ernzerhof (PAW-PBE)33,34 was

used for all sDFT calculations. Obviously, since Fe is a ferromagnetic element, calculations

without spin interactions will be less accurate for Fe on graphene than those that include

spin. They are presented here primarily to suggest that the clustering trends seen here are

not unique to ferromagnetic elements. The two different models for ionic cores are used

also to suggest the generality of this clustering tendency. Binding energies are significantly

affected by the inclusion of spin, and by the choice of pseudopotential. Indeed, the bind-

ing energies obtained from the two types of calculations described (sDFT and DFT) differ

quantitatively (by as much as 2.0 eV in the case of isolated adatoms). However, the fact

that the binding energy per atom increases with clustering is consistent between the two

methods.

All of our calculations are carried out using periodic boundary conditions, with wave

functions expanded in plane waves. As a result, an adatom in the computational unit cell

will interact with neighboring adatoms in the periodically repeating image cells, unless the

computational unit cell is so large that this interaction can be neglected.

In our calculations, a constant 15-Å spacing has been used in the z-direction (perpendic-

ular to the graphene sheet) to minimize cross-talk between the supercell and its image in the

z-direction. The asymmetry of the supercell along the z axis can lead to a spurious dipole

moment from image supercells. This spurious moment is reduced by the large supercell

spacing in the z-direction, and is further eliminated within the framework of VASP.

At finite temperatures, partial occupancies of orbitals are specified by a Gaussian smear-

ing scheme with the Gaussian width σ = 0.05. We included all plane waves in our cal-

culations up to 500 eV The ionic relaxation was carried out using the conjugate gradient

method. In most ionic relaxations the adatoms were taken to be above a high-symmetry

position in the graphene unit cell, and in these cases all atoms in the supercell were allowed

to move. In other cases, Fe adatoms were placed in off-symmetry positions in order to map

the approximate binding energies during diffusion. In these cases some atoms were fixed

in place, as discussed in Section IIIB. In all cases, the total energies per supercell were

converged to within at least 0.01 eV and usually better. The convergence criterion was

varied slightly, depending on supercell size and the type of calculation. For the anisotropy
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calculations, the total supercell energies were converged to a precision of 10−8 eV .

III. CLUSTERING RESULTS

A. A Single Fe Atom Above a High Symmetry Point: Effect of Supercell Size

Before discussing adatom clustering, we first consider a single adatom above a graphene

sheet. While many groups have investigated isolated adatom systems, little work has been

done on systems with smaller supercells, such that nearest neighbor adatoms are separated

by only 1-4 hexagon “diameters” (where the “diameter” means the distance between opposite

edges of the hexagon). We will refer to pairs of nearest neighbor adatoms with such relatively

small distances between nearest neighbors as “proximal adatoms”. To investigate proximal

adatoms, we use supercells consisting of 1, 2, 3, 4, 5, 6, and 16 graphene primitive cells.

The six smallest of these supercells are shown in Fig. 1. The smallest of these corresponds

to one Fe adatom per graphene primitive cell, or a monolayer of Fe on graphene. The largest

of these supercells corresponds to the case of fairly well isolated Fe atoms, which has already

been studied by several groups14,15.

Accurate ground state energies require adequate sampling of the Brillouin zone of the com-

putational supercell with a grid of k-points. In order to ensure adequate k-space sampling,

the k-point meshes used for these seven supercells had dimensions 30× 30× 1, 24× 24× 1,

21× 21× 1, 18× 18× 1, 18× 18× 1, 15× 15× 1, and 9× 9× 1, respectively. Convergence

tests showed that these sampling grids were adequate to ensure convergence. The 9× 9× 1

grid has been used by other authors14 on the supercell containing 32 C atoms.

Initially, these supercells were modeled using PAW-PBEs using sDFT. Later, for com-

parison purposes, the calculation was repeated using Ultrasoft Pseudopotentials (US-PPs)

and DFT without spin30,35, and at reduced k-space sampling. Here we present both sets of

data, even though the PBE-systems with spin are clearly the more physically relevant of the

two, especially for a transition metal adatom such as Fe. Both data sets are shown primarily

because they demonstrate that the overall trends depend little on details of the computation

such as pseudopotential choice. Comparison of the two data sets may also yield some insight

into the role that magnetic effects play in the interaction energy between nearest neighbor

Fe adatoms.
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For each of the supercells shown in Fig. 1, the Fe adatom was placed in one of three

high-symmetry positions within the unwarped graphene unit cell: above a hexagon center

(denoted H position), above the center of a C-C bond (B), and directly above a C atom (T).

The positions of all C atoms were allowed to relax. In some cases, the position of the Fe

adatom was only allowed to relax in the z-direction (perpendicular to the graphene sheet),

to prevent the adatom from changing relative positions (from B to H, for example). In each

case, the binding energy EB per adatom has been calculated according to

EB = Ebare + EFe −EFe+graphene, (1)

where EFe+graphene is the energy per supercell of the relaxed system consisting of the Fe

adatom and the graphene sheet, Ebare is the energy of one supercell of the bare, unwarped

graphene sheet, and EFe is the energy of a single isolated Fe atom (in the absence of

graphene). These binding energies are shown in Fig. 2 with spin (open symbols) and with-

out spin (filled symbols). Binding energies are shown for supercells consisting of up to 12

C atoms. It was found that increasing supercell size beyond 12 C atoms yielded very little

change in binding energy; this was numerically confirmed for supercells as large as 32 C

atoms.

The nature of the bonding between the Fe and the graphene in the H position has been

discussed previously in Ref.14. By calculating partial densities of states projected onto the

Fe s, p, and d orbitals, and C s and p orbitals, they find that the bonding is primarily

covalent and takes place between the Fe d orbitals and the C p states, as one might expect.

The preferred adatom height (that which minimizes the total energy) is displayed in Fig.

3 (only the more physically relevant case including spin is shown). The height is defined

as the difference between the Fe ion z-position and the average z-position of all C atoms

in the graphene sheet (h = zFe − 〈zgraphene〉). For the sDFT calculations done using the

PAW-PBE pseudopotentials, the calculated magnetic moment µ per Fe adatom is shown in

Fig. 4. µ is not the magnetic moment of the entire supercell; rather, it is the integral of

the magnetization within a characteristic radius (1.30 Å for Fe) around the Fe adatom. The

distinction is that this integral does not include any magnetic moments induced on the C

atoms. For the supercell with 32 C atoms (not shown), µ ∼ 2.03µB for Fe in the H position.
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B. A Pair of Fe Adatoms

The supercell calculations from Section (IIIA) do effectively include interactions among

Fe adatoms in neighboring supercells. Furthermore, these interactions are attractive, because

EB increases with decreasing supercell size. This result can be interpreted as showing that

the adsorbed Fe atoms prefer to cluster. In this section, we consider the tendency to cluster

more explicitly, by calculating the binding energy of a single pair of Fe adatoms in the same

supercell as a function of their separation. If the supercell is so large that the pair can be

considered isolated from the image Fe adatoms in neighboring supercells, then the difference

between the binding energy of the pair and that of two isolated adatoms represents the

interaction energy between the two adatoms.

To calculate this difference, we considered two Fe adatoms, denoted α and β, which were

placed in nearest neighbor hexagon centers within a graphene supercell. The total energy

of this pair was calculated as adatom β was moved from the center of the nearest neighbor

hexagon to the 3rd nearest neighbor hexagon center, as shown in Fig. 5. During these

calculations, the C atoms were allowed to relax in all directions, while the Fe adatoms were

allowed to relax in the z-direction only. Based on a full potential map of binding energies

even in off-symmetry positions, we determined that the path of lowest potential barrier runs

over the C-C bond center between the two hexagon centers. In order to isolate the single

adatoms in one supercell from their periodic images in neighboring unit cells, it was found

that a supercell containing 32 C atoms was sufficient in either DFT or sDFT. A picture

of the 32-C atom supercell used is shown in Fig. 5. To calculate the binding energy as a

function of separation, the two Fe adatoms were initially placed at the centers of adjacent

hexagons, and then adatom β was moved as indicated by the black arrow in Fig. 5. The

binding energy was calculated at each step. The results for the spin-independent and spin-

dependent cases are displayed in Fig. 6. The cases in which the Fe adatoms are in nearest

neighbor hexagons and third-nearest-neighbor hexagons are referred to as nnh and 3nnh,

respectively.

We briefly comment on these numerical results. First, in the DFT calculation, the binding

energy of the pair is lower when β is above a bond center than a hexagon center. In the

sDFT calculation, there is no obvious minimum in the binding energy when the second atom

is at the B position, but EB is still maximum when the two adatoms are in H positions in
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adjacent hexagons. These results are also consistent with a preference of Fe adatoms to

cluster.

If Fe adatoms prefer to cluster on graphene, one would expect that EB,iso < EB,pair <

EB,mono, where EB,iso, EB,pair, and EB,mono are the binding energies per adatom of an isolated

adatom, a pair of adatoms in neighboring H positions, and a monolayer of Fe, respectively.

Indeed we find that this relationship holds for both DFT and sDFT. The binding energies

are listed in Table I for both nnh and 3nnh positions.

C. Three-Fe Cluster

Next, we consider a cluster of three Fe adatoms. The Fe adatoms were initially placed

above the centers of adjacent graphene hexagons in a 32-C graphene supercell, so that they

formed an equilateral triangle. All C atoms and Fe atoms were allowed to relax in all

directions. For the (non-spin-dependent) DFT using US-PPs, the resulting binding energy

per Fe atom was found to be 2.85 eV. All binding energies from this section are also listed

in Table I. This binding energy per adatom is smaller than that found in a full monolayer,

as expected. For the more realistic sDFT using PAW-PBEs, the binding energy per adatom

is 1.89 eV, slightly larger than the value of 1.48 eV found earlier for pairs in sDFT, and

in contrast to the ordering in the non-magnetic calculation. This result is consistent with

other results suggesting that clustering is favored.

For comparison, we also calculated the binding energy of three Fe adatoms placed above

C sites on adjacent graphene unit cells in the same 32-C supercell (T positions). The charge

density of this arrangement is shown in Fig. 7(a). As in the previous calculation, all C

atoms were allowed to relax in all directions. The binding energy per Fe atom was found to

be 3.08 eV in DFT, greater than found for Fe adatoms above hexagon centers, but smaller

than for Fe pairs as described in Section IIIB. In the case of sDFT, the binding energy per

adatom with the Fe adatoms above C sites was found to be 2.07 eV. All the binding energies

for the various three-atom clusters are also shown in Table I.
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D. Four-Fe Cluster

A cluster of four Fe atoms is the smallest which can form an energetically stable three-

dimensional cluster - a regular tetrahedron. This structure resembles the local structure of

bulk Fe because the length of a bond between the centers of adjacent hexagons is within

1% of the distance between nearest neighbors in bcc Fe36. Below, we compare the binding

energy of this cluster with that of a planar four-Fe cluster.

1. Fe Adatoms Above Hexagon Centers

We first considered four adatoms in-plane, using the same graphene supercell and method-

ology as in Section IIIC. The Fe atoms are arranged in a rhombus parallel to the graphene

sheet, with the Fe atoms above the centers of adjacent graphene hexagons. All atoms were

allowed to move in all directions. Using DFT, we find a binding energy per Fe adatom of

3.20 eV, which is larger than the binding energy in all other cases considered, except the

monolayer. For sDFT, the binding energy per adatom is 2.16 eV.

We also considered a regular tetrahedral arrangement of Fe atoms, using the same super-

cell and settings as in Section IIIC. Again, the three Fe atoms at the base of the tetrahedron

were positioned above the centers of adjacent hexagons. In this case, we found a binding

energy of 3.77 eV using DFT. Once again, this is smaller than for Fe in a monolayer but

larger than for either a pair of Fe adatoms or a cluster of three. Furthermore, the binding

energy per adatom is larger for the tetrahedron than for the planar cluster of four Fe atoms,

suggesting that Fe may prefer to form a three-dimensional rather than a two-dimensional

cluster. The same trend was found using sDFT, for which the binding energy per adatom

is 2.48 eV for a regular tetrahedron.

2. Fe Adatoms Above C Sites

Similar calculations were carried out for a cluster of four adatoms with the Fe atoms

positioned in plane and above the C sites (T position). In this case the binding energy

was found to be 3.41 eV using DFT, larger than for the four atoms above hexagon centers.

In sDFT, the binding energy per adatom is 2.23 eV, which is also larger than for the four

adatoms above hexagon centers. Analogous calculations were also carried out with the Fe
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atoms arranged in a tetrahedron with the three base adatoms positioned above C sites.

This arrangement yielded a binding energy of 3.61 eV using DFT and 2.44 eV using sDFT.

These clusters are more strongly bound than the in-plane arrangement of four adatoms,

again indicating a preference for clustering in three dimensions, and indicating that the H

positions are preferred to the T positions for pyramidal clusters. All binding energies for

the four-atom clusters are also shown in Table I.

IV. MAGNETIC PROPERTIES AND ANISOTROPY

In all our calculations so far, we have included no spin-orbit coupling (SOC). Even in

the absence of SOC, many spin-dependent properties can still be discussed. These include

the total magnetic moment on the adatom, the magnetic moments induced on the graphene

atoms, and the tendency of adatoms to align ferromagnetically or antiferromagnetically.

The calculated total magnetic moment of each Fe adatom (within a characteristic radius

of the ionic core as discussed before) is shown in Fig. 4 as a function of supercell size. These

magnetic moments are generally lower for the H position than for the T or B positions.

Furthermore, the moments in the T and B positions generally increase with supercell size,

whereas the magnetic moment in the H positions generally decreases with supercell size to

about 2.03 µB in the well-isolated case, as mentioned earlier

We also calculated the induced magnetic moments of the C atoms. These were computed,

as with the Fe, by integrating the moment density from the nucleus out to a characteristic

radius, in this case, of 0.863 Å. As one might expect, the moment induced on the C atom or

atoms nearest to the Fe adatom are aligned antiparallel to that of the Fe adatom itself. This

is true in all three high-symmetry cases. The moments on the C atoms farther from the Fe

adatom seem to align parallel to the Fe magnetic moment, though they are smaller than

those of the nearest neighbor carbons. This alternation of the induced magnetic moments

is shown for the most energetically stable (H) position in Fig. 8. The figure is color-coded

to show C atoms with antiparallel moments in red, and parallel in blue. The magnitudes of

all the induced magnetic moments are very small compared to that on Fe itself: The largest

magnitude of any induced moment on a single C atom, with Fe in the H position, is 0.019 µB.

The total magnetic moment on the graphene, defined as the sum of the induced moments on

all C atoms, is very small (always less than 0.1 µB per supercell). This would be consistent
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with the so-called compensation theorem37, which would give an induced moment of zero.

Strictly speaking, however, this theorem only applies to a specific model of a localized spin

interacting with a conduction electron gas, and not necessarily to the present calculation,

which is based on spin density functional theory.

When a pair of adatoms are in the same supercell, the Fe moments are found to be

ferromagnetically aligned. The largest collective magnetic moment observed for a pair was

6.15 µB in the nnh position and the lowest was 4.63 µB in the 3nnh position. The clusters

of three and four also aligned ferromagnetically yielding net magnetic moments from 8.3 µB

(three in T position) up to 10.4 µB (tetrahedral arrangement with base adatoms above H

positions).

Although no arrangement of pairs of Fe adatoms was observed to align antiferromagnet-

ically when fully relaxed, one can constrain spins in VASP and force them to lie antiparallel

to one another. If one calculates the ground state energy of a pair of Fe adatoms in adjacent

hexagons with their moments aligned and again antialigned (by such an artificial constraint),

the difference between these two energies should yield an estimate of the magnetic interac-

tion energy for this pair, within sDFT. We estimate this interaction energy to be 0.4 ± 0.1

eV. The uncertainty comes primarily from the choice of energetic penalty paid for small

deviations of the spins from the antiferromagnetic arrangement. If the penalty is too small,

the spins come out of their antiferromagnetic orientation; if the penalty is too large, even

very small deviations from antialignment can lead to non-negligible contributions to the

total calculated energy of the system.

In standard sDFT without spin-orbit interactions, as discussed thus far, the magnetic

moments of all the electrons are all parallel or antiparallel to one axis. Because the overall

Hamiltonian is invariant under a global rotation of spins, the total internal energy will be

independent of the direction of this axis. The results presented in previous sections do

indeed have this behavior.

If spin-orbit interactions are included, this rotational symmetry is broken and the energy

of a system does depend on the direction of the magnetic moments. In VASP, such spin-

orbit interactions can be included in the free energy functional to be minimized, and one

can therefore estimate the magnetic anisotropy energies.

We have used this approach to calculate the magnetic anisotropy energy for an Fe adatom

on graphene. Because C has a low atomic number, the spin-orbit coupling within graphene
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is expected to be small. In VASP, the spin-orbit interaction is incorporated as an extra term

in the Hamiltonian:

HSO =
h̄2

2(mec)2
1

r

dV

dr
L̂ · Ŝ (2)

where V is the spherical part of the potential within the muffin tins surrounding each atomic

nucleus, and L̂ and Ŝ are the orbital and spin angular momentum operators (in units of h̄).

The matrix elements of the spin-orbit Hamiltonian have been estimated for graphene by

a number of workers, often within a model tight-binding Hamiltonian38–41 These matrix

elements can be as large as 6 meV, but their effect on band splittings within the graphene

band structure is typically found to be much smaller, perhaps of order 10−2-10−3 meV.

To calculate the magnetic anisotropy of Fe on graphene, we constrained the Fe magnetic

moment to lie along a specific axis and calculated the total energy (allowing the C spins to

relax without constraints). This was done for many choices of the axis of the Fe magnetic

moment, both within and out of the graphene plane. A 32-C supercell was used to isolate

the adatoms from their neighboring images. The structure of the supercell was fully relaxed

using sDFT before the spin-orbit coupling was added in. The orbital angular momentum,

though we have not calculated it explicitly, also adjusts to its preferred value given the

chosen direction of the spin magnetic moment.

To characterize the resulting anisotropy, we first note that, to second order in the spin

operators, the excitations of a spin in an anisotropic environment can be described by the

spin Hamiltonian42,43

Hani = DŜ2
z +G(Ŝ2

x − Ŝ2
y) (3)

where Ŝx, Ŝy, and Ŝz are quantum spin operators in units of h̄ (they do not include any orbital

angular momentum) . For particles with a large spin, the operators become approximately

classical quantities. Thus in this limit, the Hamiltonian can be viewed as a potential energy

for the spin in an anisotropic environment, which we can write as

Eani(θ, φ) = DS2
z +G(S2

x − S2
y) = S2[D cos2 θ +G sin2 θ(cos2 φ− sin2 φ)] (4)

Here θ and φ are the usual polar and azimuthal angles of the spin, measured respectively

from a line normal to the graphene sheet and from a line drawn from the Fe atom to one

of the nearest neighbor C atoms. Besides this term, there is a much larger portion of the

Fe-graphene energy which does not depend on θ and φ. Assuming that form (4) applies to an
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Fe atom on graphene, we can find the coefficients D and G by fitting the angle dependence

of the total energy to this form, as we now describe. As will be seen below, the in-plane

anisotropy is, in fact, zero to within our numerical accuracy; so the details of the in-plane

analytic form are not important. The main numerical result is simply that the anisotropy

energy varies as DS2 cos2 θ.

To carry out this program, we calculated the total energy E(θ, φ) from sDFT including

spin-orbit interactions, for a range of θ and φ. Because the anisotropy energy is expected to

be small, we calculated the total energy using a fine k-space mesh with dimensions 15×15×3

and converged our calculations to within 10−8 eV, and then plotted various energy differences

to obtain D and G.

Fig. 9 shows the calculated difference E(90o.φ) − E(90o, 0) as a function of φ for two

supercell sizes containing 12 and 32 C atoms. In the larger cell, the energy is independent

of φ to within at least 10−3 meV (filled symbols), while for the smaller cell, there is a weak

φ dependence of order 0.05 meV. This dependence is undoubtedly due to spin-dependent

interactions between the Fe atom and its images in neighboring supercells (which for the 12-

atom supercell are rhombuses with vertex angles of 80o and 100o). Since the φ-dependence

disappears for the larger cells, we conclude that the coefficient G = 0. The reason for using

the 12-C supercell is to verify that the calculation is in fact sensitive to very small changes

in energy due to anisotropy of the order 0.05 meV.

To determine D, we show in Fig, 10 the calculated energy difference E(θ, φ)−E(0, 0) for

an isolated Fe adatom on graphene (32 C atom supercell), plotted as a function of θ for two

different values of φ. In both cases, the calculation shows that the energy is lowest when

the moment lies in the xy plane (θ = 90o), indicating that D > 0. We obtain the coefficient

D by using the fact that G = 0 and then writing E(θ, φ) − E(0, 0) = D(cos2 θ − 1)S2. To

obtain D we assume S = 2, since the calculated magnetic moment on the Fe adatom is

very close to that integer value (2.03 µB). The value of D obtained in this way, for five

different values of θ and two of φ, is D = 0.255 ± 0.001 meV. Thus, the anisotropic part

of the total energy, as calculated from sDFT including spin-orbit interactions, fits the form

(4) to within 1% with G = 0. The positive sign indicates that the Fe magnetic moment

prefers to remain in the plane of the graphene sheet. We were unable to find any previous

measurement of the anisotropy energy of an Fe adatom on graphene for comparison with

our calculations. However, Hirjibehedin et al. recently measured the out-of-plane anisotropy
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term for Fe adatoms on the surface of CuN to beDCuN = −1.55 meV. Given the small atomic

number of C compared to Cu, our estimate that the anisotropy of an Fe atom on graphene

is approximately one sixth that of CuN seems reasonable.

V. DISCUSSION AND CONCLUSIONS

A. Clustering of Fe Adatoms on Graphene

We have found strong evidence that Fe adatoms on graphene prefer to cluster. The

evidence falls into two classes. First, the binding energy EB per adatom increases with

decreasing computational cell size. This shows that the Fe adatoms prefer to arrange them-

selves so as to have the highest possible number per unit surface area. This increase occurs

for Fe adatoms in the preferred H site as well as in the metastable B and T positions, in

both sDFT and DFT. Since Fe prefers to cluster in both sDFT and DFT, we conclude that

the clustering preference does not much depend on magnetic interactions between adatoms.

Secondly, we have shown that for two or more Fe adatoms in a single computational cell,

EB generally increases with cluster size. As an example, for a pair of Fe adatoms in centers

of adjacent hexagons, EB is larger than that of an isolated Fe adatom by an amount of 0.73

eV per adatom in sDFT and by 1.07 eV in DFT.

In Table I, we show the calculated binding energies for Fe adatoms in a variety of config-

urations, as presented earlier in the paper. The notation has largely been discussed earlier.

For the four-atom clusters, the description “in-plane” and “tetra” refers to planar and tetra-

hedral clusters. For energies of adatom pairs, nnh indicates that the two Fe adatoms are

above nearest neighbor hexagon centers, and 3nnhmeans they are above third nearest neigh-

bor hexagon centers. In the case of pairs, B indicates that one of the two adatoms is above

a C-C bond center while the other remains above a hexagon center.

Even if clustering of adatoms is favored energetically, it may be inhibited by diffusion

barriers. For single Fe adatoms on graphene, this barrier is given by Ebar = EB(H)−EB(B)

in the limit of a large computational cell. This energy represents the lowest energy barrier for

diffusion of an adatom from the center of one hexagon to the next. As can be seen from Fig.

2, this energy is about 0.9 eV in DFT and 0.3 eV for the more physically realistic sDFT for

cells containing 12 C atoms. Our numerical results also give diffusion barriers for adatoms
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which are members of a pair. For example, in Fig. 6 there is a diffusion barrier of about

0.2 eV, in DFT, and almost zero in sDFT, which must be overcome for an Fe adatom to

move from the center of the third nearest neighbor hexagon (3nnh) to the nearest neighbor

hexagon (nnh) position. Not only is this barrier very small in sDFT, but the binding energy

per adatom is about 0.7 eV higher in the nnh position than in the 3nnh position.

All these results suggest that Fe adatoms have a strong energetic preference for clustering

on graphene, and that the diffusion barrier inhibiting that clustering is reduced once the

adatoms are in close proximity.

In our calculations of clustering, we have omitted possible corrections due to a finite

Hubbard U, which might be expected to be relevant for a magnetic adatom such as Fe.

Indeed, we recently became aware of work44 showing that transition metal binding energies

are significantly altered by the inclusion of a Hubbard U in the framework of VASP. For Fe,

it is estimated that U ∼ 0.9 eV44–46. We have carried out preliminary calculations including

U and find that it does significantly change the binding energy of an Fe adatom (by as

much as 0.44 eV). However, this change in binding energy seems not to affect the clustering

tendency of Fe adatoms on graphene. More specifically, our initial calculations suggest that

even with U = 0.9 eV, the lowest-energy position for an Fe adatom is still H.

Given the behavior of Fe, it would be interesting to consider the possible clustering of

other species on graphene, both other transition metals, and non-magnetic adatoms. It has

been experimentally observed, for example, that Au tends to cluster on graphene, and also

that it diffuses readily along the surface9. The ease of diffusion implies that the diffusion

barrier is small compared to that of Fe on graphene, perhaps because the p-d bonding of Fe

on graphene mentioned earlier14 does not occur for Au on graphene. Indeed. the work of

Ref.14 shows that the binding energy of a single Au impurity depends little on its position

within the unit cell, implying a small activation energy for diffusion. To confirm a clustering

tendency for Au adatoms, one would need to carry out total energy calculations such as

those described here for Fe.

The strong preference of Fe adatoms to remain nearest neighbors indicates that Fe may be

a good material for ferromagnetic leads on graphene. In this respect, it would be interesting

to compare the binding energies, barrier energies, and energies of Fe clusters to those of

alternative magnetic adatoms such as Co and Ni, which might also be used for spin injection.

Furthermore, if the Fe adatoms do cluster as predicted here, this should significantly affect
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electronic, and especially spin, transport in graphene, since scattering of electrons and spins

from Fe impurities would be substantially affected by clustering.

We expect that the tendency of other species to cluster would be influenced by several

factors, including the type of bonding between the adatom and graphene, and the degree of

lattice constant matching between the graphene and a solid composed of the adatoms. A

computational survey of adatoms with a good lattice match, and some with a poor match

(K is an example), would be useful. One could then determine if the clustering tendency of

the adatoms is primarily due to their bulk crystal structure and lattice constant.

B. Magnetic Anisotropy Energy

Our calculated magnetic anisotropy of Fe adatoms in the H position on graphene is

consistent with eq. (4), with G = 0 to an excellent approximation. Moreover, the calculated

out-of-plane anisotropy is very well modeled by this equation, with D ∼ 0.25 meV.

Our calculations of magnetic anisotropy energy are oversimplified in at least two ways.

First, we are including spin-orbit interactions through perturbation theory, as incorporated

in VASP. Ideally, it would be better to include these effects by a fully relativistic calculation,

as done, for example, in Ref.42. But since the substrate has a low atomic number for Fe on

graphene, spin-orbit interactions are likely to be small, and the present simplified approach

may be adequate. Secondly, corrections due to a finite U might be important, as mentioned

above. We have not extended our magnetic anisotropy calculations to include a finite U ,

but such a calculation is feasible.

It would also be of interest to test these anisotropy predictions experimentally. This

could possibly be done by measuring spin excitation energies experimentally, as was done

in Ref.42. Likewise, it would be of interest to extend our anisotropy calculations to other

transition metal adatoms on graphene.
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Geometry Spin (Y/N) Position EB(eV )

Monolayer N T 5.0

B 5.0

H 4.39

Y T 3.43

B 3.32

H 3.43

Isolated N T 1.15

B 1.19

H 2.05

Y T 0.17

B 0.26

H 0.75

Pair N 3nnh 2.80

B 2.47

nnh 3.12

Y 3nnh 0.76

B 0.78

nnh 1.48

Three N T 3.08

H 2.85

Y T 2.07

H 1.89

Four N T planar 3.41

H planar 3.20

T tetra. 3.61

H tetra. 3.77

Y T planar 2.23

H planar 2.16

T tetra. 2.44

H tetra. 2.48

Table I: Calculated binding energies per Fe, EB for various arrangements of adatoms. The geome-

tries and positions are discussed more thoroughly in the text. A Y in the ”Spin” column indicates

that spin interactions have been included and PAW-PBEs have been used. N indicates that spin

interactions have not been included and US-PPs have been used.
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Figure 1: Computational supercells used in this work, each consisting of one Fe adatom and varying

numbers of C atoms. C atoms are shown in green (small circles); Fe adatoms, in dark gray (large

circles). The black lines indicate the boundaries of the computational unit cell.
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Figure 2: Calculated binding energies (in eV) for Fe adatoms on graphene for the three high-

symmetry positions discussed in the text (H, B, and T, denoted respectively by circles, squares,

and triangles), as functions of supercell size. The horizontal axis shows the number of C atoms

in the supercell. Binding energies calculated from sDFT and DFT are marked by open symbols

and filled symbols, respectively. Energies for the T and B positions are almost identical for some

supercell sizes, and the corresponding filled symbols overlap in these cases.
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Figure 3: Calculated adatom heights (in Å) for Fe adatoms on graphene in the three high-symmetry

positions described in the text (H, B, and T), as a function of computational supercell size using

sDFT.
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Figure 4: Calculated magnetic moments µ (in µB) for Fe adatoms on graphene in the H, B, and

T positions, as a function of computational supercell size, as obtained using sDFT. Here µ is the

integral over the moment density within a characteristic distance from the Fe nucleus (taken to be

1.30 Å for this calculation). µ → 2.03µB for H position and 32 C atoms/supercell (not shown in

the figure).
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Figure 5: Schematic of a computational unit cell containing two Fe adatoms and 32 C atoms. Fe

adatom α is kept fixed at the center of one hexagon. Adatom β is moved (vertically in the figure)

away from adatom α in nine evenly spaced steps from the center of the nearest-neighbor hexagon

to that of the third-nearest-neighbor hexagon, located at the tip of the vertical arrow. For a given

α-β separation, all C atoms were allowed to move in all directions, and the two Fe atoms were

allowed to move in the vertical direction, to obtain the binding energies shown in Fig. 6.
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Figure 6: Calculated binding energy per adatom, EB , for a pair of Fe adatoms on a 32-C graphene

supercell. Energies are shown as calculated using sDFT (open symbols) and DFT (filled symbols).

Their separation is varied as described in the caption to Fig. 5. At the position denoted “3nnh,”

atom β is located at the center of the third nearest neighbor hexagon.
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(a)Three adatoms

(b)Four adatoms (tetrahedral)

Figure 7: A calculated contour of constant electronic charge density for (a) a three-adatom ar-

rangement and (b) a four-adatom tetrahedral arrangement of Fe on a sheet of graphene. The dark

spheres inside the shell represent the centers of the C atoms; the Fe adatom cores are concealed

behind the charge contour.
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Figure 8: Magnetic moments induced on C atoms by an Fe adatom in the H position. The

negative sign ascribed to the moments of the six nearest neighbor C atoms indicates that they

are antiparallel to that of the Fe; a positive sign for other moments indicates parallel alignment.

Rhombus indicates the computational unit cell.
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Figure 9: Energy difference E(θ = 90o, φ = 0)−E(θ = 90o, φ) for an isolated Fe adatom on graphene

(supercell containing 32 C atoms shown with filled symbols), and for a less isolated adatom (12 C

atom supercell shown with open symbols), where E(θ, φ) represents the total energy of a system in

which the Fe moment has polar and azimuthal angles θ and φ. Both energy differences are plotted

as functions of φ, holding θ fixed at 90o (moment lying in xy plane). φ is the angle from the x axis,

which is taken as a line from the Fe to a nearest neighbor C atom. The plotted energy difference

is nonzero in the smaller supercell because there are residual magnetic interactions between the Fe

adatoms and their neighboring images, as described in the main text.
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Figure 10: Calculated energy difference E(θ, φ) − E(0, 0) for an isolated Fe adatom on graphene

(32 C atom supercell), plotted as a function of θ for φ = 0 (open squares) and φ = 90o (open

triangles). θ and φ represent the polar and azimuthal angle describing the orientation of the Fe

magnetic moment. The orientation described by θ = 90o and φ = 0 corresponds to a moment

pointing along the bond between the Fe and the nearest neighbor C atom. phi = 0 corresponds to

a magnetic moment in the xz plane and φ = 90o represents a magnetic moment in the yz plane,

as indicated in the Figure. In both cases, the calculation shows that the energy of the moment is

lowest when it lies in the xy plane (θ = 90o).
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