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Utilizing first-principles quantum transport calculations, we investigate the role of local fields in
conductor surface electromigration. A nanometer thick Ag(100) thin film is adopted as our pro-
totypical conductor, where we demonstrate the existence of intense local electric fields at atomic
surface defects under an external bias. It is shown that such local fields can play an important
role in driving surface electromigration and electrical breakdown. The intense fields originate from
the relatively short (atomic-scale) screening lengths common to most elemental metals. This gen-
eral short-range screening trend is established self-consistently within an intuitive picture of linear
response electrostatics. The findings shed new light on the underlying physical origins of surface
electromigration and point to the possibility of harnessing local fields to engineer electromigration
at the nanoscale.

PACS numbers: 71.15.-m,73.22.-f,73.40.-c,73.63.-b

I. INTRODUCTION

Over the past decade semiconductor device dimen-
sions have rapidly approached the 10 nm nanoelectronic
milestone.1,2 In tandem to this effort, there has been
a corresponding size reduction in the metallic wires
(or interconnects) which tie nanoelectronic devices to-
gether to form logic circuits.3 At such small dimen-
sions, surfaces heavily influence the physical proper-
ties of conductors.4–6 In particular, surface electromi-
gration (EM)7,8 often leads to the rapid breakdown
of nanoscale conductors,4,9 and is therefore a major
reliability and performance concern in modern com-
puter chip design.3,9,10 For this reason, EM continues
to attract a great deal of applied and fundamental re-
search interest in physics,4,11 chemistry,5,11–13 materials
science,9,14 and nanoelectronics.4,9–11,14,15 The impetus
to further our understanding of EM, arises from a de-
sire to realize full control over EM at both the fun-
damental level of chemical bond breaking5,11–13,16 but
also within the grander scope of nanoscale materials
design.4,5,9,11,12,14,15,17 Within the context of these prac-
tical and pressing surface EM concerns, this paper delves
into the fundamental origins of EM at the nanoscale.

Conventionally, conductor EM is understood semiclas-
sically in terms of a driving wind force.18–21 When a
bias is applied across a conductor, charge carriers scat-
ter against atomic defects such as surface step edges or
adatoms4,7,22 as shown in Fig. 1. Following the prin-
ciple of momentum conservation as dictated by New-
ton’s laws: electron momentum lost through elastic scat-
tering is transferred at a rate determined by the cur-
rent density, such that electron momentum transferred

over time acts as an “electron wind” that pushes de-
fect atoms along.4,19,21,23 Beyond this semiclassical per-
spective there is, however, a second important and of-
ten overlooked driving force in EM that is contributed
by the voltage drop φd near an electromigrating atom
as shown in Fig. 1.19,21,24 Though it is generally as-
sumed to be much weaker than the wind force, various
models disagree on the role of the voltage drop in EM

and the precise magnitude of the electric field ~∇φd at
an electromigrating atom.18,19,21,23–28 In particular, the
extent to which the electric field is screened from elec-
tromigrating atoms, and the role of external field in-
homogeneities near an electromigrating atom both re-
main unresolved.18,19,21,29,30 These questions remain un-
resolved, to a large extent, because the conventional sep-
aration of the EM force into electric field and electron-
wind components is somewhat artificial.24 Meaning, local
fields and currents are manifestations of the same non-
equilibrium charge density and are therefore not readily
decoupled as we demonstrate herein.21

Building upon our recent work (Ref. 18), where EM
was examined without considering the role of the volt-
age drop, in this work we now consider the role of
the voltage drop in EM at low biases (where EM com-
monly occurs).4,21,28 We show rather surprisingly, though
first-principles quantum transport calculations,18,31 that
EM at the surfaces of nanoscale conductors is often
determined by the local external field28 rather than
the wind force.18,19,21,23–25,27 When conductor dimen-
sions approach the nanoscale, surface defects do not
merely contribute to EM but also increasingly contribute
to resistivity (via surface roughness scattering).3,6,32 In
the elastic scattering limit, surface resistivity induces a
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FIG. 1: (Color online) Electromigrating atom experiencing
a force FEM at the surface of a nanoscale conductor sub-
ject to an applied bias (shown as a battery). Conventional
viewpoint: (surface) carriers elastically scatter off a defect
and transfer momentum giving rise to a wind force. View-
point we present here: (interior of atom and conductor) the
voltage drop φd (solid line) imparts an EM force and follows
the electrochemical drop µd (dotted line) at a scatterer af-
ter a screening length λ. This force is equal and opposite to
that imparted on the atom by the non-equilibrium screening
charge δρe. Accumulation and depletion of δρe, in red and
blue respectively, arises where the electrostatic potential φd

does not follow the electrochemical potential µd.

strong localization of the voltage drop near electromi-
grating atoms.22,33 Due to this correlation, strong exter-
nal field inhomogeneities are shown to often arise within
a screening length surrounding an atomic defect (as illus-
trated in Fig. 1) and act to drive EM. Moreover, we show
that the voltage drop contribution to EM can be under-
stood through linear response electrostatics25,34–36 as a
broad phenomenon occurring in conductors with screen-
ing lengths approaching one bond length. This criteria is
met by most elemental metals, including technologically
important metals such as: Ag, Cu, Ti, Ta, Au, Pb, Al,
Fe, Co, Ni, W, and Pt.2,37 In general, the results provide
a new possible route for controlling and engineering EM
in nanoelectronic systems4,5,9,11,12,14,15,33 through local
applied fields.

II. METHOD

Our model EM conductor is an ultra-thin silver film 6
atomic layers thick.4,38,39 Specifically, we chose nanome-
ter thick Ag(100)38 with adatom chain and step edge
surface defects4,7,10,40 as displayed in Fig. 2a. Recent
breakthroughs in quantifying EM at the nanoscale have
been achieved atop Ag thin films4,22 – where step edge
defects were shown to be the primary source of conductor
EM.4 Furthermore, the intriguing phenomena of quan-
tum growth allows the fabrication of Ag thin films with
thicknesses down to several atomic layers.38,39

Both geometries presented in Fig. 2a were relaxed
within the VASP software package,41 where electron-ion
interactions are represented through the projector aug-
mented wave (PAW) method.42,43 Each geometry was pe-
riodically repeated to form slabs separated a vacuum re-
gion of 12 Å. Electron exchange-correlation interactions

were captured within the generalized gradient approxi-
mation (PBE-GGA).44 The default VASP-PAW poten-
tial database Ag plane-wave cutoff energy of 249.846 eV
was applied. To aid convergence, the Fermi-level smear-
ing approach of Methfessel and Paxton45 was employed
at a Gaussian width of 0.1 eV. Optimized atomic ge-
ometries were achieved when forces on all unconstrained
atoms were smaller in magnitude than 0.01 eV/Å. The
Ag bulk 4.17 Å lattice constant obtained by this approach
matched reasonably well with the experimental value of
4.09 Å.46 The general conclusions of our study are un-
changed by such small variations in the assumed Ag lat-
tice constant.
After relaxing the atomic structures, EM and trans-

port properties were calculated by carrying out DFT
within the Keldysh non-equilibrium Green’s functions
(NEGF) formalism.18,31 A linear combination of atomic
orbitals (LCAO) were used to describe valence elec-
trons and norm-conserving pseudopotentials were used
to approximate atomic cores.47,48 To insure a proper
work function, a double-ζ polarized basis set confined at
0.0025 Ry was adopted. The 4d-electrons were included.
An Ag partial core density was included to accurately
capture exchange-correlation interactions near the core
region.48–50 Exchange-correlation interactions were cap-
tured through the local density approximation (LDA) on
a real space grid of 4 points per Bohr. To guarantee
accurate representation of the Fermi surface, the Bril-
louin zone transverse to the direction of transport was
sampled at 256 kx-points (see Fig. 2a). The total de-
vice region simulated was 3.5 nm in length. The applied
voltage drop and its field gradient were computed self-
consistently within NEGF-DFT (for further details see
Refs. 31 and 51). Lastly, due to the small bias voltages
considered, self-consistent calculations were judged to
have converged when every element of the density matrix
was converged to less than 10−8 a.u. at a Green’s func-
tion integral resolution of 136 energy points.31,51 Such
transport calculations were found to be very computa-
tionally time consuming, amounting to approximately
45,000 computing core hours. Extensive details on the
EM force computation approach, applied to the above
transport calculations, can be found in the appendix to
this paper.

III. RESULTS & DISCUSSION

Upon applying a bias of µL−µR, a net increase in left
scattering electrons (red) and decrease in right scattering
electrons (blue) impacts upon a defect,18,52 as shown di-
agrammatically in Fig. 2b and explicitly through atom-
istic NEGF-DFT calculations in Fig. 3a for chain and
step defects. In nanoscale conductors with dimensions
approaching 10nm, conductivity is determined by many
such surface scattering events.3,6,32 In this regime, where
elastic scattering dominates, the cumulative voltage drop
across many defects can be approximated as a series of
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FIG. 2: (Color online) (a) Model system consists of an
Ag(100) 1nm thin film. Magnification displays the Ag atoms
(red) for which we compute EM forces: (a,i) adatom chain;
and (a,ii) step edge. (b) In the elastic scattering limit the
voltage, φ, drops discretely at each defect. Magnification pro-
vides an energetic representation: an applied bias of µL − µR

induces an increase in right scattering electrons (blue) and a
decrease in left scattering electrons (red); the degree to which
the electrostatic potential drop φd at a defect follows the ap-
plied bias µL−µR is determined by the electron transmission
Td.

34

discrete events (φd) occurring within a screening length
of each defect as shown diagrammatically in Fig. 2b.33

Within NEGF-DFT, the voltage drop due to an atomic
sized scatterer can be calculated explicitly31,51 as shown
for the model chain and step defects in Fig. 3b.

Phenomenologically, the voltage drop at each defect
can be correlated to the electrochemical potential bias
between the left scattering (µL) and right scattering
(µR) electrons (see Fig. 2b) through the average prob-
ability of electron transmission 0 ≤ Td ≤ 1 via φd =
(1− Td)(µL − µR);

34 such that a sizable current with an
energy window width of Td(µL−µR) is carried past each
defect, leading to the conductor averaged shifted Fermi
sphere energy v.s. momentum (E v.s. kz) distribution
shown in Fig. 2b.

The non-equilibrium EM force that arises upon ap-
plying a bias, is imparted by the external field voltage
drop φd which arises from the non-equilibrium screening
charge density δρe as shown in Fig. 1.18,21,28 How one de-
fines the relationship between the voltage drop φd and the
non-equilibrium charge density δρe, fundamentally deter-
mines how EM forces are calculated.18,19,21,23–25,27 When
including the voltage drop φd self-consistently within
density functional theory (DFT), following the Feynman-
Hellmann theorem,18,24 at low bias the total EM force

(FEM ) on a defect within is expressed as18,24

FEM = −

∫

(

ρe,j ~∇φd + ρc,j ~∇φ
H
d

)

dr

= −

∫

∂V

∂Rj
δρedr, (1)

where Rj defines the defect atom position and V is
the crystal potential (see the appendix to this paper).
The defect is assigned the index of the jth atom in the
system. The first term in Eq. (1) describes the elec-

trostatic force exerted by the external field ~∇φd upon
both the defect electron charge density ρe,j and core nu-
clear charge density ρc,j .

53–55 Within DFT, as applied
herein, the exchange-correlation (XC) contribution to
φd = φXC

d + φHd acts only on the defect electron den-
sity ρe,j ; whereas, the Hartree contribution φHd acts on
both ρe,j and ρc,j (see the appendix). The second term
in Eq. (1) describes the electrostatic force −∂V/∂Rj ex-
erted on the screening charge density δρe by the elec-
tromigrating atom.24 Meaning, the force exerted on the

electromigrating atom by the external field ~∇φd is equal
and opposite to the force exerted by the atom on the ex-
ternal charge density δρe which produces φd. This follows
from Coulomb’s law through Newton’s third law. Herein,
we demonstrate that the voltage drop φd in Eq. (1) can
be correlated to the sharp electrochemical potential drop
µd at a defect imparted by an external source, such as an
electrochemical battery, through the conductor screening
length λ (as shown in Fig. 1).34 In most elemental met-
als the screening length λ is on the order of one bond
length,37 such that the electrostatic potential φd closely
follows the electrochemical potential µd. This leads to

strong local fields ~∇φd which drive EM as we show for
our model Ag system.

On the other hand, the wind force approximation
sidesteps the self-consistent φd field present in Eq. (1),
by assuming that the EM force acting on a defect is pri-
marily imparted by electrons scattering elastically within
the bias window µL − µR as shown in Fig. 2b (see also
Fig. 1). Hence, the EM force is usually approximated as
a wind force FW

18,19,21,24,56

FEM ≈ FW = −

∫

∂V

∂Rj
δρsedr, (2)

where δρse = (µL − µR)[ρL(µeq) − ρR(µeq)]/2 and
ρL,R(µeq) is the left/right scattering electron density
at the equilibrium electrochemical potential µeq. This
amounts to dropping the self-consistent contributions in
Eq. (1), and approximating the non-equilibrium charge
density by the bias window scattering charge density
δρe ≈ δρse displayed in Fig. 3a (for further details see
the appendix). At the nanoscale, the wind force ap-
proximation (summarized by Eq. (2)) is only strictly
valid in materials possessing a low Fermi electron den-
sity ρ(µeq) = ρL(µeq) + ρR(µeq). Most elemental metals
possess a short screening length comparable to that of
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FIG. 3: (Color online) EM forces acting on chain (i) and step edge (ii) defects atop an Ag(100) 1nm thin film in the elastic
scattering limit. (a) The bias window electron scattering charge density

∫

δρsedx =
∫

(µL − µR)[ρL(µeq , r) − ρR(µeq , r)]dx/2,
nanometer bar shows the length scale of plots (a) through (d). (b) The self-consistent voltage drop φd(r) arising from an
applied µL −µR = 1 meV bias. (c) The local electrochemical potential µd(r) perturbation via Eq. (5). (d) The linear response
Hartree solution to φH

d via Eq. (6). (e) The voltage drop in the center of the film (solid black). (f) The voltage drop inside
the each defect (solid black). In (e) and (f) the self-consistent Hartree potential (dot-dashed green), electrochemical potential
(dotted blue), and convolved electrochemical potential (dashed red) are also given – where the convolution symbol ⊗ denotes
the solution arrived at via Eq. (6). In (g) the electric field (solid black, right axis) inside each defect plotted against the valence
electron (dashed blue, left axis) and pseudo-core charge48 (dotted red, left axis) densities.

Ag,37 and in such short screening metals nanoscale EM
is often driven by the voltage drop φd in Eq. (1) as we
show below.57

When a bias is applied, the voltage drop φd at a defect
(as calculated for our model Ag system in Fig. 3b) is
arrived at self-consistently within NEGF-DFT by solving
Poisson’s equation21,28,31,35,51

∇2φHd (r) = −
eδρe
ε
, (3)

which relates the Hartree contribution φHd within the
voltage drop φd to the non-equilibrium screening charge
density δρe (e, electron charge; ε = ε0, permittivity of
free space). Further minor exchange-correlation terms
are included in the total non-equilibrium self-consistent

perturbation φd = φHd +φXC
d presented in Fig. 3b. At the

low local biases required to drive EM in conductors,18,22

the non-equilibrium charge δρe is determined by the de-
gree to which the electrostatic potential φHd does not fol-
low the electrochemical potential µd,

34 such that

δρe(r) ≈ ρ(µeq , r)[µd(r)− φHd (r)] (4)

where ρ(µeq) = ρL(µeq) + ρR(µeq) is the local density of
states at the Fermi energy (µeq). In the linear-response
regime considered here, the local perturbation to the elec-
trochemical potential is defined as25,34

µd(r) =
µL − µR

2

[

ρL(µeq, r)− ρR(µeq, r)

ρL(µeq, r) + ρR(µeq, r)

]

, (5)
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and is plotted in Fig. 3c for the model chain and step
defects – where it can be seen that the electrochemical
potential follows the non-equilibrium scattering electron
density in Fig. 3a. By rearranging terms in Eq. (3) after
inserting Eq. (4), we arrive at a linear-response or low
bias formulation of Poisson’s equation34,35,58,59

[∇2 −
eρ(µeq, r)

ε
]φHd (r) = −

eρ(µeq, r)

ε
µd(r). (6)

Upon plugging in µd(r) and ρ(µeq , r), Eq. (6) yields the
linear-response Hartree solutions displayed in Fig. 3d. It
can be seen that the self-consistent solutions in Fig. 3b
and linear-response Poisson solutions in Fig. 3d are
nearly identical, with minor differences arising (for both
chain and step defects) due to the exchange-correlation
potential correction φXC

d . This agreement is further
solidified in Fig. 3e and Fig. 3f, where the Hartree
term of the self-consistent solution (in dot dashed green)
follows the linear-response Hartree solution (in dashed
red). In essence, the electrostatic potential φHd (r) is a
smoothening convolution of the electrochemical poten-
tial µd(r) dictated by the screening length of Ag (λ =
√

ε/eρ(µeq) → λAg ≈ 2.5Å, as shown in Fig. 3e).28,34,35

In most elemental metals such as Ag, Cu, Ti, Ta, Au,
Pb, Al, Fe, Co, Ni, W, and Pt, the density of states at
the Fermi energy is very high and the screening length is
therefore very short (close to one bond length).37,60,61

The above correlation between the electrostatic poten-
tial φd and electrochemical potential µd, contains a sub-
tle and yet important insight into the theoretical treat-
ment of EM at the nanoscale. Specifically, from Eq. (3)
through to Eq. (6) we can see that the wind force approx-
imation is only valid in conductors where the screening
length (λ =

√

ε/eρ(µeq) ) is sufficiently long (on an atom-
istic scale) such that the voltage drop at a defect can be
ignored. Since, applying the wind force approximation
central assumption (that the non-equilibrium electron
density δρe within an electromigrating atom is well ap-
proximated by the bias window scattering charge density
δρe ≈ δρse) to Eq. (4) yields φHd = 0. In conductors where
the screening length is several nanometers or more, for
example heavily doped semiconductors,34 it is probably
reasonable to assume that the voltage drop is negligible
(φHd ≈ 0) at an atomic defect.18,28,34,35 However, in con-
ductors such as Ag possessing very high conducting elec-
tron densities, or high conductivity, and screening lengths
measured in angstroms (λAg ≈ 2.5Å): local perturbations
to the electrochemical potential µd(r) by non-equilibrium
scattering electrons are not smoothened by the screening
length (λ) to such an extent that the voltage drop φd(r) at
a defect can be safely ignored. This short screening length
phenomena is clearly demonstrated in Fig. 3f, where we
see that the local electrochemical potential perturbation
(µd in dotted blue) gives rise to significant self-consistent
external fields (φd in black) within the model Ag(100)
chain and step defects.

The precise role of local fields in conductor EM can

FIG. 4: (Color online) EM force magnitude as a function of
the screening length: (i) chain and (ii) step. External field lin-
ear response solution to Eq. (1) shown in red triangles. Wind
force solution to Eq. (2) in blue squares. Fully self-consistent
solutions to Eq. (1): Hartree Coulomb force in crosses and
Hartree plus exchange-correlation total EM force in x’s. Force
exerted by the external field φd on the defect in black and
force exerted by the defect on the external charge δρe in red
(for all symbol assignments).

be determined by directly applying Eq. (1) to the self-
consistent results in Fig. 3. For the Ag(100) chain defect
and step defects displayed in Fig. 2a, the self-consistent
EM forces were calculated to be FEM,i = 2.1 × 10−3ẑ

eV/nm and FEM,ii = 2.0× 10−4ŷ + 9.9× 10−4ẑ eV/nm
at a bias of 1meV.18,55 The force magnitude |FEM | is
plotted in Fig. 4 (x’s), where it can be seen that the force
exerted on each defect by the external field φd (black x’s)
is equal to the force exerted by the defect on the exter-
nal charge δρe (red x’s). This follows from Coulomb’s
law through Newton’s third law. On the other hand,
as discussed earlier, the wind force force approximation
|FW | (blue squares) expressed by Eq. (2) can be seen to
grossly overestimate the Ag EM force magnitude (having
said that, the force direction agrees well).18,62

Though FW is a less than ideal approximation to FEM

in short screening metals such as Ag, we can extrap-
olate to longer screening lengths and determine when
the wind force approximation should agree well with the
self-consistent force. By solving for the linear response
screening charge density in Eq. (4) at lower Fermi elec-
tron densities, simply obtained by dividing ρ(µeq) by a
real positive number, we can estimate estimate |FEM |
at longer screening lengths (λ). The linear response esti-
mate to |FEM | is shown in Fig. 4 (red triangles), where it
can be seen to approach |FW | (blue squares) as λ→ 1nm
for both the model chain and step defects.28 Interestingly,
the self-consistent force decays inversely with the screen-
ing length (1/λ) and the wind force decays proportionally
to the Fermi electron density (or with 1/λ2). Hence, in
materials with screening lengths greater than or equal to
1nm the wind force approximation is likely reasonable.
However, in shorter screening length materials, which in-
cludes most elemental metals, the external field should
be included explicitly to arrive at physically meaningful
EM force estimates.63
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IV. CONCLUSION

In summary, we have shown, through first-principles
quantum transport calculations, that local fields play an
important role in nanoscale conductor EM (in the bal-
listic limit). We argue that this somewhat counter in-
tuitive result, where the wind force is conventionally as-
sumed to drive EM,18 can be understood intuitively in
terms of characteristic screening lengths. In most ele-
mental metals, such as the model Ag(100) thin film in-
vestigated, the screening length is so short37 that volt-
age fields can arise internally within electromigrating
atoms to drive EM. Specifically, the results suggest the
intriguing possibility of limiting nanoelectronics intercon-
nect surface EM driven breakdown by tuning the con-
ducting electron density near surface defects.3,4,6,7,10,30

In general, the results present a new engineering vari-
able, namely the local external field, for harnessing
and controlling EM in novel nanoelectronic devices and
architectures.4,5,9,11,12,14,15,17,33
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APPENDIX : ELECTROMIGRATION FORCE

COMPUTATION METHODS

1. The Low Bias Electromigration Force

Within the two probe Landauer-Büttiker picture, the
force contribution from scattering electrons for an atom
at position Rj is given by18

Fe = −

∫

∂V

∂Rj
[ρL(E)fL(E) + ρR(E)fR(E)]dEdr,

(A1)

where ρL,R(E) represents the left/right electron scatter-
ing density from the left/right contact at energy E.18,34

The total system potential V includes field contributions
from all atomic electrons and all nuclei. In the case
of a neutral atom at position Rj, the nuclear field is
well screened outside the valence electron density.48 The
quantity fL,R(E) = 1/(1 + e(E−µL,R)/kBT ) defines the

Fermi occupancy of left/right scattering electrons. At
zero bias when both reservoirs posses the same temper-
ature T and electrochemical potential (µeq = µL = µR),
there is no net electron flux and the EM force is by defi-
nition zero.

When a bias is applied such that µL 6= µR as shown in
Fig. 2, a net non-zero driving EM force FEM arises from
the elastic scattering of current carrying electrons.21 In
the low bias regime the total non-equilibrium EM force
can be determined by subtracting the zero bias elec-
tronic force contribution from the biased electronic force
contribution,18,24

FEM = Fbias
e − Feq

e

= −

∫

∂V

∂Rj
[ρbiasL (E)fL(E) + ρbiasR (E)fR(E)]dEdr

+

∫

∂V

∂Rj
[ρeqL (E)feq(E) + ρeqR (E)feq(E)]dEdr

= −

∫

∂V

∂Rj
δρedr, (A2)

which essentially describes the electrostatic force im-
parted by the atom at Rj on the non-equilibrium charge
density δρe. From this perspective it is very reasonable
to invoke Newton’s third law to obtain,

FEM = −

∫

∂V

∂Rj
δρedr

= −

∫

(

ρe,j ~∇φd + ρc,j ~∇φ
H
d

)

dr. (A3)

By Newton’s third law, through Coulomb’s law, the ex-
ternal potential voltage drop φd produced by δρe

28 acts
with equal and opposite force on the electromigrating
atom at position Rj . Meaning, the non-equilibrium
charge density δρe and the atom at position Rj act on
each other with equal and opposite forces. Eq. (A3)
is expressed within DFT, the non-equilibrium electron
density δρe and the defect electron density ρe,j inter-
act with each other through equal and opposite Hartree
(H) and exchange-correlation (XC) forces (where, φd =
φHd + φXC

d ).64 However, δρe and the nuclear core charge
ρc,j only interact with each other through equal and op-
posite Hartree forces.

In this work, the self-consistent charge density given by
ρe,j corresponds to the pseudopotential valence electron
density ρv,j of the electromigrating atom, and is deter-
mined through Mulliken population analysis of the con-
ducting system.53–55 The combined frozen core electron
density and nuclear charge in Eq. (A3) is approximated
by ρc,j (see the pseudopotential discussion pertaining to
Eq. (A15) at the end of this appendix). When computing
exchange-correlation interactions, the defect partial core
density ρpc,j is also included. Hence, within the pseu-
dopotential approach applied48 Eq. (A3) is approximated
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as

FEM =−

∫

[

(ρv,j+ρpc,j)~∇φ
XC
d +(ρv,j+ρc,j)~∇φ

H
d

]

dr.

(A4)

In an all-electron calculation Eq. (A3) can be applied,62

where ρe,j would include all bound electrons and ρc,j
would correspond to the nuclear charge of the atom at
Rj . Likewise, Eq. (A2) is captured through the same
pseudopotential approach (see the last section of this
appendix). The screened nuclear field ∂V/∂Rj acting
on δρe is approximated by ∂V/∂Rj ≈ ∂(Vc + V H [ρv] +
V XC [ρv + ρpc])/∂Rj, where V contains the potential of
all atoms and electrons in the system but ∂V/∂Rj es-
sentially reduces to the screened nuclear field of the jth

atom. Hence, the non-equilibrium electron density δρe
is assumed to reside primarily outside the pseudopoten-
tial cutoff radius rc.

62 The integrals in Eqs. (A2) and
(A4) are performed on a real-space grid.51 The screened
nuclear field of an electromigrating atom is computed nu-
merically by self-consistently displacing the atom at Rj

by 1× 10−3 a.u..

2. The Low Bias Wind Force Approximation

To arrive at the wind force approximation we begin by
rewriting the electronic force integral in Eq. (A1) as18

Fe = −
∑

k,s

[〈ΨL|∇Rj
Ĥe|ΨL〉fL(E)

+ 〈ΨR|∇Rj
Ĥe|ΨR〉fR(E)], (A5)

where ΨL,R are the left/right electron wavefunctions of

the Hamiltonian Ĥe scattering into the device from the
contacts.18 The above summation is performed over all
momentum k and spin states s. The full non-equilibrium
EM force expression in Eq. (A2) is then given by,18,24

FEM = −
∑

k′,s′

[〈Ψbias
L |∇Rj

Ĥbias
e |Ψbias

L 〉fL(E)

+ 〈Ψbias
R |∇Rj

Ĥbias
e |Ψbias

R 〉fR(E)]

+
∑

k,s

[〈Ψeq
L |∇Rj

Ĥeq
e |Ψeq

L 〉feq(E)

+ 〈Ψeq
R |∇Rj

Ĥeq
e |Ψeq

R 〉feq(E)]. (A6)

Under the wind force approximation,21 it is assumed that
the voltage drop φd can be neglected in the low bias limit.
Hence, Ĥbias

e = Ĥeq
e +φd ≈ Ĥeq

e and Ψbias
L,R ≈ Ψeq

L,R, where

Ψbias
L,R are the scattering wavefunctions of Ĥbias

e . The non-

equilibrium EM force in Eq. (A2) therefore reduces to the

wind force FEM ≈ FW ,

FW = −

∫

∂V

∂Rj
[ρeqL (fL − feq) + ρeqR (fR − feq)]dEdr

= −

∫

∂V

∂Rj
δρsedr. (A7)

At low temperatures (T ≈ 0) or when the density of
states is energetically flat about the Fermi energy (as
is the case for Ag),37 we can approximate the low bias
scattering charge density by δρse = (µL − µR)[ρL(µeq) −
ρR(µeq)]/2.

21,57 The integral in Eq. (A7) is computed in
the same manner as Eq. (A2) in the previous section of
this appendix.

3. Force Contributions From Bound and Scattering

States

In the study of EM, it is important to distinguish be-
tween bound electronic states and scattering electronic
states. Bound state contributions to the non-equilibrium
charge density δρe arise in response to an electrostatic
potential perturbation. Whereas, scattering state con-
tributions to δρe arise in response to an electrochemical
potential perturbation.18,34 This delineation can be ob-
tained within the NEGF-DFT31,51 formalism via

δρe = [δρL + δρR] + δρB

=

∫

[ρbiasL fL + ρbiasR fR − ρeqL feq − ρeqR feq]dE

+

∫

[ρbiasB feq − ρeqB feq]dE, (A8)

where [δρL + δρR] and δρB are the scattering state and
bound state contributions to δρe, respectively. When
employing a LCAO basis set, the spin degenerate scat-
tering and bound state charge density contributions at
energy E are defined as ρL,R(E) = GΓL,RG

†/π and
ρB(E) = 2ηGSG†/π. The Green’s function is given by

G = [(E + iη)S − Ĥe − ΣL − ΣR]
−1, where η is a small

positive infinitesimal and S is the overlap matrix.31,34,51

Finally, the left and right self-energies ΣL,R are related to

the contact broadenings through ΓL,R = i(ΣL,R−Σ†
L,R).

In the conducting limit, where ΓL,R ≫ η, scattering
states perturbed by the electrochemical potential bias
µL 6= µR dominate δρe. This is demonstrated, for exam-
ple, through the strong agreement between the convolved
electrochemical potential and the self-consistent screen-
ing potential in Fig. 3 (see the discussion surrounding
Eq. (6)). Generally speaking, an electromigrating atom
is strongly coupled to and broadened by the delocalized
Blöch states scattering from both contacts. Hence, in
the conducting limit Eq. (A2) is applied to compute EM
forces.

However, in an isolated system (where ΓL,R → 0)
bound states cannot be neglected. For example, an Ag
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FIG. 5: (Color online) Ag atomic wire polarized by an ex-
ternal electric field (the wire is repeated infinitely in the x̂-
direction). (a) An external field of 4× 10−4 eV/nm (dashed
line) and the external field plus the induced polarization
dipole field (solid line) through the center of the wire. (b)
The polarization dipole charge density

∫

δρBdx.

atomic wire placed within a uniform electric field expe-
riences a force due to the polarization of its bound elec-
tronic states via

lim
ΓL,R→0

FEM = −

∫

∂V

∂Rj
δρBdr. (A9)

Assuming an external electric field of ∼4× 10−4 eV/nm
as shown in Fig. 5a, equivalent that to arising within
the residual resistivity dipole of Fig. 3e, from Eq. (A9)
one can arrive at a force estimate on the isolated atomic
wire of FEM = 1.2× 10−3ẑ eV/nm.62 Though similar in
appearance and magnitude, it is important to note that
the bound state polarization in Fig. 5 is very different
from the scattering state polarization in Fig. 3. The lat-
ter arises for an electrochemical potential perturbation of
scattering states, while the former arises from an electro-
static potential perturbation of bound states.

4. Pseudopotential Hamiltonian Approximations

Variations of the below pseudopotential derivation can
be found in several texts,50 it is provided here for the sake
of completeness (with respect to previous sections of this
appendix). Within DFT, the all-electron (ae) Hamilto-

nian Ĥae
e,atom eigenstates |ψln〉 of an isolated atom with

nuclear charge Z are given by

Ĥae
e,atom|ψln〉 = Eln|ψln〉

[

−
1

2
∇2 + V

]

|ψln〉 = Eln|ψln〉, (A10)

where V = V H + V XC − Z/r includes the Hartree,
exchange-correlation, and nuclear potentials of the iso-
lated atom. The indices n and l indicate the eigenstate
quantum number and angular momentum, respectively.
In this first part of the appendix we drop the atom index
notation j since there is only one atom in this pseudopo-
tential derivation, however we return to the index nota-
tion in the subsequent sections of this appendix. Follow-

ing the norm-conserving pseudopotential conditions,50

the all-electron valence eigenstates can be recast as

|ψln〉 =

{

|ϕln〉+ |χln〉 r ≤ rc
|ϕln〉 r > rc

, (A11)

where |ϕln〉 represents a valence electron pseudopoten-
tial wavefunction that is smooth in the core region and
nodeless.50 By plugging Eq. (A11) into Eq. (A10) we ar-
rive at a non-local representation,

[

Ĥae
e,atom+(Ĥae

e,atom−Eln)
|χln〉〈χln|

〈χln|ϕln〉

]

|ϕln〉=Eln|ϕln〉.

(A12)

To exclude unphysical ghost eigenstates,65 we approxi-
mate the screened nuclear potential acting on the valence
electrons by the potential

∇2Vc = −4πρc. (A13)

The density ρc(r) ∝ exp[−(sinh(abr)/sinh(b))2] is sub-
ject the conditions: ρc(r)|r>rc = 0, 4π

∫

|ρc(r)|r
2dr =

Zv, where Zv is the total valence electron charge.48 In this
manner the core electrons are assumed to screen the nu-
clear potential within r < rc such that Vc|r>rc = −Zv/r.
Following earlier work we have taken we have taken b = 1
and a = 1.82/rc.

48 From Eqs. (A12) and (A13) we arrive
at the smoothened non-local eigenstate equation

[

−
1

2
∇2+Vc+V

H [ρv]+V
XC [ρv+ρpc]+

|δV ϕln〉〈ϕlnδV |

〈ϕln|δV |ϕln〉

−(
1

2
∇2−V +Eln)

|χln〉〈χln|

〈χln|ϕln〉

]

|ϕln〉=Eln|ϕln〉 (A14)

where δV = (V − Vc − V H [ρv] − V XC [ρv + ρpc]), ρv is
the pseudo valence charge density, and ρpc is the pseudo
partial core density.66 Finally, to arrive at a pseudopo-
tential Hamiltonian Ĥps

e,atom we employ |χps
ln〉=δV |ϕln〉−

(∇2/2−V+Eln)|χln〉 for each scattering angular momen-
tum valence eigenstate (i.e. s, p, d, and f valence orbitals
where applicable). This leads to the Hermitian represen-
tation employed herein for all NEGF-DFT31,47,48,50,51,67

calculations

Ĥps
e,atom=

[

−
1

2
∇2+Vc+V

H [ρv]+V
XC [ρv+ρpc]

+
∑

l

|χps
ln〉〈χ

ps
ln |

〈χps
ln |ϕln〉

]

. (A15)
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65 X. Gonze, P. Käckell and M. Scheffler, Phys. Rev. B 41,
12264 (1990).

66 S. G. Louie, S. Froyen and M. L. Cohen, Phys. Rev. B 26,
1738 (1982).

67 L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48,
1425 (1982).


