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I. INTRODUCTION

Electron spins in semiconductor quantum dots (QDs) are promising candidates as solid-state quantum bits1. A critical ob-
stacle is the short electron spin coherence time due to the fluctuating collective nuclear field from the nuclear spins of the host
lattice2. Combating electron spin decoherence is of paramount importance for quantum information. For this purpose, two
major approaches are under rapid development. One aims at decoupling a general qubit from the environments by frequently
applying additional pulses on the qubit3. The other aims at directly prolonging the electron spin coherence time by stabilizing,
i.e., suppressing the fluctuation of, the nuclear field through a nonlinear feedback loop driven by a steady-state nuclear field. The
latter approach, referred to as nuclear stabilization (NS), has the merit that the prolongation of the electron spin coherence time
persists for a long time, so that NS can be temporally separated from subsequent qubit operations. Intensive research efforts have
led to successful NS in QD ensembles4 and suppression of the fluctuation of the nuclear field difference between two coupled
QDs5.

Recently, three groups6–8 reported significant NS in single QDs. Xuet al.6 observed prolongation of electron spin coherence
time by NS upon optical pumping of trion in the Voigt geometry. Latta et al.7 observed NS upon optical pumping of trion
and blue exciton in the Faraday geometry. Vinket al.8 theoretically deduced NS upon microwave pumping of electron spin
resonance. A key observation in these experiments is the maintenance (i.e., locking) of resonant absorption over a widerange of
pump frequency away from resonance. This locking behavior arises from the shift of the electron energy level from off-resonance
to resonance by the steady-state nuclear field that drives the NS. A striking observation by both Xuet al. and Lattaet al. is that
the locking occurs nearly symmetrically on both sides of theresonance, in sharp contrast to the observation by Vinket al., where
the locking only occurs on the red side. This symmetric locking reveals that the steady-state nuclear field is antisymmetric across
the resonance. However, this feature cannot be produced by the two cornerstone NS mechanisms: the Overhauser and/or the
reverse Overhauser effect7–10, both of which are based on the flip of nuclear spins by the electron through the isotropic contact
hyperfine interaction (HI). Xuet al.6 gave a very inspiring clue by attributing their observationto the flip of nuclear spins by the
hole (a vacancy in the valence band generated by optical pumping) through the non-collinear dipolar HI11,12, but the mechanism
proposed there flips the nuclear spins without a preferential direction and hence cannot produce any steady-state nuclear field to
lock the resonance. To date, the symmetric locking remains an open problem.

In this paper, we provide a general mechanism capable of establishing the desired antisymmetric nuclear field and hence the
symmetric locking. The key process of this mechanism is the flip of the nuclear spins through their non-collinear HI with the
hole excited by nonresonant pumping (instead of resonant pumping6,11 or through the isotropic contact HI with the ground state
electron under resonant pumping7–10). This process has a preferential direction giving rise to an antisymmetric steady-state
nuclear field, which in turn drives a nonlinear feedback loopleading to efficient NS. This provides a new avenue for electron
spin coherence time prolongation through the non-collinear HI, in addition to the widely explored isotropic contact HI.

II. GENERAL THEORY

Our model consists of many QD nuclear spins coupled to an electron spin state|0〉 (with energy zero) and a hole spin state|1〉
(with energyω0) under nonresonant pumping with detuning∆ ≡ ω0 − ω [Fig. 1(a)]. The excited hole state|1〉 is coupled to the
nuclear spins through the non-collinear HI ˆσ11

∑

j a j,nd(Î+j + Î−j ) (σ̂ ji ≡ | j〉 〈i|),6,11 which flips the nuclear spins without changing

the hole spin state. The ground electron state|0〉 is coupled to the nuclear field̂h =
∑

j a j,dÎz
j to be stabilized through the diagonal

partσ̂00ĥ of the contact HI. An external magnetic field gives rise to thenuclear Zeeman term
∑

j ω j,N Îz
j. The total density matrix

ρ̂(t) obeys the quantum Liouville equation, with the dephasing of |1〉 (total rateγ2) and spontaneous emission|1〉 → |0〉 (rateγ1)
incorporated in the Lindblad form. Finally, we emphasize that our theory is equally applicable to the non-collinear HI between
the electron spin and the nuclear spins (see Appendix A for details).

Before going into details, we outline the physical picture of the NS driven by our mechanism. It is a two-step feedback loop:
the induction of a steady-state nuclear field by the hole through our mechanism and the back action of this nuclear field on
the electron. First, through the non-collinear HI, avirtual hole generated by the non-resonant pumping flips the nuclearspins,
leading to antisymmetric steady-state nuclear field. Second, through the interaction ˆσ00ĥ, the nuclear field shifts the electron
energy bŷh and hence changing the detuning from∆ [Fig. 1(a)] to∆̂ ≡ ∆− ĥ. The antisymmetric steady-state nuclear field in the
first step enables the feedback loop to produce the desired symmetric locking and efficient NS, i.e., suppression of the fluctuation
of ĥ. All these information is contained in the diagonal partP̂(t) of the nuclear spin density matrix Trehρ̂(t).

The dynamics of̂P(t), which occurs on a very long time scale compared with other variables, is derived from the quantum
Liouville equation of ˆρ(t) by applying the adiabatic approximation13. Up toO(a3

nd), we obtain (see Appendix B)

˙̂P = −
∑

j

[ Î−j , Î
+
j W j,+(∆̂)P̂] −

∑

j

[ Î+j , Î
−
j W j,−(∆̂)P̂], (1)

whereW j,+(∆̂) [W j,−(∆̂)] is the rate of the flip of thejth nuclear spin that increases (decreases)Îz
j by one. They are obtained from
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FIG. 1. (color online). (a) Electron and hole spin states|0〉 and|1〉 coupled to a typical nuclear spin-1/2 by optical pumping. (b) Down-to-up
nuclear spin flip channel (solid arrow followed by wavy arrow) for ∆ > 0.

the steady-state hole fluctuationa2
j,nd

∫ ∞
−∞ dt e∓iω j,N t〈σ̂11(t)σ̂11〉 in the absence of nuclear spins by replacing∆ with ∆̂. Equation

(1) is the starting point of our subsequent discussions. It can be easily understood from the fluctuation-dissipation relation14:
the hole fluctuation〈σ̂11(t)σ̂11〉 drives the irreversible nuclear spin flip leading to a steady-state nuclear field, which in turn acts
back on the electron by replacing∆ with ∆̂.

To keep the exposition simple, we consider uniform couplings a j,d = ad and a j,nd = and to identical nucleiI j = I and
ω j,N = ωN . ThenW j,±(∆̂) becomesW±(∆̂) and the nuclear field̂h = hmaxŝ, wherehmax ≡ NadI, N is the number of QD nuclei,
and ŝ ≡ (1/N)

∑N
j=1 Îz

j/I. Hereafter we also refer to ˆs = ĥ/hmax as the nuclear field.
First we demonstrate the desired antisymmetric behavior ofthe steady-state nuclear field. To avoid complication, we drop the

back action, soW±(∆̂) becomesW± ≡ W±(∆). In this case, Eq. (1) shows that on the coarse-grained timescale ofP̂(t), the faster
nuclear spin decoherence causes the dynamics of different nuclear spins to be independent, and it suffices to consider only one
nuclear spinI . For a nuclear spin-1/2 with two Zeeman sublevels|↑〉 and |↓〉, Eq. (1) reduces tȯP↑↑ = W+P↓↓ − W−P↑↑. The
nuclear fields = P↑↑−P↓↓ obeys ˙s = −Γp(s− s0), i.e., a finite steady-state nuclear fields0 = (W+−W−)/(W++W−) is established
within a time scale 1/Γp, whereΓp ≡ W+ +W−. For a nucleus with spinI ≥ 1/2, Eq. (1) gives ˙s = −Γp(s − s(I)

0 ) for the nuclear

field s ≡ 〈Îz(t)〉/I, wheres(I)
0 ≈ 2(I + 1)s0/3 for |s(I)

0 | ≪ 1. Straightforward evaluation of〈σ̂11(t)σ̂11〉 gives

s0 ≈ −
2∆ωN

∆2 + γ2
2

F ∼ −∆ωN

γ2
2

, (2)

Γp ≈
4ã2

h

γ1

Wγ2
1

(γ1 + 2W)3
c1 ∼

ã2
h

γ1
, (3)

up to leading order of|ωN |/γ1,2, whereF andc1 are positiveO(1) quantities (see Appendix B) andW ≡ 2π(ΩR/2)2L(γ2)(∆) is
the pumping rate, withL(γ2)(∆) ≡ (γ2/π)/(∆2 + γ2

2) being the energy conserving delta function broadened by hole dephasing.
s0 displays two distinguishing features: the antisymmetric behaviors0|∆→−∆ = −s0 and the weak dependence on the pumping
rateW (sinceF is weakly dependent onW). This weak dependence is very different from the two existing NS mechanisms: the
Overhauser effect9 |s0| is maximal for saturated pumpingW ≫ γ1 and the reverse Overhauser effect10 |s0| is maximal for weak
pumpingW ≪ γ1.

The above distinguishing features of our mechanism can be explainedqualitatively as the competition between twocoherent

nuclear spin-flip channels|0, ↓〉
ΩRe−iωt

→ |1, ↓〉
and→ |1, ↑〉 (down-to-up channel) and|0, ↑〉

ΩRe−iωt

→ |1, ↑〉
and→ |1, ↓〉 (up-to-down channel).
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Each channel consists of two steps: the generation of avirtual hole by the non-resonant pumping followed by the nuclear spin
flip by this virtual hole through the non-collinear HI. For the down-to-up channel [Fig. 1(b)], the first step (solid arrow) has
an energy mismatch from the detuning|∆|, but the second step (wavy arrow) is nontrivial: the hole in its initial state|1, ↓〉 is a
virtual hole with energyω (instead of areal hole with energyω0), while the hole in its final state|1, ↑〉 is areal hole with energy
ω0. Therefore, the energy mismatch of this step (i.e., the difference between the final state energyω0+ωN/2 and the initial state
energyω − ωN/2) is |ωN + ∆|. Similarly, for the up-to-down channel, the energy mismatch is |∆| in the first step and|ωN − ∆| in
the second step. The different energy mismatches|ωN ±∆| (instead of the pumping7–10) sets a∆-dependent preferential direction
for the nuclear spin flip. This is the origin of the antisymmetric behaviors0|∆→−∆ = −s0 and the weak dependence ofs0 on the
pumping rateW. For |ωN | ≪ γ1,2 and |∆| ≪ γ2, the small energy mismatches|∆|, |ωN ± ∆| ≪ γ2 of both channels are easily
compensated by the strong dephasing (with rateγ2), so the nuclear spin flip is nearly resonant, in contrast to the off-resonant
Overhauser effect9. This resonant nature makes the strength of our mechanism comparable with the detrimental nuclear spin
depolarization even if the non-collinear HI is weak6,11.

The physics of our mechanism depicted above differs qualitatively from previous theories6–11. First, the nuclear spin flip is
not accompanied by any change of the hole state, in contrast to the pair-wise electron-nuclear spin flip-flop7–10. Second, the
nuclear spin is flipped by avirtual hole in acoherent channel (resembling co-tunneling15). This is the origin ofs0|∆→−∆ = −s0

responsible for symmetric locking and efficient NS. By contrast, in anincoherent channel (resembling sequential tunneling15),
the nuclear spin flip by areal hole6,11 has no preferential direction6,11 to lock the resonance, while the nuclear spin flip by areal
electron8–10 has∆-independent preferential direction leading to unidirectional locking16. Third, the nuclear Zeeman splitting
ωN , considered as negligible in all previous theories6–11, plays a critical role in our mechanism.

Now we analyze the entire feedback loop by including the backaction. We are interested in the nuclear field ˆs = ĥ/hmax in
the steady-state: its average values(ss) = h(ss)/hmax is responsible for the symmetric locking and its fluctuationσ quantifies the
NS. This information is contained in the distribution function p(s, t) ≡ TrP̂(t)δ(s− ŝ) of ŝ. Using Eq. (1), the equation of motion
of p(s, t) is derived and solved straightforwardly (see Appendix C).The steady-state solutionp(ss)(s) shows one or more sharp
Gaussian peaks, each of which corresponds to a stable nuclear spin state: the positions(ss)

α (standard deviationσα) of theαth
peak corresponds to the average nuclear field (nuclear field fluctuation) in theαth stable state. For|s(I)

0 | ≪ 1 or I = 1/2, we
obtain the analytical result for the fluctuation in theαth stable state:

σα = σ
eq

√

√

√

1− s2
0|∆→∆−hmaxs(ss)

α

1+ hmax(ds(I)
0 /d∆)|

∆→∆−hmaxs(ss)
α

, (4)

whereσeq ≡ [(I + 1)/(3NI)]1/2 is the thermal equilibrium fluctuation. Equation (4) shows that the NS driven by our mechanism
is efficient sinces0 and hences(I)

0 ≈ [2(I+1)/3]s0 are very sensitive to∆ on the resonance∆ = 0 [see Eq. (2)], where the strength
Γp of our mechanism is maximal [see Eq. (3)].

III. APPLICATION TO EXPERIMENTS

Now we apply our model to describe the single-pump experiment of Xu et al.6 and the trion pump experiment of Lattaet al.7,
which correspond to|0〉 being the spin-up electron state and|1〉 being the spin-up trion state (consisting of two inert electrons in
a spin singlet and a spin-up hole). In this case, the diagonalpart

∑

j a j,eŜ z
e Îz

j of the electron-nuclear contact HI gives the diagonal

couplingσ̂00ĥ with a j,d = a j,e/2. The non-collinear hole-nuclear dipolar HI
∑

j O(η2)a j,hŜ z
h(Î+j + Î−j )6,11 gives the non-collinear

HI with a j,nd = O(η2)a j,h. For specificity, we consider a typical InAs QD under a magnetic field of 2− 3 T and use the following
realistic parameters2,6,7,17(with ~ = 1 understood) unless specified:N = 104, I = 9/2,ΩR = γ1 = γ2 = 1 ns−1, ωN = ±0.2 ns−1,

ae = 10−2 ns−1, ah = 10−3 ns−1, andand = 0.04ah (based on experimentally reported hole mixing|η| = 0.2− 0.718).
Figure 2 showss0 andΓp (inset) in the absence of the back action. First, our analytical results (dotted lines) from Eqs. (2)

and (3) agree well with the numerical solution (solid lines)to the original quantum Liouville equation involving one nuclear
spin-1/2. Second, the features0|∆→−∆ = −s0 and its weak dependence on the pumping rateW ∝ Ω2

R are obvious.
Figure 3 shows the stable [the peaks ofp(ss)(s)] and unstable [the dips ofp(ss)(s)] nuclear fields, the absorption spectra, and the

NS in the presence of the back action. First, the steady-state nuclear fields(ss) is bistable and antisymmetrics(ss)|∆→−∆ = −s(ss),
leading to hysteretic symmetric locking6,7 for ωN < 0, as shown in Fig. 3(b). ForωN > 0 [Fig. 3(d)], the absorption peak is
shifted to finite detunings [Fig. 3(e)], as observed recently20. Second, a maximal degree of NS∼ 15 appears in the “Q” branch
of Fig. 3(c).

So far we have neglected the detrimental effect of nuclear depolarization. For a direct comparison withthe experiment, we
include a uniform depolarization rateΓdep, which changesW j,±(∆̂) in Eq. (1) toW j,±(∆̂) + Γdep/2. It reducess(I)

0 and hence the
extent of the locking [Fig. 3(b)] by a factorΓp/(Γp + Γdep) and the NS by a factor∼ [Γp/(Γp + Γdep)]1/2. The typicalΓdep∼ 1 s−1

in the experiments6,7 is comparable to the typicalΓp ∼ 1 s−1 (inset of Fig. 2). Note thatΓp ∝ O(η4) depends strongly on the
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hole mixing coefficientη. For the InAs QD under consideration, a relatively strong depolarizationΓdep ∼ 10Γp would reduce
s(I)
0 from ∼ 40% to∼ 4% and the NS [Fig. 3(c)] from∼ 15 to∼ 5, in order-of-magnitude agreement with Xuet al.6. For an

InGaAs QD as used by Lattaet al.7, the extent∼ 30 ns−1 of the observed locking for trion corresponds toΓp ∼ Γdep. Similarly,
the symmetric locking for blue exciton7 can also be reproduced withΓp ∼ Γdep by identifying |0〉 with the vacuum state and|1〉
with the blue exciton state.

IV. CONCLUSIONS

In summary, we have provided a general mechanism for generating steady-state nuclear spin polarization through the non-
collinear hyperfine interaction between the hole spin and the nuclear spins. The antisymmetric behavior of the nuclear spin
polarization provides a possible solution to the puzzling observation of symmetric broadening of the absorption spectra in two
recent experiments6,7. This mechanism also drives a nonlinear feedback loop leading to efficient suppression of the nuclear spin
fluctuation and hence provides a new avenue for electron spincoherence time prolongation through the non-collinear HI,in
addition to the widely explored isotropic contact HI.

Finally, we mention two possible directions for future research. First, parameter-free fitting of existing experiments20 and
inclusion of other interactions and effects beyond our simple model, e.g., the nuclear quadrupole interaction21 and the “frequency
focusing” effect4,13 (which may be involved in the two-pump setup of Xuet al.6). Second, our theory can also be applied to the
electron spin interacting with the nuclear spins through the non-collinear HI20 (see Appendix A for details), e.g., in phosphorus
donor in silicon12 or conventional QDs with strong spin-orbit coupling in the conduction band.

This research was supported by NSF (PHY 0804114) and U. S. Army Research Office MURI award W911NF0910406. We
thank R. B. Liu, W. Yao, A. Högele, and A. Imamoglu for fruitful discussions. W. Y. thanks M. C. Zhang and Y. Wang for
helpful discussions.

Appendix A: Electron-nuclear and hole-nuclear interactions and nuclear spin-flip mechanisms

First we briefly summarize all identified HIs between the nuclear spins{Î j} and theS e = 1/2 electron spin̂Se or theS h = 3/2
hole spinŜh in a quantum dot (QD) grown along thez axis:

1. The electron spin̂Se is coupled to the nuclear spins{Î j} through the isotropic contact HI

V̂eN =
∑

j

a j,eŜe · Î j.

In an external magnetic field along thez axis,V̂eN can be decomposed into the sum of the Ising-like term

V̂ (Ising)
eN ≡

∑

j

a j,eŜ
z
e Îz

j

and the pair-wise flip-flop term

V̂ (flip-flop)
eN ≡

∑

j

a j,e(Ŝ x
e Îx

j + Ŝ y
e Îy

j ).

2. The dipolar HI between the nuclear spins and theS h = 3/2 hole spinŜh assumes a complicated form17 because the
envelope function of the heavy hole is different from that of the light hole. If this difference is neglected, then this
interaction becomes

V̂hN =
∑

j

a j,hŜh · Î j,

where|a j,h| ∼ 0.1|a j,e| is the interaction strength. It assumes the same form as the electron-nuclear contact HI. In an
external magnetic field along thez axis,V̂hN can be decomposed into the sum of the Ising-like term

V̂ (Ising)
hN ≡

∑

j

a j,hŜ z
h Îz

j

and the pair-wise flip-flop term

V̂ (flip-flop)
hN ≡

∑

j

a j,h(Ŝ
x
h Îx

j + Ŝ y
h Îy

j ).
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3. Both the electron-nuclear contact HI and the hole-nuclear dipolar HI could contribute to the non-collinear HI ˆσ11
∑

j a j,nd(Î+j +

Î−j ) as utilized in our mechanism. For the state|1〉 being a non-degenerate electron spin state, if its quantization axis

〈1|Ŝe|1〉 ≡ n deviates from thez axis (this could happen in the presence of spin-orbit coupling), thenV̂eN would give rise
to the non-collinear coupling

V̂ (non-collinear)
eN = |1〉 〈1|

∑

j

a j,e(nx Îx
j + ny Îy

j )

−→ |1〉 〈1|
∑

j

√

n2
x + n2

ya j,e

2
(Î+j + Î−j ),

where the last step is obtained by a nuclear spin rotation along thez axis (which does not change the dynamics of{Îz
j}

and hence the nuclear field). Similarly, for the state|1〉 being a non-degenerate heavy hole state, if its quantization
axis 〈1|Ŝh|1〉 deviates from thez axis (this usually happens due to the heavy-light hole mixing), thenV̂hN would also
give rise to a non-collinear couplinĝV (non-collinear)

hN . For example, due to heavy-light hole mixing, the lowest hole state
|1〉 ≈ |3/2,±3/2〉+O(η) |3/2,∓1/2〉+O(η2) |3/2,±1/2〉 is the mixture of the dominant heavy-hole components|3/2,±3/2〉
and a small amount of light-hole components|3/2,±1/2〉, whereη is the hole mixing coefficient18. In this case,̂VhN gives
rise to the non-collinear coupling6

V̂ (non-collinear)
hN = |1〉 〈1|

∑

j

O(η2)a j,h(Î+j + Î−j )

≡ |1〉 〈1|
∑

j

ã j,h(Î
+
j + Î−j ).

The strength ˜a j,h ≡ a j,hO(η2) of the hole-nuclear non-collinear HI depends strongly on the hole mixing coefficientη. Values
of |η| = 0.2 − 0.7 have been reported by a series of experimental measurements18,19 and an atomistic pseudo-potential
calculation22, which explained successfully the experimental fine structure of excitons in self-assembled InGaAs/GaAs
dots. The precise value ofη depends strongly on the geometry of the quantum dot. Hole mixing can be strong in the
presence of in-plane anisotropy and/or strain19, while it decreases significantly when the quantum dot becomes flatter23.
For a hole mixing|η| = 0.1, the non-collinear hole-nuclear HI ˜a j,h is weaker than the electron-nuclear contact HIa j,e by a
factor∼ 103. Finally we mention that in silicon, the electron-nuclear HI contains a large non-collinear term∝ Ŝ z

e(Î
+
j + Î−j )12.

Below we summarize existing nuclear spin-flip mechanisms based on the different parts of the electron-nuclear and hole-
nuclear interactions. For specificity we consider an external magnetic fieldB = 2− 3 T along thez axis, where the magnitudes
of the Zeeman splittingsωe, ωh, andωN of the electron, the hole, and the nuclear spins are|ωe| ∼ 100 ns−1, |ωh| ∼ 100 ns−1, and
|ωN | ∼ 0.1 ns−1, respectively.

1. Overhauser effect9. The nuclear spin is flipped by the electron spin throughV̂ (flip-flop)
eN , accompanied by an electron spin

flip. This process has a large energy mismatch|ωe| ∼ 100 ns−1, which is disspiated by a thermal bath. The nuclear spin flip
has a preferential direction determined by the deviation ofthe electron spin polarization away from thermal equilibrium.
Obviously,V̂ (flip-flop)

hN could induce a similar effect, but the strength is much weaker because|ah| ∼ 0.1 |ae|.

2. Reverse Overhauser effect10. The nuclear spin is flipped by the electron spin throughV̂ (flip-flop)
eN , accompanied by an electron

spin flip. This process has a large energy mismatch|ωe | ∼ 100 ns−1, which is compensated by an ac electric field. The
nuclear spin flip has a preferential direction determined bythe steady-state electron spin polarization. Obviously,V̂ (flip-flop)

hN
could also induce a similar effect, but the strength is much weaker.

3. The effect proposed by Xuet al.6 and subsequently elaborated by Laddet al.11. The nuclear spin is flipped by areal,
optically excited hole spin through the non-collinear HIV̂ (non-collinear)

hN without any accompanying hole spin flip. The
nuclear spin flip in both directions has the same, small energy mismatch|ωN | ∼ 0.1 ns−1 (so the nuclear spin flip has no
preferential direction), which is dissipated by spontaneous emission. For a hole mixingη ∼ 0.1, we have ˜ah ∼ 10−3ae

and|ωN | ∼ 10−3 |ωe|. Therefore, the strength∼ ã2
h/ω

2
N of this effect6,11 may be comparable with the strength∼ a2

e/ω
2
e of

the Overhauser effect.9 However, due to the absence of a preferential nuclear spin-flip direction, this mechanism cannot
establish any steady nuclear field to lock the resonance [i.e., Eq. (9) and subsequent equations in the supplementary
materials of Ref. 6 are ungrounded].
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In the present work, we focus on the nuclear spin dynamics driven by an optically excitedvirtual hole through the non-
collinear HIV̂ (non-collinear)

hN . We drop the flip-flop term̂V (flip-flop)
eN andV̂ (flip-flop)

hN , since the nuclear spin dynamics (e.g., Overhauser9

or reverse Overhauser10 effect) due to such interactions has already been intensively investigated and can be trivially incorporated
by introducing the corresponding Lindblad operators.

Appendix B: Derivation of Eq. (1)

In the frame rotating with the pump frequencyω, the Hamiltonian is

Ĥ = −(∆ − ĥ)σ̂00 +
ΩR

2
(σ̂10 + σ̂01) +

∑

j

ω j,N Îz
j (B1)

+ σ̂11

∑

j

a j,nd(Î+j + Î−j ),

where∆ ≡ ω0 − ω is the nominal pump detuning. The evolution of the density matrix ρ̂ of the whole system is governed by the
master equation

ρ̇ = −i[Ĥ, ρ̂] + ρ̇damp, (B2)

where the Lindblad dissipative part

ρ̇damp= −γ1

(

σ̂11ρ̂ + ρ̂σ̂11

2
− σ̂01ρ̂σ̂10

)

− 2γϕ2

(

σ̂11ρ̂ + ρ̂σ̂11

2
− σ̂11ρ̂σ̂11

)

includes the spontaneous emission|1〉 → |0〉 with rateγ1 and hole pure dephasing with rateγϕ2. The total hole dephasing rate is
γ2 ≡ γ1/2+ γ

ϕ

2 ≥ γ1/2.
For clarity we introduce the nuclear spin basis|m〉 ≡ ⊗ j|m j〉 j, where|m j〉 j is the Zeeman eigenstate of thejth nuclear spin,

Îz
j |m j〉 j = m j|m j〉 j, wherem j = −I,−I + 1, · · · , I. In the product basis{|0,m〉 , |1,m〉} of the electron and hole states{|0〉 , |1〉}

and the nuclear spin states{|m〉}, there are seven relevant density matrix elements:ρ0m,0m, ρ1m,1m, ρ1m,0m, ρ0m+1j ,0m, ρ1m+1j ,1m,
ρ1m+1j ,0m, andρ0m+1j ,1m, where|m + 1j〉 ≡ |m j + 1〉 ⊗k, j |mk〉. Their equations of motion follow directly from Eq. (B2). In
particular, an arbitrary elementPm,m = ρ0m,0m + ρ1m,1m of the diagonal part̂P(t) of the nuclear spin density matrix obeys

Ṗm,m = 2
∑

j

a j,nd

[

ηm j Im ρ1m+1j ,1m − (m→ m − 1j)
]

, (B3)

whereηm =
√

(I − m)(I + m + 1). The dynamics of̂P(t) or equivalently its matrix elements{Pm′ ,m′ (t)} is singled out if we can
expressρ1m+1j ,1m as a function of{Pm′ ,m′ (t)}. This is achieved through the adiabatic approximation, which is justified by the
very long time scale for the dynamics ofP̂(t) (characterized by a time scaleT N

1 ∼ 1 s6,7) compared with the much shorter time
scales of other density matrix elements (includingρ1m+1j ,1m):

• The dephasing dynamics (characterized by a time scale 1/γ2 ∼ 1 µs− 1 ns) of the electron and hole coherences〈1|ρ̂|0〉
and〈0|ρ̂|1〉, includingρ1m,0m, ρ1m+1 j ,0m, andρ0m+1 j ,1m.

• The relaxation dynamics (characterized by a time scale 1/γ1 ∼ 1 ms− 1 ns) of the electron and hole population〈0|ρ̂|0〉 −
〈1|ρ̂|1〉, includingρ0m+1 j ,0m − ρ1m+1j ,1m andρ0m,0m − ρ1m,1m.

• The dephasing dynamics (characterized by a time scaleT N
2 ∼ 1 ms24) of the first-order off-diagonal coherences

Treh〈m + 1j|ρ̂|m〉 = ρ0m+1 j ,0m + ρ1m+1 j,1m due to the fluctuation of the electron spin (through the electron-nuclear in-
teraction) or the fluctuation of surrounding nuclear spins (through the nuclear-nuclear interaction).

Therefore, we can identify{Pm′ ,m′ (t)} as slow variables and other density matrix elements as fast variables and then apply
the adiabatic approximation, which assumes that the responses of the fast variables to the slow variables are instantaneous [this
introduces an error of the orderO(Ṗ) = O(a2

nd)]:

• Step 1. In the equations of motion of the fast variables, the slow variables{Pm′ ,m′ (t)} are regarded as constants and the
steady-state responsesρ(sr)

1m,0m({Pm′ ,m′(t)}), ρ(sr)
1m+1j ,0m({Pm′ ,m′ (t)}), · · · of the fast variables as functions of{Pm′ ,m′(t)} are

obtained by setting their derivatives to zero.
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• Step 2. In the equation of motion Eq. (B3) of the slow variables {Pm′ ,m′}, we replace the fast variableρ1m+1j ,1m(t) by

its steady-state responseρ(sr)
1m+1j ,1m({Pm′ ,m′ (t)}), so that Eq. (B3) becomes an effective equation of motion for the slow

variables{Pm′ ,m′ }:

Ṗm,m = 2
∑

j

a j,nd

[

ηm j Im ρ(sr)
1m+1j ,1m({Pm′,m′ (t)}) − (m→ m − 1j)

]

. (B4)

Following the above prescription, under the typical condition |ωN | ≫ |ad|, straightforward calculation yields Eq. (1). When
the back action is dropped, we obtain Eqs. (2) and (3), withc1 ≡ 1 + [γ1/(2γ2)] f + W/γ1, f ≡ (γ2

2 − ∆
2)/(γ2

2 + ∆
2), c0 ≡

1/2+ γ2/γ1 + f +W/γ1, andF ≡ [γ1/(2γ2)](c0/c1) being always positive sincec0 andc1 are always positive.

Appendix C: Derivation of Eq. (4)

This is achieved straightforwardly by substituting Eq. (1)into the equation of motion ˙p(s, t) = Tr δ(ŝ − s)Ṗ(t). The result is

∂

∂t
p(s, t) = −NI[W+(∆ − hmaxs) Tr δ(ŝ − s)(K̂ − s)P̂(t)

−W+(∆ − hmax(s − a)) Tr(K̂ − (s − a))δ(ŝ − (s − a))P̂(t)]

− NI[W−(∆ − hmaxs) Tr δ(ŝ − s)(K̂ + s)P̂(t)

−W−(∆ − hmax(s + a)) Tr(K̂ + s + a)δ(ŝ − (s + a))P̂(t)],

wherea ≡ 1/(NI) is the change of ˆs by each nuclear spin flip, and̂K ≡ 1/(NI)
∑

j(Î
2
j,x + Î2

j,y). For I = 1/2, K̂ reduces to unity.

For I ≥ 1/2 but weak nuclear polarization|s(I)
0 | ≪ 1, the transverse fluctuation of each individual nuclear spin is not significantly

influenced by the nuclear spin polarization, so we can approximateK̂ by a constant 2(I + 1)/3. In either case, we obtain a closed
equation forp(s, t):

∂

∂t
p(s, t) = −[G+(s)p(s, t) −G+(s − a)p(s − a, t)]

− [G−(s)p(s, t) −G−(s + a)p(s + a, t)],

whereG±(s) ≡ NIW±(∆ − hmaxs)[2(I + 1)/3∓ s]. For N ≫ 1 and hencea ≪ 1, we expand the above equation up to the second
order of the small quantitya and obtain the Fokker-Planck equation

∂

∂t
p(s, t) =

∂

∂s

[

∂

∂s
D(s)p(s, t) − v(s)p(s, t)

]

,

whereD(s) = (a2/2)[G+(s) + G−(s)] is the diffusion coefficient andv(s) = a[G+(s) − G−(s)] is the drift coefficient. Note that
D(s) = O(a2) is much smaller thanv(s) and∂D(s)/∂s, which are of the orderO(a). The steady-state solution is

p(ss)(s) =
D(s∗)
D(s)

p(ss)(s∗) exp

(
∫ s

s∗

v(s′)
D(s′)

ds′
)

,

wheres∗ is an arbitrary constant. Herev(s) vanishes at each stable states(ss)
α , so we expandv(s) arounds(ss)

α to the first order
v(s) ≈ (dv(s)/ds)s=s(ss)

α
(s − s(ss)

α ) and obtain a Gaussian distribution [the influence of the factor D(s(ss)
α )/D(s) on the shape of the

distribution is negligible for our case]

p(ss)(s) ≈ D(s(ss)
α )

D(s)
p(ss)((ss)

α ) exp













− (s − s(ss)
α )2

2σ2
α













,

with a standard deviation

σα =

√

√

√

D(s(ss)
α )

∣

∣

∣

∣

(dv(s)/ds)s=s(ss)
α

∣

∣

∣

∣

.
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For I = 1/2, the above equation coincides with previous theories9,10,25. By substituting the explicit expressions ofD(s) andv(s)
into the above equation, we obtain Eq. (4).
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