
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Coherent versus incoherent light scattering from a
quantum dot

K. Konthasinghe, J. Walker, M. Peiris, C. K. Shih, Y. Yu, M. F. Li, J. F. He, L. J. Wang, H. Q. Ni,
Z. C. Niu, and A. Muller

Phys. Rev. B 85, 235315 — Published 19 June 2012
DOI: 10.1103/PhysRevB.85.235315

http://dx.doi.org/10.1103/PhysRevB.85.235315


Coherent versus Incoherent Light Scattering from a Quantum Dot

K. Konthasinghe,1 J. Walker,1 M. Peiris,1 C. K. Shih,2 Y. Yu,3 M. F.

Li,3 J. F. He,3 L. J. Wang,3 H. Q. Ni,3 Z. C. Niu,3 and A. Muller1, ∗

1Dept. of Physics, University of South Florida, Tampa, FL 33620
2University of Texas at Austin, Austin, TX 78712

3Institute of Semiconductors, Chinese Academy of Sciences, Being, PR China
(Dated: June 8, 2012)

We analyze the light scattered by a single InAs quantum dot interacting with a resonant
continuous-wave laser. High resolution spectra reveal clear distinctions between coherent and in-
coherent scattering, with the laser intensity spanning over four orders of magnitude. We find that
the fraction of coherently scattered photons can approach unity under sufficiently weak or detuned
excitation, ruling out pure dephasing as a relevant decoherence mechanism. We show how spectral
diffusion shapes spectra, correlation functions, and phase-coherence, concealing the ideal radiatively-
broadened two-level system described by Mollow.

PACS numbers: 78.47.-p, 78.67.Hc

Like an isolated atom or ion, a semiconductor quan-
tum dot (QD) “artificial atom” scatters monochromatic
laser light incident upon it. For an ideal two-level system
broadened by radiative decay at a rate κ, the spectral and
temporal properties of the scattered photons are deter-
mined solely by the laser detuning from resonance, ∆ω,
and by the Rabi frequency, Ω. In seminal work, Mollow
showed that when Ω � κ, most of the light is scattered
coherently, i.e. elastically, whereas it is otherwise dom-
inated by resonance fluorescence1. Moreover, when the
scattered light originates from a single two-level system
it exhibits photon anti-bunching, for any value of Ω and
∆ω2.

Probing and controlling quantum phase coherence is
at the core of quantum information science, and semi-
conductor QDs are well suited for investigating quan-
tum coherence in solids at optical frequencies3. In this
context, resonant light scattering in QDs has been of
special interest, and has emerged as a promising re-
source for the generation of highly ideal single pho-
ton states4. Milestone demonstrations include oscilla-
tory field correlations5, Mollow triplets6–8, photon anti-
bunching6 and cascaded photon emission9. Nevertheless,
the theoretical modelling of these experimental obser-
vations has necessitated the inclusion of a phenomeno-
logical dephasing time, T2, in general smaller than 2T1,
where T1 = 1/κ is the radiative lifetime5–9. Moreover,
the coherent scattering—as opposed to incoherent scat-
tering that causes resonance fluorescence—has remained
largely unexplored. A more detailed experimental inves-
tigation clarifying the role of decoherence in the context
of resonant light scattering is all the more timely given
recent proposals of using coherent scattering for the gen-
eration of indistinguishable photons10,11: theory predicts
that dephasing reduces the fraction of coherently scat-
tered photons from unity, regardless of Ω and ∆ω. Here
we combine high resolution spectroscopy (35 MHz), pho-
ton correlations and phase-coherence measurements, to
obtain clear distinctions between coherent and incoherent
scattering. We show that the previously observed non-

ideal linewidth and correlation functions are due to the
fluctuation of the QD resonance frequency on a time scale
longer than T1, resulting in an apparent broadening of the
lineshape. One the other hand, at the relevant time scale
of quantum evolution, the system is close to an ideal two-
level system with negligible pure dephasing, as described
by Mollow1, and as expected from four-wave mixing mea-
surements on QD ensembles12,13. We extend Mollow’s
theory to include spectral diffusion in the form of inho-
mogeneous broadening and provide a complete picture of
resonant light scattering in semiconductor QDs.

We probe QDs grown by molecular beam epitaxy at the
center of a planar optical microcavity. QDs of this type
have been investigated extensively due to their atom-like
spectra3 and long dephasing times12. The QD sample
was grown using a solid source VEECO Gen-II molec-
ular beam epitaxy (MBE) system on a semi-insulating
GaAs (100) substrate with a 12 pairs top and 20 pairs
bottom Al0.9Ga0.1As/GaAs distributed Bragg reflector.
The substrate rotation was stopped during MBE growth
of InAs layers to obtain a QD density varying uniformly
from 109/cm2 to 108/cm214. The dominant vertical cav-
ity mode is centered around λ≈925 nm. The sample was
maintained at a temperature of 3.8 K in a closed-cycle
cryostat and the QD emission was collected by an in situ
high numerical aperture aspheric lens [Fig. 1(a)]. To ex-
cite a QD resonantly and discriminate the resonant scat-
tering signal from stray laser light, an orthogonal excita-
tion/detection geometry was used5. The detected light
was coupled into a single mode fiber without prior filter-
ing or cross-polarized excitation/detection. For coarse
spectral analysis of the emitted light a grating spectrom-
eter with a cooled charge-coupled device camera was em-
ployed. For high resolution spectral measurements we
used a scanning Fabry-Perot interferometer with a free
spectral range of 4.2 GHz and finesse of 120 in conjunc-
tion with a single photon counting detector. The excita-
tion source was a diode laser continuously tunable over a
range of several GHz. We have probed a number of single
QDs and found very similar behavior, although the data
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FIG. 1: (Color online) (a) Schematic of experimental setup.
(b) QD emission spectrum, recorded with a grating spectrom-
eter under resonant laser excitation as is (black solid trace),
20× magnified (dashed gray trace) and on a logarithmic scale
(solid red trace) to visualize the phonon broadband. (c) QD
excitation spectrum. (d) Spectrally integrated intensity of
scattered light as a function of time showing flickering (dark
blue trace) that is inhibited when an additional weak auxil-
iary laser is added (light green trace). The black trace was
recorded with the auxiliary laser only.

presented here is from one specific QD.

Figure 1(b) shows the power spectrum of this QD
under resonant laser excitation, recorded with a spec-
trometer with ≈10 GHz resolution. Although the main
emission line is not resolved in this measurement, a
broadband emission around it can be clearly identified.
As is well-known from experimental photoluminescence
(PL) measurements15, four-wave mixing studies12,13, and
from theoretical calculations of resonance fluorescence
spectra16, this broad emission originates from fast scat-
tering processes with acoustic phonons. Although at 3.8
K [Fig. 1(b)] this phonon scattering “pedestal” is highly
asymmetric it becomes more symmetric and prominent
with increasing temperature12,15,16. In Fig. 1(b) about
5% of light is emitted into this broad band, thus at liq-
uid He temperature as much as ≈95% of light may be
scattered coherently, irrespective of Ω and ∆ω.

Figure 1(c) shows the QD excitation spectrum at an
excitation intensity below the saturation intensity, ob-
tained by scanning the laser across the QD resonance
frequency while collecting the scattered light. The full
width at half maximum (FWHM) of the resonance is
about 0.7 GHz. Although in four-wave mixing stud-
ies the zero-phonon linewidth has been shown to be
limited by radiative decay to about 170 MHz12,13, PL
linewidths and/or resonantly measured single QD exci-
tation linewidths are usually found to lie in the range
of 500 MHz to several GHz5–11,17,19–21. The additional
“apparent” broadening is due to spectral diffusion, a pro-

cess by which the QD transition frequency is randomly
shifted during the measurement17. This shift is thought
to originate from a fluctuating charge environment of the
QD that occurs on a time scale that is long compared to
the radiative decay process. In PL measurements spec-
tral diffusion is manifested in the form of long-time pho-
ton correlations and blinking22. In resonant scattering
experiments the existence of charge fluctuations is evi-
denced by flickering23 and by the fact that many res-
onances identified in PL as neutral exciton transitions
generate little or no resonance fluorescence unless a weak
background lighting is present20. It has been proposed
that a Coulomb blockade effect is at the origin of this res-
onant emission quenching20. Flickering of the resonant
scattering signal is directly observed when no external
non-resonant lighting is present, as seen in Fig. 1(d),
consistent with spectral diffusion24. The flickering can
be inhibited on the measurement timescale (∼10 ms) by
an auxiliary non-resonant light source (here a laser at
λ=660 nm) that is so weak that by itself generates neg-
ligible PL [Fig. 1(d)]. We speculate that the effect of
this auxiliary laser is to change the timescale of the flick-
ering by neutralization of surrounding charges. Spectral
diffusion is also commonly observed for QDs in nanos-
tructures, where it is associated with the proximity of
etched surfaces25.

In order to distinguish experimentally between coher-
ent and incoherent scattering it is necessary to analyze
the scattered light spectrally with a resolution better
than κ. For a two-level system with natural resonance
frequency ω0, exposed to a monochromatic field of fre-
quency ω, the power spectrum of the scattered light takes
the analytic form, given by Mollow1,

g̃(ν, ω, ω0) = 2π|α∞|2δ(ν−ω)+n̄∞κΩ2 (ν − ω)2 + Ω2/2 + κ2

|f(i(ν − ω))|2
(1)

where ν is the emission frequency, and the only source of
broadening is a decay of the upper state to the lower state
at a rate κ due to spontaneous emission. The first term
corresponds to photons scattered coherently while the
second term describes the resonance fluorescence. The
laser detuning ∆ω = ω − ω0 enters through the poly-
nomial function f , the steady-state population inversion
n̄∞, and the steady-state quantum mechanical expecta-
tion value of the two-level coherence, α∞, given in1 and in
Appendix A. Note that the function g̃(ν, ω, ω0) is always
symmetric around ν = ω (not ν = ω0), unlike spectra of
dressed states populated non-resonantly18,26.

Figure 2(a) shows maps of the scattered light as a func-
tion of emission and excitation frequency, for various val-
ues of the Rabi frequency. The latter was varied by vary-
ing the laser intensity. As expected from Eq. (1), when
Ω � κ [leftmost map in Fig. 2(a)], the emission reso-
nance linewidth is much less than κ. It is limited here by
the resolution of our scanning Fabry-Perot interferome-
ter (35 MHz) but is expected to be as narrow as the laser
linewidth (∼1 MHz). With increasing Ω the resonance
fluorescence eventually dominates in the form of the Mol-



3

0.0

0.5

0.0

-0.5

-1.0

-1.0 1.0 0.0-1.0 1.0 2.0

0.0

0.5

-0.5

-1.0

1.0

-1.5

0.0

0.5

-0.5

-1.0

1.0

0.0-1.0 1.0 2.0

Ω/2π = 0.3 GHz Ω/2π = 0.98 GHzΩ/2π = 0.006 GHz

-2 0 1-1

La
se

r d
et

un
in

g,
  ∆
ω
/2
π 

(G
H

z)

0.0

0.5

0.0

-0.5

-1.0

-1.0 1.0

0.0

0.5

0.0

-0.5

-1.0

-1.0 1.0

0.0

0.5

0.0

-0.5

-1.0

-1.0 1.0

0.0-1.0 1.0 2.0

0.0

0.5

-0.5

-1.0

1.0

-1.5

0.0-1.0 1.0 2.0

0.0

0.5

-0.5

-1.0

1.0

-1.5

0.0-1.0 1.0 2.0

0.0

0.5

-0.5

-1.0

1.0

-1.5

0.0

0.5

-0.5

-1.0

1.0

0.0-1.0 1.0 2.0

0.0

0.5

-0.5

-1.0

1.0

0.0-1.0 1.0 2.0

0.0

0.5

-0.5

-1.0

1.0

0.0-1.0 1.0 2.0

0.5

1.0

0.0

In
te

ns
ity

 (a
rb

. u
ni

ts
)

Relative frequency (GHz)

(a)

(b)

(c)

(d)

La
se

r d
et

un
in

g,
  ∆
ω
/2
π 

(G
H

z)
La

se
r d

et
un

in
g,

  ∆
ω
/2
π 

(G
H

z)
La

se
r d

et
un

in
g,

  ∆
ω
/2
π 

(G
H

z)

Relative frequency (GHz) Relative frequency (GHz)

Experiment

Theory (radiative decay and spectral di�usion)

Theory (radiative decay and pure dephasing)

Theory (radiative decay only)

FIG. 2: (Color online) (a) Maps of scattered light intensity as a function of detection frequency (abscissas) and excitation
frequency (ordinates) relative to the QD transition frequency, for three different values of the Rabi frequency. Each panel was
recorded in 200 s. At Ω/2π=0.13 GHz the detector count rate was 3×105 s−1 at the input of the Fabry-Perot interferometer.
The dashed lines indicate the location of the eigenfrequencies of the coupled laser/QD system. The inset shows the line section
ν = ω together with the corresponding theoretical curve, obtained from Eq. (2). The faint diagonal lines parallel to the ν = ω
section are due to the residual transmission at high-order modes of the Fabry Perot interferometer and satellite modes of the
laser. (b) Theoretical maps [Eq. (2)] corresponding to a radiatively-broadened two-level system subject to spectral diffusion.
(c) Theoretical maps [Eq. (1)] representing an ideal, radiatively-broadened two-level system. (d) Theoretical maps [Eq. (A11)]
representing a two-level system subject to radiative decay, and to pure depahsing at a rate γ. γ is chosen so as to obtain the
excitation linewidth of Fig. 1(c).

low triplet, composed of three peaks with a FWHM that is of the order of κ [middle and rightmost map in Fig.
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2(a)].
In order to identify the dominant effects on the QD

two-level system due to its solid-state environment, we
make a side-by-side comparison of our experimental data
of Fig. 2(a) with spectral maps obtained from three
different theoretical models, displayed in Fig. 2(b-d).
In all cases, we assume a radiative decay, κ/2π=180
MHz, which is consistent with typical radiative lifetimes
[τ=1/(2π×180 MHz)=0.9 ns] for InAs QDs. We include
spectral diffusion by integrating Eq. (1) over all possible
(random) detunings to obtain

I(ν, ω, ω0) ∝
∫
g̃(ν, ω, ω′0)e−(ω

′
0−ω0)

2/2σ2

dω′0 (2)

where we assume a Gaussian distribution of QD reso-
nance frequencies due to spectral diffusion with FWHM
s ≈ 2.355σ. While spectral diffusion may manifest at dif-
ferent timescales27, we assume here that this timescale is
long compared to the radiative decay time. We also ne-
glect any influence of dark excitonic states28. To account
for finite apparatus resolution we replace the delta func-
tion in Eq. (1) by a normalized Lorentzian with FWHM
equal to 35 MHz. Fig. 3(b) shows spectral maps ob-
tained using Eq. (2) with s/2π=0.7 GHz, chosen to co-
incide with the measured excitation linewidth of Fig. 1(c)
which is also typical for InAs QDs5–11,17,19–21,23. In com-
parison, Fig. 2(c) shows spectral maps obtained using
Eq. (1) clearly not agreeing as well with the experimen-
tal data of Fig. 2(a) and highlighting the subtle effects
of the spectral diffusion process. In Fig. 2(d) we further
show the case when pure dephasing is present instead of
spectral diffusion, as was assumed in previous studies5,6.
The most general theoretical expressions for the power
spectrum for the latter case are derived in Appendix A.
The pure dephasing rate, γ, was chosen to yield the ob-
served excitation linewidth [Fig. 1(c)]. As is evident from
this comparison, pure dephasing does not play a major
role at the measurement temperature since it would give
rise to rather different observations. In particular, the
absence of broad emission superimposed to the leftmost
spectral map in Fig. 2(a) is an unequivocal indication
that dephasing is not a relevant broadening process here.

For a quantitative analysis we recorded a series of spec-
tra at exact resonance (∆ω = 0) with sufficiently high
signal to noise ratio for precise comparison with theory
(Fig. 3). The same information is displayed on both
linear (left) and logarithmic (right) ordinate scales. The
theoretical traces were obtained using Eq. (2) with the
same parameters as in Fig. 2(b), and only a common
scale factor was permitted for all traces. Short-dashed
(long-dashed) red lines correspond to the total (incoher-
ent) scattered light intensity and the light-red shaded
area indicates the coherently scattered light. As is seen
in the figure, there is excellent agreement between the
experimental data and the theoretical expression of Eq.
(2) evaluated numerically, considering that the excitation
laser intensity spans more than four orders of magnitude.
Since at the largest Ω in Fig. 3 the central peak continues

to grow, some amount of light is at that point originat-
ing from other scatterers, perhaps neighboring detuned
QDs. Nonetheless, when Ω/2π=0.49 GHz, we can esti-
mate that more than 90 % of the detected light originates
from scattering off the QD probed.
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FIG. 3: (Color online) Power spectrum of light scattered by
the QD at exact resonance (∆ω = 0) represented on a linear
(left) and logarithmic (right) ordinate scale, for a range of
Rabi frequencies. Each spectrum was recorded in 60 s. The
theoretical curve (red dashed line) was obtained by numerical
evaluation of Eq. (2). The light red shaded area corresponds
to coherently scattered light which dominates whenever Ω .
κ. If pure dephasing had a significant role in the scattering
process, a broader feature would always be visible, even when
Ω � κ.
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Photon statistics of the scattered light, shown in Fig.
4(a) below saturation (left panel), near saturation (mid-
dle panel) and above saturation (right panel), corrob-
orate this via the observation of photon antibunching.
Photon correlation measurements were performed with a
Hanbury-Brown and Twiss setup29 that uses a 2×2 fiber
coupler and two fiber coupled avalanche photon detec-
tors. The detectors are nominally identical to those used
in6 and thus an identical instrument response function
was assumed. We show the raw unprocessed normalized
data as well as the theoretical normalized second order
correlation function in the presence of spectral diffusion,

g
(2)
SD(t), convolved with the instrument response function

(IRF)6. It is the IRF, not stray background light, that

causes the dip to rise above zero near t=0. g
(2)
SD(t) is com-

puted identically to Eq. (2), replacing g̃(ν, ω, ω′0) under
the integral with g(2)(t, ω, ω′0)n̄∞/n̄∞(ω = ω0), where
g(2)(t, ω, ω′0) is the normalized the correlation function
for the ideal two-level system. Above saturation Rabi
oscillations, the time-domain analogue of the side bands
of Fig. 2, are seen6.

Spectral diffusion significantly alters the spectral and
temporal characteristics of the scattering process com-
pared to the ideal two-level system. Figure 4(b) shows
the total normalized scattered light intensity as a func-
tion of Rabi frequency for the parameters used in Fig. 3.
using Eq. (2) (solid red trace) and Eq. (1) (solid blue
trace). Correspondingly, the dashed lines of the same
color represent the fraction of the intensity of coherently
scattered light alone. The same are plotted in Fig. 4(c)
but under significant laser detuning. A signature effect of
the spectral diffusion is to cause an increase in the frac-
tion of photons scattered coherently, as would any source
of inhomogeneous broadening. At large values of Ω, more
light is actually scattered coherently with the laser off-
resonance than with the laser at exact resonance. This
is seen in Fig. 4(c) but is also directly visible in the bot-
tom map of Fig. 2 where a minimum occurs along the
line ν = ω at resonance (inset).

Lastly we examine the phase coherence between the
laser and the scattered light (below saturation) by com-
bining the scattered light with a local oscillator (LOSC)
signal at a beam splitter. We measure the fringe contrast
obtained when varying the LOSC phase with a piezoelec-
tric actuator (PZT) [Fig. 4(d)]. The fringe contrast we
obtain here is ≈40% as seen in Fig. 4(e) which can be
understood by spectral diffusion that causes large fluc-
tuations in photon flux at the beam splitter. In theory
we expect spectral diffusion to reduce the fringe contrast
(visibility) by a factor of order κ/s ≈0.25.

In summary, we have carried out high-resolution mea-
surements of the light scattered coherently and incoher-
ently by a single InAs QD, revealing in great detail how
the scattering process evolves over more than four orders
of magnitude of excitation laser intensity. The simple
inclusion into Mollow’s theory of spectral diffusion as a
source of inhomogeneous broadening does faithfully re-
produce both our observed spectra but also photon cor-
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FIG. 4: (Color online) (a) Photon statistics of scattered light
for three different Rabi frequencies. When Ω > κ, Rabi oscil-
lations appear. (b) Plot of the total scattered light intensity
(solid red trace) and the fraction of coherently scattered light
intensity (dashed red trace), using the same parameters as
those used in Fig. 3. For comparison the same are plotted
in blue when not including spectral diffusion. (c) Same as in
(b) but with a laser detuned by ∆ω/2π = 1 GHz. (d) Mea-
surement of mutual phase coherence between the coherently
scattered light and a local oscillator (LOSC) by interferome-
try. (e) Intensity of light at the output of the beam splitter
in (d) as a function of LOSC phase.

relation and phase-coherence measurements. The insight
that an apparent broadening rather than pure dephasing
predominantly affects the scattering process has impor-
tant implications for future use of QDs, for example in
quantum repeaters30. There we expect spectral diffusion
to reduce the photon flux without however limiting two-
photon indistinguishability8. The temporal flickering of
the resonant scattering signal associated with the spec-
tral diffusion may be reduced in future improved struc-
tures. For example it may be possible to control the
timescale for this flickering by placing QDs in charge-
tunable devices. Overall our work offers a complete pic-
ture of resonant light scattering relevant to a wide variety
of solid-state nanostructures.

The authors acknowledge financial support from the
National Science Foundation (NSF DMR-0906025 and
CMMI-0928664) the National Natural Science Founda-
tion of China (Grant No. 90921015).
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Appendix A: Power spectrum in the presence of
pure dephasing and detuning

Using the same notation as in Ref.1, we provide an
expression for the power spectrum of the light scattered
by a two-level system subject to an incident monochro-
matic laser, when including an additional off-diagonal de-
cay (pure dephasing) rate γ. Unlike in Ref.5,6 we further
assume that the detuning is not zero, i.e. ∆ω 6= 0.

The optical Bloch equations in the rotating-wave ap-
proximation read

d

dt
R(t) = M ·R(t) (A1)

in which

M =

 −κ −iΩ/2 iΩ/2 0
−iΩ/2 −κ/2− γ + i∆ω 0 iΩ/2
iΩ/2 0 −κ/2− γ − i∆ω −iΩ/2
κ iΩ/2 −iΩ/2 0


(A2)

and

R(t) =

 n(t)
α(t)
α∗(t)
m(t)

 (A3)

Here n(t)=Tr{ρ(t)a†a}, α(t)=Tr{ρ(t)a},
α∗(t)=Tr{ρ(t)a†}, and m(t)=Tr{ρ(t)aa†}, where a,
a†, and ρ are the lowering, raising, and density op-
erators, respectively. The diagonal and off-diagonal
damping terms 1

T1
= κ and 1

T2
= γ + κ/2, respectively,

have been included using the usual master equation.
Equation A1 has the steady state solution

α∞ =
iΩ

4

κ+ 2γ + 2i∆ω

∆ω2 + (κ+ 2γ)(κ+ 2γ + 2Ω2/κ)/4
(A4)

and

n∞ =
Ω2

4κ

κ+ 2γ

∆ω2 + (κ+ 2γ)(κ+ 2γ + 2Ω2/κ)/4
(A5)

Following Mollow1, the power spectrum is obtained as
the Fourier transform of the first-order correlation func-
tion, g(τ, t) ≡ 〈a†(t)a(t + τ)〉, in steady-state (t → ∞),
as

g̃(ν) ≡
∫ ∞
−∞

g(τ)eiντdτ = 2Re
(
ĝ(−iν)

)
(A6)

where ν is the angular frequency of the scattered light,
and ĝ(s) is the Laplace transform of g(τ). In order to
calculate g(τ) we make use of the quantum regression
theorem31 which states that for an operator O whose
expectation value is known to evolve from time t to time
t+ τ as

〈O(t+ τ)〉 =
∑
j

aj(τ)〈Oj(t)〉 (A7)

the two-time correlation function 〈Oi(t)O(t + τ)Ok(t)〉
can be calculated as a function of single time expectation
values as follows:

〈Oi(t)O(t+ τ)Ok(t)〉 =
∑
j

aj(τ)〈Oi(t)Oj(t)Ok(t)〉

(A8)
Given that the solution of equation A1 can be written as

R(t+ τ) = eMτ ·R(t) (A9)

we obtain

g(τ) =
(
eMτ |2,2n∞ + eMτ |2,4α∗∞

)
e−iωτ−δFP τ/2 (A10)

To account for the limited resolution, δFP , of our scan-
ning Fabry-Perot interferometer, we have multiplied the
correlation function by e−δFP τ/2 (τ ≥ 0). Computing A6
requires finding the Laplace transform of A10, which in
turn involves computing the matrix (Is−M)−1, where I
is the 4×4 identity matrix. We finally obtain

g̃(ν) = 2Re
(
(I(−iν + iω + δFP /2)−M)−1|2,2n∞

+(I(−iν + iω + δFP /2)−M)−1|2,4α∗∞
)

(A11)

which for the special case γ = 0 and δFP = 0 reduces to
the expression

g̃(ν) = 2π|α∞|2δ(ν − ω) + n̄∞κΩ2 (ν − ω)2 + Ω2/2 + κ2

|f(i(ν − ω))|2
(A12)

given by Mollow [Eq. (1)], where f(s) = s3 + 2κs2 +(
Ω2 + (∆ω)2 + (5/4)κ2

)
s+ κ

(
1
2Ω2 + (∆ω)2 + 1

4κ
2
)
.
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