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We theoretically study tunneling of Cooper pairs from an s-wave superconductor into two semi-
conductor quantum wires with strong spin-orbit interaction under magnetic field, which approximate
helical Luttinger liquids. The entanglement of electrons within a Cooper pair can be detected at
low temperatures by the electric current cross correlations in the wires. By controlling the rela-
tive orientation of the wires, either lithographically or mechanically, on the substrate, these current
correlations can be tuned, as dictated by the initial spin entanglement. This proposal of a spin-
to-charge readout of quantum correlations is alternative to a recently proposed utilization of the
quantum spin Hall insulator.
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I. INTRODUCTION

One of the key features and resources of quantum
mechanics is entanglement, particularly in the particle
spin sector, which has been an enticing subject since the
Einstein-Podolsky-Rosen thought experiment1 and, more
recently, fueled by the modern proposals for spin-based
quantum information processing and computation.2–4 In
order to use an entangled pair of electrons for quan-
tum information technology in a scalable semiconduc-
tor setting, it is essential to have a solid-state sys-
tem that can separate the entangled electrons over ap-
preciable distance. Detecting electron spin entangle-
ment is possible via bunching or antibunching correla-
tions in beam splitters5 and transport through Coulomb-
blockaded quantum dots forming a Josephson junction.6

A conceptual headway came with a proposal to spa-
tially separate spin-singlet Cooper pairs (CP’s) injected
from an s-wave superconductor via crossed Andreev re-
flection (CAR)7 in a quantum dot set-up8 and in a
normal-metal fork.9 Later, more elaborate considerations
for an s-wave superconductor in junction with quantum
wires,10,11 quantum beam splitter,12 and quantum dots13

have been put forward. CAR is essential in all these
proposals, and it has been experimentally manifested in
the negative nonlocal differential resistance in the sys-
tem of superconductor in junction with normal metal.14

CP splitter experiments have been recently performed
with quantum dots15 and carbon nanotubes.16 As an-
other form of CP splitter, we theoretically proposed the
system with superconductor straddling a strip of two-
dimensional quantum spin Hall insulator (QSHI),17 to
inject a CP into its gapless edge states. Utilizing the he-
lical Luttinger-liquid character of the QSHI edges (where
each electron moves in the opposite direction to its time-
reversed Kramers partner with opposite spin), the spin
entanglement can be converted into nonlocal charge-
current cross correlations.

In this paper, we consider CP injection into quantum
wires with strong spin-orbit interaction (SOI), such as
self-doped (and possibly backgated, to control their elec-

tron density) InAs nanowires. If only SOI is considered,
the spin degeneracy at the Γ point (k = 0) is preserved
because of the time-reversal symmetry. However, this
degeneracy can be lifted by external magnetic field (fa-
cilitated in InAs by a large g factor of electrons and
generally enhanced by electron-electron interactions18).
When the chemical potential is set in the corresponding
gap at the Γ point, gapless states which propagate in the
opposite directions with almost opposite spins can be re-
alized at the Fermi points. Note that such a system can
closely resemble the helical edge state of the QSHI.19 We
consider s-wave superconductor connected to a pair of
such semiconductor wires in the regime where two CP
electrons split into different wires, in the presence of
electron-electron repulsion. Effective spin-quantization
axes for the left- and right-moving electrons injected into
the Fermi points of the two wires are tilted—in one wire
relative to the other—by their geometric misalignment.
Such tilt affects the current cross correlations in the wires
in the way that is similar to a tunable breaking of the in-
version symmetry discussed in Ref. 17.

When temperatures and voltage bias between the su-
perconductor and the wires that are smaller than the
superconductor gap ∆, single-particle injection into the
wires is suppressed. In this regime, transport is domi-
nated by the CP tunneling. This process, however, is ex-
ponentially suppressed if the distance between the wires
exceeds the coherence length of a CP and algebraically on
the scale of the Fermi wavelength in the superconductor
(depending sensitively on its spatial dimensionality),10

posing a potentially serious constraint on the interwire
separation. Very importantly, furthermore, if the applied
voltage and temperature are smaller than ∆, the para-
sitic tunneling of two CP electrons into the same wire
is suppressed with a power law that is governed by the
Luttinger-liquid correlations.10 In this work, we thus fo-
cus on the regime where a CP splits ejecting electrons
into the different wires. There is a time lag of ∼ ∆−1

between such two tunneling events, the longer it is the
weaker the Luttinger-liquid suppression of the same-wire
CP tunneling. However, when two electrons are forced to
split and enter different wires at low energies, the leading-
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order tunneling rates are independent of this time delay
(neglecting any interwire interactions).10 Therefore, we
consider a simplified model with equal-time CP injection
of two electrons into two different wires.11

This paper is organized as follows. In Sec. II, we intro-
duce the Hamiltonian for the quantum wire with spin-
orbit coupling and magnetic field, and discuss tunneling
matrix elements. We consider both Rashba and Dressel-
haus SOI with the wire oriented in the xy plane under
the magnetic field in the z direction. In Sec. III, we
calculate the noise spectrum of the currents in the wires
with Keldysh formalism. (Details of the computation are
relegated to the appendices.) Final remarks on possible
extensions of our theory and experimental feasibility are
provided in Sec. IV.

II. HAMILTONIAN FOR QUANTUM WIRES

For the wires, Rashba and Dresseslhaus SOI in com-
bination with the Zeeman splitting are considered. Lat-
eral confinement in the wire governs subbands, of which
we suppose (at sufficiently low temperature and appro-
priate backgate bias) only the lowest one is occupied,
whose Kramers pairs are split by the lack of both time-
reversal and inversion symmetries. In this system, the
one-dimensional effective Hamiltonian for a wire oriented
along the x axis is given by20,21

H0 =
~2k2

2m∗
+ αkσ̂y + βkσ̂x − ξσ̂z , (1)

where m∗ is the effective mass of electron, α (β) is the
strength of the Rashba (Dresselhahus) SOI, and k is the
electron wave number. The Dresselhaus part is for the
case when a zinc-blende heterostructure is grown in the
[001] crystallographic direction, while the wire is oriented
in the [100] direction.22 2ξ = gµBB is the Zeeman energy
gap at k = 0, with magnetic field B applied along the
z axis, g is the g factor, and µB the Bohr magneton.
σ̂ = (σ̂x, σ̂y, σ̂z) are Pauli matrices.

Defining the k-dependent effective field R(k) =
(βk, αk,−ξ), the Hamiltonian can be written as

H0 =
~2k2

2m∗
+ R(k) · σ̂ , (2)

and the eigenspinors are found by rotating spinors such
that R(k) · σ̂|χ±(k)〉 = ±R(k)|χ±(k)〉, where R(k) =√
k2(α2 + β2) + ξ2. The subscripts ± here label spin

up/down along R(k). The energy eigenstates are thus
given by ψ±(k) = χ±(k)eikx, with energy ε±(k) =
~2k2/2m∗ ± R(k). The upper and lower (ε+ and ε−)
bands are sketched in Fig. 1. When the chemical poten-
tial µ is set within the gap, we can linearize the remain-
ing left and right-moving ε− branches within a Luttinger-
liquid picture. This requires (eV, kBT )� ξ and electron-
electron interactions that are not strong enough to hy-
bridize the ε± bands. On the other hand, we require
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FIG. 1. Single-particle electron dispersion with Rashba and
Dresselhaus SOI. Zeeman splitting 2ξ is induced at k = 0 by
a magnetic field in the z direction, and the chemical potential
is set in this gap. One-dimensional effective theory is then
linearized near ±kF , which define respectively the right- and
left-moving electron branches.

the magnetic field to be weak enough on the scale set
by Hc of the superconductor (which can be enhanced in
mesoscopic structures up to the paramagnetically-limited
value of order ∆/µB .23)

Inversion asymmetry between the two wires is intro-
duced by tilting the lower wire (which is otherwise de-
fined along the same crystallographic axis), which rotates
the spin quantization axis at each Fermi point of ε− band.
The upper wire is along the x axis, whereas we suppose
the lower wire is placed in the xy plane at an angle θ
with respect to the x axis, as shown in Fig. 2. (This may
in practice be realized by growing both wires parallel to
each other on an unstrained crystal, and then distorting
the crystal in the xy plane to effectively tilt the wires;
depending on the interwire separation, a finite θ may not
require a large strain, whose additional effect on the SOI
is neglected.) The SOI in the lower wire is thus given by

HSO = αk (cos θσ̂y − sin θσ̂x) + βk (cos θσ̂x + sin θσ̂y) .
(3)

Reflecting this rotation of the lower wire, the effective
fields for the upper (u) and lower (d) wires are given by

R(u)(k) ≡ R(k, θ = 0) = (βk, αk,−ξ) ,
R(d)(k) ≡ R(k, θ)

= [k(−α sin θ + β cos θ), k(α cos θ + β sin θ),−ξ] . (4)

The corresponding Fermi-point eigenspinors are

|χ(u,d)
r,l 〉 ≡ |χ(u,d)(±kF )〉, which solve

R
(n)
r,l · σ̂|χ

(n)
r,l 〉 = −R(n)

r,l |χ
(n)
r,l 〉 (5)

for R
(u,d)
r,l ≡ R(u,d)(±kF ). We will assume electronic

correlations are not strong enough to significantly affect
these Fermi-point spinors. Anticipating tunneling of elec-
trons with well-defined spins from the superconductor
into the Fermi points of our wires, we can effectively de-

compose the fermionic field operators ψ
(n)
σ (σ =↑, ↓) in
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FIG. 2. S-wave superconductor bridging two identical wires.
The lower wire is rotated by angle θ with respect the upper
wire. The superconductor is biased by V with respect to the
wires.

terms of the right (left) movers ψ
(n)
r,l in the nth wire as21

ψ(n)
σ = 〈χ(n)

r |σ〉ψ(n)
r + 〈χ(n)

l |σ〉ψ
(n)
l . (6)

The full wire Hamiltonian (1) is bosonized24 near the
Fermi points to give an essentially helical (so long as the
Zeeman term ξ is weak) Luttinger-liquid:25

H0 = v
∑
n=u,d

∫
dx

2π

[
1

g

(
∂xφ

(n)
)2

+ g
(
∂xθ

(n)
)2]

, (7)

where φ(n), θ(n) = (φ
(n)
r ± φ(n)l )/2 obey commutation re-

lations [θ(n)(x), φ(m)(y)] = (iπ/2)sgn(x − y)δnm. φ
(n)
r,l

parametrize fermionic operators as ψ
(n)
r,l ∝ e

±iφ(n)
r,l .

The tunneling Hamiltonian, which describes nonlocal
injection of the spin singlet CP from an s-wave supercon-
ductor into the two quantum wires is given by11

HT = T e−2eV t
[
ψ
(u)
↑ ψ

(d)
↓ (0)− ψ(u)

↓ ψ
(d)
↑ (0)

]
+ H.c. . (8)

In this model, two electrons from a singlet CP split and
tunnel simultaneously into the upper and lower wires at
their respective origins. V is the voltage applied be-
tween the superconductor and the wires, which is set to
be smaller than ∆ to preclude quasiparticle excitations.

Expanding spin-dependent operators ψ
(n)
↑/↓ in terms of the

chiral modes pertinent to the wires as in Eq. (6), we can
rewire the tunneling Hamiltonian (8) as

ψ
(u)
↑ ψ

(d)
↓ − ψ

(u)
↓ ψ

(d)
↑ =

∑
µ,ν=r,l

Kµνψ
(u)
µ ψ(d)

ν , (9)

where Kµν are the complex-valued expansion coefficients,
which are given by

Kµν = 〈χ(u)
µ | ↑〉〈χ(d)

ν | ↓〉 − 〈χ(u)
µ | ↓〉〈χ(d)

ν | ↑〉 . (10)

In Section III, the current-current correlations are
calculated, which depend on |Kµν |2 (reflecting spin-
rotational symmetry of a singlet CP):

|Kµν |2 = 1− |〈χ(u)
µ |χ(d)

ν 〉|2 =
1

2

(
1− R̂(u)

µ · R̂(d)
ν

)
. (11)

Here, R̂
(n)
µ = R

(n)
µ /R

(n)
µ , and |Kµν |2 can be evalu-

ated using Eq. (4). R
(n)
µ =

√
k2F (α2 + β2) + ξ2, for

n = u, l and µ = ±, independent of the orientation
of the wire or electron chirality. Furthermore, since

R
(u)
µ ·R(d)

ν = µνk2F (α2+β2) cos θ+ξ2 (where µ and ν = ±
respectively for r, l), we find that |K++|2 = |K−−|2 and
|K+−|2 = |K−+|2. Lumping Zeeman and SOI energies

into a dimensionless parameter λ = ξ/kF
√
α2 + β2, we

finally arrive at a rather simple expression for Eq. (11):

|Kµν |2 =
1− µν cos θ

2(1 + λ2)
. (12)

III. NOISE SPECTRUM

In this section, the current-current correlations at the
four end points of the two wires in Fig. 2 are considered.
The symmetrized noise spectrum,

Sij(ω) = Sji(−ω) =

∫ ∞
−∞

dteiωt〈{δIi(t), δIj(0)}〉 , (13)

is calculated using Keldysh formalism.17,26 Here δIi(t) =
Ii(t)−〈Ii(t)〉 are the current fluctuations, i labeling four
outgoing channels in the wires (i = 1, upper right; 2
upper left; 3, lower left; and 4, lower right branches).
See Fig. 2. We henceforth bosonize the current oper-
ators (with details of the computation provided in Ap-
pendix A), finally obtaining the following expressions for
the noise spectra at zero frequency (ω = 0):

S13 = S31 = S24 = S42 = eI(1 + g2 cos θ) ≡ S+ ,

S14 = S41 = S23 = S32 = eI(1− g2 cos θ) ≡ S− ,
S11 = S22 = S33 = S44 = eI(1 + g2) ,

S12 = S21 = S34 = S43 = eI(1− g2) . (14)

Here, I is the average current flowing though each of the
four branches, which is given by Eq. (A7). This current
vanishes in the limit λ� 1, when both wires become fully
spin polarized thus blocking the CP tunneling. Notice
that the magnetic field did not scramble helical structure
of the interwire cross correlations, which turn out to be
the same [apart from the overall suppression by (1 +λ2)]
as the case of the time-reversal symmetric QSHI.17 This
is one of the key results of this paper.

The interwire cross-correlation spectra (14) are given
by

S±(θ, λ) ∝ 1± g2 cos θ

1 + λ2
, (15)

which are modified from those in Ref. 17 only by the
magnetic-field suppression factor of (1 + λ2)−1. In
Ref. 17, the angle θ dependence for the CP injection
into the helical edge states of a QSHI is due to a tun-
able asymmetry between two edges (induced by a lo-
cal application of strain or gate voltage to an otherwise
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inversion-symmetric system). Here, θ dependence comes
from the mechanical rotation of the lower wire by the
angle θ. Notice that the definitions for S+ and S− are
interchanged here in comparison to Ref. 17. This is be-
cause the quantum wires considered here do not have the
inversion symmetry of helical edge states on the opposite
sides of a QSHI strip. Despite this fundamental differ-
ence, we can clearly see the same structure in the CP
noise cross correlations for both the present quantum-
wire system and the helical QSHI edges. According to
Eq. (15), we can extract the Luttinger-liquid interaction
parameter g (which is typically g ∼ 0.1 − 128 in semi-
conducting wires) from the interwire cross correlations:
g2 cos θ = (S+ − S−)/(S+ + S−). While in Ref. 17 the
angle θ is a parameter that may not be precisely known,
in the present set-up the rotation angle θ of the lower
wire can be experimentally well defined, so that g can be
found by measuring S+ and S− for an arbitrary value of
θ that is away from π/2.

IV. CONCLUSION AND DISCUSSION

The backscattering caused by disorder in the wire
scrambles the ballistic transport and smear the correla-
tions pertaining to entangled electron pairs, which could
hinder practical implementation of our proposal. The
nonlocal charge cross correlations thus have to be de-
tected on the lengthscales shorter than the mean free
path. Partitioning of electrons accordingly to its spin
is the key feature for our result, which was obtained by
setting the chemical potential in the gap to probe into
a single band. If it is set otherwise, for instance, in the
region of multiple bands, this feature is lost.

In the discussion so far, we were considering only one
specific crystallographic orientation of the wires. Namely,
the heterostructure growth is in the [001] crystallographic
direction and each wire is defined (e.g., electrostatically)
along the [100] direction. However, while the Rashba
SOI is rotationally invariant around the normal axis, the
Dresselhaus SOI is sensitive to the wire orientation on a
crystal’s surface.22,29 Suppose that with the same crystal
growth direction of [001], the wire is defined at an angle
θD from the [100] direction. In this case, the Dresselhaus
SOI part of the Hamiltonian is given by22

HD = βk [cos(2θD)σ̂x − sin(2θD)σ̂y] . (16)

This crystallographic orientation and the associated
Hamiltonian are now chosen for the upper wire, with
our coordinate system still placed (as in Fig. 2) with the
x direction collinear with the wire. The corresponding
effective-field vector is then R(u)(k) = [βk cos(2θD), αk−
βk sin(2θD),−ξ]. Since the lower wire is rotated in the
xy plane by the angle θ with respect to the upper wire,
R(l) obtained by the corresponding rotation on R(u) is
given by R(l) = [−αk sin θ + βk cos(2θD − θ), αk cos θ −
βk sin(2θD−θ),−ξ]. The absolute value of R(u,l) is mod-

ified by θD: R(u,l) =
√
k2[α2 + β2 − 2αβ sin(2θD)] + ξ2.

Both the direction and the magnitude of R(u,l) are
thus modified, affecting Kµν in Eq. (11). We still
have |K++|2 = |K−−|2 and |K+−|2 = |K−+|2 accord-
ing to Eq. (11). In fact, the modification of |Kµν |2
can be absorbed by redefining λ entering Eq. (12) as

λ = ξ/kF
√
α2 + β2 − 2αβ sin(2θD), with all subsequent

relations for the noise spectra unmodified. In partic-
ular, apart from the modified geometric spin factor λ,
which suppresses the overall strength of the CAR, S± in
Eq. (15) remain the same. This means we can choose
any wire orientation on the crystal surface without al-
tering the essence of the noise cross correlations. One
special point is θD = π/4 when α = β (or θD = −π/4
when α = −β), corresponding to the “persistent spin
helix”,20,30 where λ blows up and the CAR is fully
blocked (reflecting exact cancellation of the SOI terms).

Let us also comment on a possible triplet pairing of
the injected electrons, e.g., if the two terms in the tun-
neling Hamiltonian (8) acquire a relative phase differ-

ence: eiδ/2ψ
(u)
↑ ψ

(d)
↓ − e−iδ/2ψ

(u)
↓ ψ

(d)
↑ . We can rewrite it

as cos(δ/2)(ψ
(u)
↑ ψ

(d)
↓ + ψ

(u)
↓ ψ

(d)
↑ ) − i sin(δ/2)(ψ

(u)
↑ ψ

(d)
↓ +

ψ
(u)
↓ ψ

(d)
↑ ). The corresponding modification of |Kµν |2

in Eq. (12) can be accounted for by the replacement
θ → θ − δ, with the same δ shift of θ appearing in the
noise expressions. Interestingly, the phase difference in
the tunneling terms has the same effect on the current
correlations as a mechanical rotation of the wires. Such
triplet component in tunneling can be effectively induced
by tunneling away from the Fermi points at finite temper-
ature and/or voltage, and artificially enhanced in more
complex tunneling setups.31

Another concern to be mentioned is that, if the super-
conductor is in a slab shape, the perpendicular critical
field is reduced. This issue can be mitigated by applying
an in-plane magnetic field. For the case of a thin-film
superconductor, the critical field is further enhanced (up
to its paramagnetic limit23) when the magnetic penetra-
tion depth is greater than its thickness. R in Eq. (4)
needs to be modified accordingly. Since the magnetic-
field and SOI contributions to R are not perpendicular
to each other any more, the resulting energy band is not
symmetric as in Fig. 1. In turn, |Kµν |2 in Eq. (12) and
the formula in Eq. (14) acquire some corrections. In the
limit of λ � 1, the corrections are small, however, and
we recover the same noise behavior as in Eq. (15). In
the strong-field limit, λ & 1, on the other hand, a more
careful analysis would be warranted.

Now let us return to Eq. (15) to see the feasability of
this theory in an experiment. A very large magnetic split-
ting (on the scale of the SOI) in the wires, λ� 1, blocks
Andreev reflection,32 when the Fermi level is inside the
Γ-point gap. The SOI is large in the InAs-based het-
erostructures and wires, where the Rashba parameter is
α . 10−11 eV m (being tunable by electrostatic gating),33

β � α, and g factor is ≈ 15. For electron densities in
the range of 10 − 100 µm−1, this gives for the magnetic
field B ∼ 0.1 − 1 T corresponding to λ ∼ 1. Both α
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and g factor can be considerably lower (both up to two
orders of magnitude) in InGaAs-based heterostructures,
which can make also α ∼ β,29 while the corresponding
magnetic field range remains roughly the same. This
gives us a favorable operational bound for the magnetic
field, which opens the Γ-point gap without compromis-
ing the strength of the CAR, while also not exceeding the
paramagnetically-limited critical field (with Tc & 1 K).
Taking everything into account, this means the experi-
ments can be done at temperatures close to 1 K.

This work was supported by the Alfred P. Sloan Foun-
dation, the NSF under Grant No. DMR-0840965 (Y.T.),
and by the Swiss NSF and DARPA QuEST (D. L.).

Appendix A: Average current and noise spectrum

In this appendix, we evaluate the average current
in each wire and current-current correlations, Eq. (13).
Tunneling of Cooper pairs is treated perturbatively with
the Keldysh formalism. Using Luttinger-liquid bosoniza-
tion formalism,24,25 the fermionic field is expressed as

ψ(n)
µ (x) =

1√
2πa

eiµ[kF x+φ
(n)
µ (x)] ,

where a is the short-distance cutoff. The Klein factor
is omitted here as it has no effect on the final results
derived below. µ = r, l = ± labels the left- and right-
moving branches. In this bosonized representation, the
tunneling Hamiltonian, Eq. (8), becomes

HT =
T

2πa
e−iω0t

∑
µ,ν=r,l

Kµνe
i[µφ(u)

µ (0)+νφ(d)
ν (0)] + H.c. .

Here, ω0 = 2eV/~ is the Josephson frequency correspond-
ing to the bias V applied between the superconductor and
the wires, and Kµν is given in Eq. (9).

We define the current to be positive as it flows away
from the superconductor. The bosonized current opera-
tors at distance x � a from the superconductor, along
branches 1 through 4 in Fig. 2, are given by24

I1,2 = ±I(u)(±x) = ±e(vg/π)∂xθ
(u)(±x)

I4,3 = ±I(d)(±x) = ±e(vg/π)∂xθ
(d)(±x) .

The average current and the noise spectrum are given by26,27

I(n)(x, t) =
1

2

∑
η

〈
Tce
− i

~
∫
c
dt′′HT (t

′′)I(n)(x, t, η)
〉
,

S(nm)(x, t;x′, t′) ≈
∑
η

〈
Tce
− i

~
∫
c
dt′′HT (t

′′)I(n)(x, t, η)I(m)(x′, t′,−η)
〉
,

respectively, where Tc is the Keldysh contour-ordering operator, η = ± labels the upper (lower) branch of the Keldysh
contour for the field operators, and the time evolution of the operators on the right-hand side is given in the interaction
picture. Since to the leading order in tunneling the average current I is proportional to |T |2, we have dropped the
〈Ii(t)〉〈Ij(0)〉 term in the noise spectrum, which is of order |T |4. When calculating the noise spectrum, it is convenient

to exponentiate the operator θ(n) in the following way:

∂xθ
(n)(x, t) = ∂x(−i∂λ)eiλθ

(n)(x,t)
∣∣
λ=0

.

Up to the second order in T , we finally find

I(n)(x, t) =− sgn(x)|T |2 evg

4πa2h2

∑
µ,ν,ε
η,η1,η2

|Kµν |2η1η2∂x(−i∂λ)

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2e
−εiω0(t1−t2)

×
〈
Tce

iλθ(n)(x,t,η)eiε[µφ
(u)
µ (0,t1,η1)+νφ

(d)
ν (0,t1,η1)]e−iε[µφ

(u)
µ (0,t2,η2)+νφ

(d)
ν (0,t2,η2)]

〉∣∣
λ=0

, (A1)

S(nm)(x, t;x′, t′) =− sgn(x)sgn(x′)
1

2

(
evg|T |
πah

)2 ∑
µ,ν,ε
η,η1,η2

|Kµν |2η1η2∂x∂x′∂λ1∂λ2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2e
−iεω0(t1−t2)

×
〈
Tce

iλ1θ
(n)(x,t,η)e−iλ2θ

(m)(x′,t′,−η)eiε[µφ
(u)
µ (0,t1,η1)+νφ

(d)
ν (0,t1,η1)]e−iε[µφ

(u)
µ (0,t2,η2)+νφ

(d)
ν (0,t2,η2)]

〉∣∣
λ1,λ2=0

. (A2)

Here, ε = ± corresponds to the annihilation (creation) part of HT and h is the Planck’s constant. The above expression
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is then evaluated using standard bosonic operator identities,24 giving

I(n)(x, t) =− isgn(x)
evg|T |2

4πa2h2

∑
µ,ν,ε
η,η1,η2

ε|Kµν |2η1η2
∫ ∞
−∞

dt1

∫ ∞
−∞

dt2e
−εiω0(t1−t2)

×
∑
κ

(δn,uδµ,κ + δn,dδν,κ)Pη1η2(t1 − t2) [Qκ,ηη1(x, t− t1)−Qκ,ηη2(x, t− t2)] , (A3)

S(nm)(x, t;x′, t′) =sgn(x)sgn(x′)
1

2

(
evg|T |
πah

)2 ∑
µ,ν,ε
η,η1,η2

|Kµν |2η1η2
∫ ∞
−∞

dt1

∫ ∞
−∞

dt2e
−iεω0(t1−t2)

∑
λ,κ

Lnm,λκ

× Pη1η2(t1 − t2) [Qλ,ηη1(x, t− t1)−Qλ,ηη2(x, t− t2)] [Qκ,−ηη1(x′, t′ − t1)−Qκ,−ηη2(x′, t′ − t2)] , (A4)

where Lnm,λκ = (δu,nδµ,λ + δd,nδν,λ)(δu,mδµ,κ + δd,mδν,κ) and Pηη′(t) and Qµ,ηη′(x, t) are expressed in terms of the

Green’s functions of φ(n)(x, t) and θ(n)(x, t):

Pηη′(t) =
∏
n=u,d

exp
[
G

(n)φφ
ηη′ (0, t) +G

(n)θθ
ηη′ (0, t)

]
, Qµ,ηη′(x, t) = µ∂xG

(n)θφ
ηη′ (x, t) + ∂xG

(n)θθ
ηη′ (x, t) . (A5)

Here,24

G
(n)φφ
ηη′ (x, t) = 〈Tcφ(n)(x, t, η)φ(n)(0, 0, η′)− φ(n)(0, 0)2〉 = −g

4

∑
r=±

ln
[
1 + iDηη′(t) (vt− rx) /a

]
,

G
(n)θθ
ηη′ (x, t) = 〈Tcθ(n)η (x, t)θ

(n)
η′ (0, 0)− θ(n)(0, 0)2〉 = − 1

4g

∑
r=±

ln
[
1 + iDηη′(t) (vt− rx)) /a

]
,

G
(n)φθ
ηη′ (x, t) = 〈Tcφ(n)η (x, t)θ

(n)
η′ (0, 0)〉 = G

(n)θφ
ηη′ (x, t) = 〈Tcθ(n)η (x, t)φ

(n)
η′ (0, 0)〉 = −1

4

∑
r=±

r ln
[
1 + iDηη′(t) (vt− rx) /a

]
,

(A6)

where Dηη′(t) = Θ(ηη′)sgn(η′t) + Θ(−ηη′)sgn(η′).
We finally obtain the current as

I(n)(x) =isgn(x)
evg

4πa2h2
|T |2

∑
µ,ν,κ

|Kµν |2(δn,uδµ,κ + δn,dδν,κ)

×
[
Qκ,++(x)−Qκ,+−(x) +Qκ,−+(x)−Qκ,−−(x)

][
P+−(ω0)− P+−(−ω0)− P−+(ω0) + P−+(−ω0)

]
=sgn(ω0)

1

1 + λ2
2πe|T |2

v2h2Γ(2γ + 2)

(
|ω0|a
v

)2γ

|ω0| , (A7)

where Pηη′(ω) and Qµ,ηη′(x) ≡ Qµ,ηη′(x, ω = 0) denotes the Fourier transform and γ = (g + g−1 − 2)/2. Kµν here is
taken from Eq. (12). Similarly for the noise spectrum, we get:

S(nm)(x, x′, ω = 0)

=− sgn(x)sgn(x′)
1

2

(
evg|T |
πah

)2∑
µν

|Kµν |2
∑
λ,κ

Lnm,λκ
[
P−+(ω0) + P−+(−ω0) + P+−(ω0) + P+−(−ω0)

]
×
{[
Qλ,++(x)−Qλ,+−(x)

][
Qκ,−+(x′)−Qκ,−−(x′)

]
+
[
Qλ,−+(x)−Qλ,−−(x)

][
Qκ,++(x′)−Qκ,+−(x′)

]}
=eI

[
δn,mF1(x, x′) + δn,−mF2(x, x′)

]
, (A8)

where

F1(x, x′) = 1 + g2sgn(x)sgn(x′) , for n = m,

F2(x, x′) = 1− g2 cos θsgn(x)sgn(x′) , for n 6= m,

and I is given by the absolute value of the current in Eq. (A7).

Appendix B: Relevant integrals

The evaluation of the average current and the noise
spectrum in Eqs. (A7) and (A8) reduces to finding

Pηη′(ω) and Qµ,ηη′(x, ω = 0) = Qµ,ηη′(x), which are the
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Fourier transforms of the functions defined in Eq. (A5).
Using the Green’s functions in Eq. (A6), we find

Pηη′(t) =
1

[1 + iDηη′(t)vt/a]
2γ+2 ,

Qµ,ηη′(x, t) = i
∑
r=±

r + µ

4ag

Dηη′(t)

1 + iDηη′(t)(vt− rx)/a
.

P−+(ω) can be evaluated by noting the integral:∫ ∞
−∞

dt
eiωt

(δ + it)ν
=

2π

Γ(ν)
|ω|ν−1e−|ω|δΘ(ω) .

Furthermore, we see P+−(ω) = P−+(−ω), and the ex-
pression appearing in Eqs. (A7) and (A8) become

P−+(ω0)− P−+(−ω0)− P+−(ω0) + P+−(−ω0)

=
4π

Γ(2γ + 2)

(a
v

)2γ+2

|ω0|2γ+1e−|ω0|a/vsgn(ω0) ,

and

P−+(ω0) + P−+(−ω0) + P+−(ω0) + P+−(−ω0)

=
4π

Γ(2γ + 2)

(a
v

)2γ+2

|ω0|2γ+1e−|ω0|a/v .

To be internally consistent with the low-energy
Luttinger-liquid description, we henceforth drop the fac-
tor e−|ω0|a/v. The remaining relevant terms entering
Eqs. (A7) and (A8) are

Qµ,++(x)−Qµ,+−(x) = Qµ,−+(x)−Qµ,−−(x)

= i
∑
r

r + µg

4g

∫ ∞
0

dt

[
1

a+ i(vt− rx)
+

1

a− i(vt− rx)

]
= i
∑
r

r + µg

2gv

[π
2
− tan−1

(
−rx
a

)]
≈ iπ

2vg
[µg + sgn(x)] .
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