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We present a theory offiecient suppression of the collective nuclear spin fluctumtidiich prolongs the
electron spin coherence time through the non-collineaetine interaction between the nuclear spins and the
hole spin. This provides a general paradigm to combat deenbe by direct control of environmental noise,
and a possible solution to the puzzling observation of sytrimbroadening of the absorption spectra in two
recent experiments [X. Xat al., Nature459 1105 (2009) and C. Latet al., Nature Phys5, 758 (2009)].
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I.  INTRODUCTION

Electron spins in semiconductor quantum dots (QDs) are jgingicandidates as solid-state quantum®bi# critical ob-
stacle is the short electron spin coherence time due to tbeifiting collective nuclear field from the nuclear spinshaf host
lattice?. Combating electron spin decoherence is of paramount itapoe for quantum information. For this purpose, two
major approaches are under rapid development. One aimgatipleng a general qubit from the environments by frequent!
applying additional pulses on the qubifThe other aims at directly prolonging the electron spinezehce time by stabilizing,
i.e., suppressing the fluctuation of, the nuclear field throa nonlinear feedback loop driven by a steady-state nuiiddaé. The
latter approach, referred to as nuclear stabilization (K& the merit that the prolongation of the electron spirecece time
persists for a long time, so that NS can be temporally sepaifedm subsequent qubit operations. Intensive resediatichave
led to successful NS in QD ensemUl@nd suppression of the fluctuation of the nuclear fieftedénce between two coupled
QDs.

Recently, three groups reported significant NS in single QDs. Xtial.® observed prolongation of electron spin coherence
time by NS upon optical pumping of trion in the Voigt geomethattaet al.” observed NS upon optical pumping of trion
and blue exciton in the Faraday geometry. Vaikal.? theoretically deduced NS upon microwave pumping of ele@csin
resonance. A key observation in these experiments is thetemeince (i.e., locking) of resonant absorption over a wadge of
pump frequency away from resonance. This locking behavisesfrom the shift of the electron energy level froffyiesonance
to resonance by the steady-state nuclear field that driee$ A striking observation by both Xai al. and Lattaet al. is that
the locking occurs nearly symmetrically on both sides ofrtdsnance, in sharp contrast to the observation by &fiak, where
the locking only occurs on the red side. This symmetric Iogkieveals that the steady-state nuclear field is antisynmaetross
the resonance. However, this feature cannot be produceldebywb cornerstone NS mechanisms: the Overhauseomtite
reverse Overhauseffect =2, both of which are based on the flip of nuclear spins by thetrda¢hrough the isotropic contact
hyperfine interaction (HI1). Xt al.® gave a very inspiring clue by attributing their observatiothe flip of nuclear spins by the
hole (a vacancy in the valence band generated by optical mgyirough the non-collinear dipolar HI*2 but the mechanism
proposed there flips the nuclear spins without a prefedaditiection and hence cannot produce any steady-stateanfaéd to
lock the resonance. To date, the symmetric locking remairepan problem.

In this paper, we provide a general mechanism capable dflesttang the desired antisymmetric nuclear field and hehee t
symmetric locking. The key process of this mechanism is ipeoflthe nuclear spins through their non-collinear HI witie t
hole excited by nonresonant pumping (instead of resonanppef-** or through the isotropic contact HI with the ground state
electron under resonant pumpint). This process has a preferential direction giving risertcaatisymmetric steady-state
nuclear field, which in turn drives a nonlinear feedback Itegrling to #icient NS. This provides a new avenue for electron
spin coherence time prolongation through the non-colliiain addition to the widely explored isotropic contact.Hl

II. GENERAL THEORY

Our model consists of many QD nuclear spins coupled to atrelespin staté0) (with energy zero) and a hole spin stéite
(with energywo) under nonresonant pumping with detuniige wo — w [Fig. 1(a)]. The excited hole staf&) is coupled to the
nuclear spins through the non-collineardl; 3’ a,-m(lj+ + Ij‘) (i = 1)) (i), which flips the nuclear spins without changing

the hole spin state. The ground electron si@tés coupled to the nuclear fiefl= 2 a,-,dIAjZ to be stabilized through the diagonal

part&ooﬁ of the contact HI. An external magnetic field gives rise torthelear Zeeman terrp; a)j’NIAjZ. The total density matrix
p(t) obeys the quantum Liouville equation, with the dephasind)(total ratey,) and spontaneous emissidn — |0) (ratey;)
incorporated in the Lindblad form. Finally, we emphasizat thur theory is equally applicable to the non-collinear Eivieen
the electron spin and the nuclear spins (see Appendix A fiildg

Before going into details, we outline the physical pictuf¢he@ NS driven by our mechanism. It is a two-step feedback:loo
the induction of a steady-state nuclear field by the holeutinoour mechanism and the back action of this nuclear field on
the electron. First, through the non-collinear Hhigtual hole generated by the non-resonant pumping flips the nusieas,
leading to antisymmetric steady-state nuclear field. Seicthwough the mteractloorooh the nuclear field shifts the electron
energy byh and hence changing the detuning frarfFig. 1(a)] toA = A — h. The antisymmetric steady-state nuclear field in the
first step enables the feedback loop to produce the desinenhsyric locking and gicient NS, i.e., suppression of the fluctuation
of h. All these information is contained in the diagonal ga(t) of the nuclear spin density matrlxe];p(t)

The dynamics of(t), which occurs on a very long time scale compared with otlagiables, is derived from the quantum
Liouville equation ofo{t) by applying the adiabatic approximatiSnUp to O(aﬁd), we obtain (see Appendix B)

p = -Z[|;,|J+w,+(A)P] Z[|J,|]w, (AP, (1)
j

wherer,+(A) [Wj!_(A)] is the rate of the flip of thgth nuclear spin that increases (decreaﬁfelsy one. They are obtained from
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FIG. 1. (color online). (a) Electron and hole spin sta@sand|1) coupled to a typical nuclear spin2lby optical pumping. (b) Down-to-up
nuclear spin flip channel (solid arrow followed by wavy arjdar A > 0.

the steady-state hole fluctuatiaﬁnd f_ °:o dt eFlwint(G4(t)611) in the absence of nuclear spins by replachgith A. Equation

(1) is the starting point of our subsequent discussionsaritlze easily understood from the fluctuation-dissipatideatica'*:
the hole fluctuatiod11(t)d11) drives the irreversible nuclear spin flip leading to a stesidye nuclear field, which in turn acts
back on the electron by replaciagwith A.

To keep the exposition simple, we consider uniform couliagi = a3 andajng = ang to identical nucleil; = | and
WjN = WN. ThenW,-,i(A) become$Ni(A) and the nuclear fielll = hmayd, Wherehmax = Nagl, N is the number of QD nuclei,
ands'= (1/N) Zﬂ-\‘zl I?/I. Hereafter we also refer ®= h/hmax as the nuclear field.

First we demonstrate the desired antisymmetric behavitireofteady-state nuclear field. To avoid complication, vepdne
back action, saV.(A) becomesV. = W.(A). In this case, Eq. (1) shows that on the coarse-grainedsoale ofP(t), the faster
nuclear spin decoherence causes the dynamicgfefeint nuclear spins to be independent, andffises to consider only one
nuclear spinl. For a nuclear spin/2 with two Zeeman sublevel$) and||), Eqg. (1) reduces t®y; = W,P;; — W_P;;. The
nuclear fields = Py — Py, obeyss = -T'p(s— ), i.€., afinite steady-state nuclear fied= (W, —W_)/(W, + W_) is established
within a time scale iI'p, wherel', = W, + W_. For a nucleus with spih > 1/2, Eq. (1) givess'= —T'p(S— sg)) for the nuclear

fields= (fz(t))/l , wheresg) ~ 2(l + 1)s/3 for |s{)')| < 1. Straightforward evaluation @611(t)o11) gives
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up to leading order ofiun|/y12, WhereF andc; are positiveO(1) quantities (see Appendix B) aMil = 21(Qr/2)°L0?)(A) is
the pumping rate, with 2 (A) = (y,/n)/(A% + yg) being the energy conserving delta function broadened kg dephasing.
s displays two distinguishing features: the antisymmetabdwviorsa-» = —S and the weak dependence on the pumping
rateW (sinceF is weakly dependent ow). This weak dependence is venffdrent from the two existing NS mechanisms: the
Overhauserfecf |s| is maximal for saturated pumpingy > y; and the reverse Overhausdlieet® |s| is maximal for weak
pumpingW < v;.

The above distinguishing features of our mechanism can plaieedqualitatively as the competition between tveoherent

. 11, 1) 2y |1, 1) (up-to-down channel).

®3)

nuclear spin-flip channel6, |) QRE;M 11, 1) i |1, T) (down-to-up channel) an@, 1) ey
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Each channel consists of two steps: the generatiorvotaal hole by the non-resonant pumping followed by the nuclear spi
flip by this virtual hole through the non-collinear HI. Foretidown-to-up channel [Fig. 1(b)], the first step (solid arydas
an energy mismatch from the detunipg, but the second step (wavy arrow) is nontrivial: the holesnnitial statell, |) is a
virtual hole with energyw (instead of aeal hole with energywg), while the hole in its final statd, T) is areal hole with energy
wo. Therefore, the energy mismatch of this step (i.e., tffedince between the final state enatgy+ wy /2 and the initial state
energyw — wn/2) is|wn + Al. Similarly, for the up-to-down channel, the energy misrhasdA| in the first step an@luy — Al in
the second step. Theftiirent energy mismatchgsy + Al (instead of the pumpirng'®) sets aA-dependent preferential direction
for the nuclear spin flip. This is the origin of the antisymmebehaviorsy|a.-4 = —S and the weak dependencesfon the
pumping rateW. For|wn| < y12 and|A] < y,, the small energy mismatchgs, wn £ Al < y, of both channels are easily
compensated by the strong dephasing (with fajeso the nuclear spin flip is nearly resonant, in contrashéodf-resonant
Overhauser fecf. This resonant nature makes the strength of our mechanistparable with the detrimental nuclear spin
depolarization even if the non-collinear Hl is wéak

The physics of our mechanism depicted abovEeds qualitatively from previous theorfest. First, the nuclear spin flip is
not accompanied by any change of the hole state, in contrabetpair-wise electron-nuclear spin flip-floff. Second, the
nuclear spin is flipped by drtual hole in acoherent channel (resembling co-tunnelit®y This is the origin ofsolam-a = —So
responsible for symmetric locking andfieient NS. By contrast, in aimcoherent channel (resembling sequential tunneli)g
the nuclear spin flip by eeal holé®! has no preferential directiéh! to lock the resonance, while the nuclear spin flip bngal
electrof10 hasA-independent preferential direction leading to unidimal locking®. Third, the nuclear Zeeman splitting
wn, considered as negligible in all previous thedtigs plays a critical role in our mechanism. .

Now we analyze the entire feedback loop by including the kmatlon. We are interested in the nuclear fisle h/hyax in
the steady-state: its average valif) = hs9/hy,, is responsible for the symmetric locking and its fluctuatioguantifies the
NS. This information is contained in the distribution fuoctp(s, t) = TrP(t)6(s— §) of & Using Eqg. (1), the equation of motion
of p(s 1) is derived and solved straightforwardly (see Appendix T)e steady-state solutign®sX's) shows one or more sharp
Gaussian peaks, each of which corresponds to a stable ngpieastate: the positios{fs) (standard deviation,,) of the ath
peak corresponds to the average nuclear field (nuclear fiedthifition) in thexth stable state. Fdsg')| < lorl =1/2,we
obtain the analytical result for the fluctuation in i stable state:

1 - 3(2)| (ss)
A—A-h
Oq = o-qu Sy

1+ Ninax(d)) /AA) o9

(4)

wherea®d = [(I + 1)/(3NI)]¥2 is the thermal equilibrium fluctuation. Equation (4) shohattthe NS driven by our mechanism

is efficient sincesy and hencesg) ~ [2(I +1)/3]s are very sensitive ta on the resonanck = 0 [see Eq. (2)], where the strength
I', of our mechanism is maximal [see Eq. (3)].

Ill. APPLICATION TO EXPERIMENTS

Now we apply our model to describe the single-pump experiroEXu et al.® and the trion pump experiment of Latal.”,
which correspond t{0) being the spin-up electron state dthgbeing the spin-up trion state (consisting of two inert etaes in
a spin singlet and a spin-up hole). In this case, the diaguara}; aj,esgsz of the electron-nuclear contact HI gives the diagonal
couplingooh with a4 = aje/2. The non-collinear hole-nuclear dipolar B, O(nz)aj,héﬁ(fjff + fj‘)ﬁ'll gives the non-collinear
HI with ajnq = O(nz)a%h. For specificity, we consider a typical InAs QD under a magrfetld of 2— 3 T and use the following
realistic parameters® 17 (with # = 1 understood) unless specifigd:= 10*, 1 = 9/2,Qr = y1 = y2 = 1 ns?!, wy = 0.2 ns’?,
ae =102 ns?, a, = 103 ns’t, andayg = 0.04ay (based on experimentally reported hole miximg= 0.2 — 0.718).

Figure 2 showss andI’y, (inset) in the absence of the back action. First, our araytesults (dotted lines) from Egs. (2)
and (3) agree well with the numerical solution (solid lines}he original quantum Liouville equation involving oneahear
spin-%/2. Second, the featug|a-» = —Sy and its weak dependence on the pumping Vete Q% are obvious.

Figure 3 shows the stable [the peak$5fX(s)] and unstable [the dips q*X(s)] nuclear fields, the absorption spectra, and the
NS in the presence of the back action. First, the steadg-gtatlear fields®® is bistable and antisymmetrgss),_,_, = —s9)
leading to hysteretic symmetric lockifhigfor wy < 0, as shown in Fig. 3(b). Faby > 0 [Fig. 3(d)], the absorption peak is
shifted to finite detunings [Fig. 3(e)], as observed regéhtiSecond, a maximal degree of NS15 appears in the “Q” branch
of Fig. 3(c).

So far we have neglected the detriment@tet of nuclear depolarization. For a direct comparison withexperiment, we
include a uniform depolarization raf@ep, which changewj,i(ﬁ) in Eqg. (1) toWj,i(A) + Tyep/2. It reducessg) and hence the
extent of the locking [Fig. 3(b)] by a fact®k,/(I', + Tgep) and the NS by a factor [['p/(T'p + Taep)] /2. The typicallgep~ 1 s°
in the experimenfs’ is comparable to the typicdl, ~ 1 s (inset of Fig. 2). Note thaF, « O(;*) depends strongly on the
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FIG. 2. (color online). Comparison of our analytical resyfiotted lines) foig, andT’, (inset) with the numerical solution to the quantum
Liouville equation (solid lines) involving one nuclear sgl/2.
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FIG. 3. (color online). (a), (d): Stable (black lines) andtable (grey lines) nuclear fiehf) = hy,,s%. (b),(e): Absorption spectra obtained
by sweepingA in different directions (indicated by the arrows). The sharp Liaran peaks at = 0 are absorption spectra in the absence of

the nuclei. (c), (f): NS, /0®%in stable states (N and Q branches).



hole mixing codficientr. For the InAs QD under consideration, a relatively strongadarizationI'gep ~ 10, would reduce
sg) from ~ 40% to~ 4% and the NS [Fig. 3(c)] from 15 to~ 5, in order-of-magnitude agreement with Xual.6. For an
InGaAs QD as used by Lat& al.”, the extent- 30 ns of the observed locking for trion corresponddip~ I'gep Similarly,
the symmetric locking for blue excitérran also be reproduced Wiy ~ T'gep by identifying|0) with the vacuum state anjt)

with the blue exciton state.

IV. CONCLUSIONS

In summary, we have provided a general mechanism for géngrsteady-state nuclear spin polarization through the non
collinear hyperfine interaction between the hole spin amdrtiraclear spins. The antisymmetric behavior of the nuclpar s
polarization provides a possible solution to the puzzlibgeyvation of symmetric broadening of the absorption specttwo
recent experiment€. This mechanism also drives a nonlinear feedback loophegdi eficient suppression of the nuclear spin
fluctuation and hence provides a new avenue for electroncgdierence time prolongation through the non-collinearikil,
addition to the widely explored isotropic contact HI.

Finally, we mention two possible directions for future r@sd. First, parameter-free fitting of existing experins&hand
inclusion of other interactions anéfects beyond our simple model, e.g., the nuclear quadrupigesictiod* and the “frequency
focusing” efect"' (which may be involved in the two-pump setup of ¥ual.?). Second, our theory can also be applied to the
electron spin interacting with the nuclear spins throughrtbn-collinear H° (see Appendix A for details), e.g., in phosphorus
donor in silicort? or conventional QDs with strong spin-orbit coupling in tleduction band.

This research was supported by NSF (PHY 0804114) and U. Sy Research @ice MURI award W911NF0910406. We
thank R. B. Liu, W. Yao, A. Hogele, and A. Imamoglu for fruitfdiscussions. W. Y. thanks M. C. Zhang and Y. Wang for
helpful discussions.

Appendix A: Electron-nuclear and hole-nuclear interactions and nuclear spin-flip mechanisms

First we briefly summarize all identified HIs between the Baclspinsfj} and theS, = 1/2 electron spirfSe ortheSy = 3/2
hole spinS, in a quantum dot (QD) grown along taexis:

1. The electron spif is coupled to the nuclear Spil{'fﬁ} through the isotropic contact Hl
\7eN = Z aj,e,\% . T].
j

In an external magnetic field along thaxis, Vey can be decomposed into the sum of the Ising-like term
~ I 1 _ ~ /2
VA" = e8]
i

and the pair-wise flip-flop term
VAR = Z aje(S5T + 8.
i

2. The dipolar HI between the nuclear spins and $he= 3/2 hole spinS, assumes a complicated fotfrbecause the
envelope function of the heavy hole isffdrent from that of the light hole. If this fierence is neglected, then this
interaction becomes

Vin = Z aj,héh : fj,
i

wherelajn| ~ 0.1]a;¢l is the interaction strength. It assumes the same form asléle&r@n-nuclear contact HI. In an
external magnetic field along tlzeaxis, Viy can be decomposed into the sum of the Ising-like term

~(Ising) _ . &zyz
Vin'? = D ainSil;
i
and the pair-wise flip-flop term

o (flip-fi AX(X | &
U = " an(Sil + S,
]
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3. Boththe electron-nuclear contact HI and the hole-nuclgmlar HI could contribute to the non-collinear b1 aj,nd(IAJ*+
IA]T) as utilized in our mechanism. For the stéitg being a non-degenerate electron spin state, if its quditizaxis

(1)&J1) = n deviates from the axis (this could happen in the presence of spin-orbit cogplithenVey would give rise
to the non-collinear coupling

\"/érlllon—collinear): 1) (1 Z aj,e(nxr}( + nypj/)
i

In2 25.
ng + nya,,e R

— DAY (i + 1),
j

where the last step is obtained by a nuclear spin rotatiomgatioez axis (which does not change the dynamics’,l??)‘
and hence the nuclear field). Similarly, for the stifebeing a non-degenerate heavy hole state, if its quantizatio
axis (1/Sy/1) deviates from the axis (this usually happens due to the heavy-light hole ngiithenVyy would also
give rise to a non-collinear coupling*"**""**) For example, due to heavy-light hole mixing, the lowesehstate

11y ~ 3/2, £3/2)+O(n) 13/2, ¥1/2)+ O(n?) |3/2, £1/2) is the mixture of the dominant heavy-hole compon¢3)a, +3/2)
and a small amount of light-hole componed2, +1/2), wherey, is the hole mixing coficient8. In this caseV gives
rise to the non-collinear couplifig

Voreotinea - 12) 1 " O@P)ayn(f; + 1)

J
= 1)@ Y (i + 7).
j

The strengtiaj}, = a;,O(17%) of the hole-nuclear non-collinear HI depends stronglyrarttole mixing cofficientr. Values
of [yl = 0.2 - 0.7 have been reported by a series of experimental measurgfiérand an atomistic pseudo-potential
calculatiorf?, which explained successfully the experimental fine stmecof excitons in self-assembled InGdGaAs
dots. The precise value gfdepends strongly on the geometry of the quantum dot. Holéngizan be strong in the
presence of in-plane anisotropy amdstrairt®, while it decreases significantly when the quantum dot bexsoftattef>.
For a hole mixingy| = 0.1, the non-collinear hole-nuclear ld|'is weaker than the electron-nuclear contacakbi by a
factor~ 10%. Finally we mention that in silicon, the electron-nucleachntains a large non-collinear teméé(f;#;)lz,

Below we summarize existing nuclear spin-flip mechanisnsetan the dferent parts of the electron-nuclear and hole-
nuclear interactions. For specificity we consider an exlemrmagnetic fieldB = 2 — 3 T along thez axis, where the magnitudes
of the Zeeman splittingse, wn, andwy of the electron, the hole, and the nuclear spingage~ 100 ns?, |wp| ~ 100 ns?, and
lwn| ~ 0.1 nst, respectively.

1. Overhauserféecf. The nuclear spin is flipped by the electron spin throl ip-flop), accompanied by an electron spin
flip. This process has a large energy mismadgh~ 100 ns?, which is disspiated by a thermal bath. The nuclear spin flip
has a preferential direction determined by the deviatiothefelectron spin polarization away from thermal equitibni

Obviously,\?ﬁﬂ“fmp) could induce a similarféect, but the strength is much weaker becdage- 0.1 |ag|.

2. Reverse Overhausefect?. The nuclear spin is flipped by the electron spin throy frflop), accompanied by an electron
spin flip. This process has a large energy misméatgh~ 100 ns?, which is compensated by an ac electric field. The
nuclear spin flip has a preferential direction determinethleysteady-state electron spin polarization. Obvio&é&'ﬂom
could also induce a similaiffiect, but the strength is much weaker.

3. The dfect proposed by Xt al.® and subsequently elaborated by Ladchl.!. The nuclear spin is flipped by raal,
optically excited hole spin through the non-collinear ‘Q‘ﬂ‘\f’“'co"'”ean without any accompanying hole spin flip. The
nuclear spin flip in both directions has the same, small gneigmatchiwy| ~ 0.1 ns* (so the nuclear spin flip has no
preferential direction), which is dissipated by spontarssemission. For a hole mixing ~ 0.1, we havea; ~ 10 3a,
and|wn| ~ 1073 |we|. Therefore, the strength &2/w3, of this efecf'! may be comparable with the strengtte/w3 of
the Overhauserfiect® However, due to the absence of a preferential nuclear spimkfiection, this mechanism cannot
establish any steady nuclear field to lock the resonance Eege (9) and subsequent equations in the supplementary
materials of Ref. 6 are ungrounded].
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In the present work, we focus on the nuclear spin dynamicgedrby an optically excitedirtual hole through the non-
collinear HIVQ°™eo"e@) \we drop the flip-flop ternv {iPop) andv,gmp'f'Op), since the nuclear spin dynamics (e.g., Overh&user

or reverse Overhauséeffect) due to such interactions has already been intensivedgtigated and can be trivially incorporated
by introducing the corresponding Lindblad operators.

Appendix B: Derivation of Eq. (1)
In the frame rotating with the pump frequeneoythe Hamiltonian is

- o\ A Qr . n
H:_(A_h)0—00+7(0—10+0—01)+zj:wj’N|,\1'2 (Bl)

+011 Z ajnd(l +17),
j

whereA = wg — w is the nominal pump detuning. The evolution of the densityrix@ of the whole system is governed by the
master equation

p= _i[l:i’ﬁ] + Pdamp (B2)

where the Lindblad dissipative part

includes the spontaneous emissjbn— |0) with ratey; and hole pure dephasing with rat& The total hole dephasing rate is
Y2 =71/2+75 2 y1/2.

For clarity we introduce the nuclear spin basie = ®;|m;);, where|m;); is the Zeeman eigenstate of tft@ nuclear spin,
I?lmj>j = m;j|m;);, wherem; = —I, -1 + 1,---, 1. In the product basig0, m), |1, m)} of the electron and hole statés), |1)}
and the nuclear spin statée)}, there are seven relevant density matrix elemeftsom, ©1m.1m, £1m.om, Lom+1;.0m» P1m+1;,1m»
P1m+1;,0m, @Ndpom+1;1m, Wherelm + 1j) = |m; + 1) ®yj [my). Their equations of motion follow directly from Eq. (B2). In
particular, an arbitrary elemeR¥ m = pomom + p1m1m Of the diagonal par(t) of the nuclear spin density matrix obeys

lf’m,m = ZZ Ajnd [Umi |mplm+lj,lm -(M-m- 1])] > (B3)
i

wheren, = VT —m)(T + m+ 1). The dynamics oP(t) or equivalently its matrix element® . (t)} is singled out if we can
expresim+1,.1m as a function of Py m (t)}. This is achieved through the adiabatic approximationcihs justified by the
very long time scale for the dynamics Bft) (characterized by a time scaTé\‘ ~ 1 &7 compared with the much shorter time
scales of other density matrix elements (includimg. 1;.1m):

e The dephasing dynamics (characterized by a time sgale 4 1 us — 1 ns) of the electron and hole coheren¢Hg|0)
and(0|p|1), includingpim om; P1m+1;.0m; @Ndoom+1;.1m-

e The relaxation dynamics (characterized by a time scaje £ 1 ms— 1 ns) of the electron and hole populatiip|0) —
(1jpl1), includingpom:+1;.0m — P1m+1;.1m @Ndpom.om — P1m,1m-

e The dephasing dynamics (characterized by a time s'f@!le~ 1 mg% of the first-order &-diagonal coherences
Tren{m + 1j|pIM) = pom+1;0m + p1m+1,1m due to the fluctuation of the electron spin (through the edeehuclear in-
teraction) or the fluctuation of surrounding nuclear sptheough the nuclear-nuclear interaction).

Therefore, we can identifiPy v (t)} as slow variables and other density matrix elements as &asibles and then apply
the adiabatic approximation, which assumes that the regsoot the fast variables to the slow variables are instantssi[this
introduces an error of the ord&(P) = O(aﬁd)]:

e Step 1. In the equations of motion of the fast variables, v sariables{Pn, v (t)} are regarded as constants and the
steady-state responspg;)pm({Pmr,mr(t)}), ot ({Pm v ()}), - - - of the fast variables as functions (®y ()} are

1m+1;,0m
obtained by setting their derivatives to zero.
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e Step 2. In the equation of motion Eq. (B3) of the slow variajié. v}, we replace the fast variabj@m,1, 1m(t) by
its steady-state responpﬁgﬂjylm({ Prv v (1)}), so that Eq. (B3) becomes affextive equation of motion for the slow
variablegPry m }:

Pron = 2)” @i 11 1M P71, 1 (Prv (D) = (m = m = 1) (B4)
J

Following the above prescription, under the typical caoditwy| > |a4|, straightforward calculation yields Eqg. (1). When
the back action is dropped, we obtain Egs. (2) and (3), @it 1 + [y1/(2y2)]f + W/y1, f = (y3 — A?)/(y3 + A?), ¢o =
1/2+ vyo/y1 + f + W/yg, andF = [y1/(2y2)](co/c1) being always positive sinag andc; are always positive.

Appendix C: Derivation of Eq. (4)
This is achieved straightforwardly by substituting Eq. i(tp the equation of motiop(s, t) = Tr§(5— s)P(t). The result is

9 p(S) = ~NIWL (A ~ P9 Tr5(8- 9(K - 9P(0)
— W, (A =~ hinax(s — @) Tr(K — (s - @))6(5 - (s - @) P()]
— NI[WL(A — hmaxd) Tr6(3— 9)(K + 9)P(t)
—W_(A — hmax(s+ @) Tr(K + s+ a)6(5 - (s+ a))P(t)],
wherea = 1/(NI) is the change o by each nuclear spin flip, aril = 1/(NI) Zj(fix + IAiy). Forl = 1/2, K reduces to unity.

Forl > 1/2 but weak nuclear poIarizati¢s§)')| < 1, the transverse fluctuation of each individual nuclear &pnot significantly

influenced by the nuclear spin polarization, so we can apprateK by a constant 2(+ 1)/3. In either case, we obtain a closed
equation fomp(s, t):

2 p(s) = -[G.(9p(s 1) ~ G.(s- ap(s—a.0)
_[G(9P(s 1) ~ G_(s+ A)p(s+a b,

whereG.(s) = NIW.(A — hmax9)[2(l + 1)/3 F 5. For N > 1 and henca < 1, we expand the above equation up to the second
order of the small quantitst and obtain the Fokker-Planck equation

0 0
ap(&t) = 3s

d
7D(OP(S ) - U9p(s t)} ,

whereD(s) = (a?/2)[G.(s) + G_(9)] is the difusion codficient andv(s) = a[G, () — G_(9)] is the drift codficient. Note that
D(s) = O(a?) is much smaller thawm(s) anddD(s)/ds, which are of the orde®(a). The steady-state solution is

P9 = 23 s e [ pehas)

wheres’ is an arbitrary constant. Hergs) vanishes at each stable staff), so we expand(s) arounds® to the first order

V() = (dv(s)/ds)is‘(}ss)(s— st(fs)) and obtain a Gaussian distribution [the influence of thmiab(st(fs))/D(s) on the shape of the
distribution is negligible for our case]

ss _ (ssh2

o D)
|(@V(9)/d8)g_ g

with a standard deviation
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Forl = 1/2, the above equation coincides with previous thedf&&. By substituting the explicit expressionsDfs) andv(s)
into the above equation, we obtain Eq. (4).
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