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Topologically ordered phases are gapped states, defined by the properties of excitations when
taken around one another. Here we demonstrate a method to extract the statistics and braiding
of excitations, given just the set of ground-state wave functions on a torus. This is achieved by
studying the Topological Entanglement Entropy (TEE) on partitioning the torus into two cylinders.
In this setting, general considerations dictate that the TEE generally differs from that in trivial
partitions and depends on the chosen ground state. Central to our scheme is the identification of
ground states with minimum entanglement entropy, which reflect the quasi-particle excitations of
the topological phase. The transformation of these states allows for a determination of the modular
S and U matrices which encode quasi-particle properties. We demonstrate our method by extracting
the modular S matrix of a chiral spin liquid phase using a Monte Carlo scheme to calculate TEE,
and prove that the quasi-particles obey semionic statistics. This method offers a route to a nearly
complete determination of the topological order in certain cases.

PACS numbers:

I. INTRODUCTION

Topologically ordered states are gapped quantum
phases of matter that lie beyond the Landau symme-
try breaking paradigm [1]. Well known examples include
fractional quantum Hall states and gapped quantum spin
liquids [1–10]. These phases are not characterized by lo-
cal correlations or order parameters but rather by long
range entanglement in their ground-state wave functions
[11]. Recently, there has been renewed interest in such
states, both from a fundamental perspective, as well as
with a view to applications in quantum computing[12].
At the fundamental level, topologically ordered phases
display a number of unique properties. In two dimen-
sions, emergent excitations in these states display non-
trivial statistics. In Abelian topological phases, exchange
of identical excitations or taking one excitation around
another (braiding) leads to characteristic phase factors,
that are neither bosonic nor fermionic. A further remark-
able generalization of statistics occurs in non-Abelian
phases where excitations introduce a degeneracy. Braid-
ing excitations then leads to a unitary transformation
on these degenerate states, which generalizes the phase
factor of Abelian states.

These striking properties of topologically ordered
phases are connected to excitations. An important and
interesting question is whether the ground state directly
encodes this information, and if so how one may access it.
It is well known that topologically ordered phases feature
a ground state degeneracy that depends on the topology
of the space on which they are defined. Also, ground
states of such states contain a topological contribution
to the quantum entanglement, the topological entangle-
ment entropy (TEE) [13–15]. In this paper we show that
combined together, these two ground state properties can
be used to extract the generalized statistics associated
with excitations in these states. We apply these insights

to a chiral spin-liquid wavefunction, and numerically ex-
tract the semionic statistics associated with excitations.
This demonstrates the promise of this approach in help-
ing numerical studies diagnose the precise character of
topological order in a particular state.

The generalized statistics of quasiparticles is formally
captured by the modular S and U matrices, in both
Abelian and non-Abelian states [3, 12, 16–18]. The ele-
ment Sij of the modular S matrix determines the mutual
statistics of i’th quasiparticle with respect to the j’th
quasiparticle while the element Uii of (diagonal) U ma-
trix determines the self-statistics (‘topological spin’) of
the i’th quasiparticle. Note, these provide a nearly com-
plete description of a topologically ordered phase - for
instance, fusion rules that dictate the outcome of bring-
ing together a pair of quasiparticles, are determined from
the modular S matrix, by the Verlinde formula[19]. Pre-
viously, Wen proposed [3] using the non-Abelian Berry
phase to extract statistics of quasiparticles. However,
the idea in Ref. [3] requires one to have access to an
infinite set of ground-states labeled by a continuous pa-
rameter, and is difficult to implement. Recently, Bais et
al. [20] also discussed extracting S matrix in numerical
simulations, by explicit braiding of excitations. In con-
trast, here we will just use the set of ground states on
a torus, to determine the braiding and fusing of gapped
excitations.

Recall, the ground-state entanglement entropy of a two
dimensional topologically ordered phase in a disk-shaped
region A with a smooth boundary of length L takes the
form SA = αL − γ, where the universal constant γ is
the TEE [13–15]. The constant γ equals log(D) where

D =
√
∑

d2i is the “total quantum dimension” associ-
ated with the topological phase while di is the quantum
dimension of i’th quasiparticle type. For Abelian states
di = 1 so D2 is simply the number of quasiparticle types
in the theory. This is also the ground state degeneracy
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on a torus. For example, the simplest case of D2 = 2
corresponds to the chiral spin liquid or equivalently the
ν = 1/2 bosonic Laughlin state[21]. This has, in addition
to the trivial excitation, a semionic quasiparticle. Unfor-
tunately, the total quantum dimension D only provides
a partial characterization of topological order since two
distinct topological phases can have same value of D.
For example, the topological phase based on a Z2 gauge
theory has D2 = 4, which could also be achieved with
two decoupled copies of the chiral spin liquid. However a
knowledge of the modular S matrix could tell these states
apart.

It is sometimes stated without qualification, that TEE
is a quantity solely determined by the total quantum di-
mension D of the underlying topological theory. How-
ever, this holds true only when the boundary of the re-
gion A consists of topologically trivial closed loops. If the
boundary of region A is non-contractible, for example if
one divides the torus into a pair of cylinders, generically
the entanglement entropy is different for different ground
states (see Figure 1). Indeed as shown in Ref. 22 for a
class of topological states, the TEE depends on the par-
ticular linear combination of the ground states when the
boundary of region A contains non-contractible loops.
We will exploit this dependence to extract information
about the topological phase beyond the total quantum
dimension D.

At a practical level, recent progress in numerical tech-
niques have lead to a number of proposals for topologi-
cally ordered spin liquid phases on the Kagome [23, 24],
honeycomb [25] and square lattice with diagonal ex-
change [26, 27]. A number of lattice states related to the
Laughlin states have also been proposed in recent nu-
merical studies [28–32]. Clearly, smoking gun numerical
signatures of topological order are increasingly needed.
The procedure outlined here suggests that entanglement
entropy could be used to numerically diagnose details of
topological order beyond the total quantum dimension
[33–37], which is a single number susceptible to numeri-
cal error. An elegant different approach to a more com-
plete identification of topological order is through the
study of the entanglement spectrum [38]. However we
note that requires the existence of edge states and may
not be applicable for topological phases like the Z2 spin
liquid. For concreteness, consider the following problem
of identifying a topological phase which is known to have
quantum dimension D = 2. While Z2 gauge theories
have this quantum dimension, there is another theory,
doubled Chiral Spin Liquid[39], which also has the same
quantum dimension and is also time reversal symmet-
ric. The S-matrix can tell these apart, since the latter
phase contains semions, and we show how S-matrix can,
in principle, be extracted from the entanglement entropy.
Note, entanglement spectrum cannot tell these phases
apart since they do not in general have protected edge
states. Furthermore, it is possible to compute TEE us-
ing Monte Carlo techniques on relatively larger systems
[33, 37], as also done in this paper, where the entangle-

FIG. 1: Two types of entanglement bipartitions on the torus:
(a) A trivial bipartition with contractible boundaries for
which the TEE γ = logD, and (b) A bipartition with non-
contractible boundaries, where the TEE depends on ground
state.

ment spectrum is not currently available.

Let us briefly summarize the key ideas involved in this
work. We recall that the number of ground states on a
torus corresponds to the number of distinct quasiparticle
types. Intuitively, different ground states are generated
by inserting appropriate fluxes ‘inside’ the cycle of the
torus, which is only detected by loops circling the torus.
We would like to express these quasiparticle states as a
linear combination of ground states. A critical insight is
that this can be done using the topological entanglement
entropy for a region A that wraps around the relevant
cycle of the torus. With this in hand one can readily
access the modular S and U matrices. For example, the
S matrix is obtained by relating quasiparticle states as-
sociated with different cycles of the torus.

We begin by elaborating on the ground-state depen-
dence of entanglement entropy, focusing on the case of
a partition of torus into two cylinders (Sec.II B). We
present an argument based on the strong subadditivity
property of quantum information and show that the TEE
per connected boundary is not identical to that for a triv-
ial bipartition, such as a disc cut out of the torus. This is
illustrated as an ‘uncertainty’ relation, between entropies
for two different cylindrical bipartitions of the torus. We
introduce the notion of minimum entropy states (MESs),
namely the ground states with minimal entanglement en-
tropy (or maximal TEE, since the TEE always reduces
the entropy) for a given bipartition. These states can
be identified with the quasi-particles of the topological
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phase and generated by insertion of the quasi-particles
into the cycle enclosed by region A. For a generic lattice
wave function with finite correlation length, such as the
Chiral Spin Liquid wave functions we study later, a non-
local measurement like TEE is essential to identify this
basis of MESs.
In sec.III we detail a procedure that uses the ground

state dependence of TEE to extract the key properties of
quasi-particle excitations by determining modular S and
U matrices. The basic idea is to relate MESs for differ-
ent entanglement bipartitions of the torus. The MESs,
which reflect quasi-particle excitations, are determined
using TEE.
In Sec.IVA1 we demonstrate the ground-state depen-

dence numerically, and calculate the entanglement en-
tropy for the chiral spin liquid [21] (CSL) wave function
as different linear superpositions of the two ground states
(Figure 5) with the Variational Monte Carlo (VMC)
method [33, 40, 41]. This directly yields the modular
S matrix of the CSL state which also enables use to de-
tect the presence of a semionic excitation in CSL. The
physical origin of the ground-state dependence of TEE
is made explicit by studying a Z2 toric code model [11]
(Sec.IVB). For pedagogical purposes, in Appendix E we
discuss the extraction of the modular S and U matrices
for the toric code model using our algorithm.

II. GROUND STATE DEPENDENCE OF

TOPOLOGICAL ENTANGLEMENT ENTROPY

A. The Concept of “Minimum Entropy States”

Given a normalized wave function |Φ〉 and a partition
of the system into subsystems A and B, one can trace out
the subsystem B to obtain the reduced density matrix on
subsystem A: ρA = TrB |Φ〉 〈Φ|. The Renyi entropies are
defined as:

Sn =
1

1− n
log (TrρnA)

where n is an index parameter. Taking the limit n →
1, Sn recovers the definition of the usual von Neumann
entropy. In this paper we will often discuss the Renyi
entropy with index n = 2: S2 = − log

(

Tr
(

ρ2A
))

since it
can be calculated most easily with the VMC method[33]
and at the same time, captures all the information that
we are interested in.
For a gapped phase in 2D with topological order and

a disc shaped region A with smooth boundary of length
LA, the Area Law of the Renyi entropy gives:

Sn = αnLA − γ (1)

where we have omitted the sub-leading terms. Al-
though the coefficient αn of the leading ‘boundary law’

term is non-universal, the sub-leading constant γ, which
is often dubbed as the TEE, is universal and a robust
property of the phase of matter for which |Φ〉 is the
ground state. When region A has a disc geometry, it
has been shown that γ for different degenerate ground
states are identical and it is also insensitive to the Renyi
entropy index n [22, 42]. It equals γ = logD, where D is
the total quantum dimension of the model [14, 15], and
offers a partial characterization of the underlying topo-
logical order.

However, when the subsystem A takes a non-trivial
topology, or more precisely when the boundary of A is
non-contractible, TEE contains more information [22], as
we will elaborate further in this paper. For simplicity of
illustration, throughout we focus on the case when the
two-dimensional space is a torus T2 and the subsystem
A wraps around the ŷ direction of the torus and takes
the geometry of a cylinder. For such a geometry, the
n’th Renyi entropy corresponding to the wave function
|Φ〉 =

∑

j cj |Ξj〉 is given by: Sn = αnLA−γ′n, where |Ξj〉
is a special basis that we will describe in detail below and
γ′n is given by [22]:

γ′n ({pj}) = 2γ +
1

n− 1
log





∑

j

pnj d
2(1−n)
j



 (2)

Here dj ≥ 1 is the quantum dimension of the jth quasi-
particle and pj = |cj |2. For Abelian anyons, dj = 1.
Note, dj shares the same subscript j as the states |Ξj〉
because the states |Ξj〉 can be obtained by inserting a
quasi-particle with quantum dimension dj (the ground
state degeneracy on the torus is equal to the number of
distinct quasi-particles). This equation shows that the
TEE for this geometry depends on the wave function
through {pj} as well as the Renyi index n, unlike the
case with disc geometry.

What is the physical significance of the basis states
|Ξj〉? We claim that these are precisely the eigenstates of
the nonlocal operators defined on the entanglement cut,
which distinguish the topologically degenerate ground
states. For example, in the case of the quantum Hall
[22] (Sec. IVA2), these states are the eigenstates of the
Wilson loop operator associated with the Chern-Simons
gauge field around the hole exposed by the entangle-
ment cut. Similarly, for a Z2 gauge theory (Sec. IVB
), these are the states with definite electric and magnetic
field fluxes perpendicular to the entanglement cut. For
Abelian states, which have dj = 1 for all j and are the
focus of this paper, the entanglement entropy associated
with the states |Ξj〉 is minimum, i.e. heuristically, the
entanglement cut has the maximum ‘knowledge’ about
these states. For this reason we name them Minimum
Entropy States (MESs).
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B. Strong Subadditivity and Topological

Entanglement Entropy on the Torus: An

‘uncertainty’ principle

In this section we discuss the TEE for bipartitions of
a torus into two cylinders. This can be done by slic-
ing the torus in two distinct ways, along the vertical or
horizontal directions. Intuitively, one might expect both
bipartitions would have the same TEE of 2γ, given the
two disconnected boundaries of the cylinders. However,
very general considerations based on strong subadditivity
of von-Neumann entropy alone suggest that this expec-
tation cannot be correct. In practice, it is known that
for a wide class of topological phases, TEE of such non-
trivial bipartitions indeed depends on the ground state
selected[22]. Here we do not address ground-state depen-
dence, rather we demonstrate that TEE cannot be iden-
tical to its value for trivial bipartitions. It invokes strong
subadditivity, a deep property of quantum information
[43]. This will allow us to come up with an uncertainty
principle, which constrains the amount of information we
have when we cut the torus in two orthogonal directions.
Its advantage is that it assumes almost nothing about
the phase, except that it is gapped.
Consider the ground-state wave function of a gapped

phase in two dimensions and three non-overlapping sub-
regions A, B, C. The von-Neumann entropies S follow
the strong subadditivity condition[43]:

SABC + SB − SAB − SBC ≤ 0 (3)

Note, this is only known to hold for von-Neumann
entropies, not Renyi entropies in general. Now, con-
sider a torus with subregions A, B, C as shown in the
Fig. 2. Let us decompose the entropy into a part
that arises from local contributions and a non-local TEE
S = Slocal + Stopo. For a subregion with the topology
of a disc, the TEE is expected to be Stopo = −γ. Quite
generally one can argue that γ ≥ 0 utilizing the strong
subadditivity condition [14]. For subregions defined on a
simply connected surface, such as a disc, the TEE is pro-
portional to the number of connected components of the
boundary. If this was also true for the torus, we would
expect Stopo

AB = Stopo
BC = −2γ (since they have a a pair of

boundaries). We now show this cannot be a consistent
assignment of TEE on the torus.
In order to isolate the topological part of the entropy,

we assume that the regions A and C are well separated
compared to the correlation length of the gapped ground
state. Then, the local contributions cancel in the combi-
nation above: Slocal

ABC+S
local
B −Slocal

AB −Slocal
BC → 0. This can

be argued following Refs.[14, 15]. For example, consider
a local deformation near region A’s boundary far away
from the other regions. This change will be in Slocal

ABC , but
a nearly identical contribution will also appear in Slocal

AB ,
since it only differs by the addition of a distant region.
These will cancel in the combination above. Thus, we
can rewrite the Eqn. 3 as:

FIG. 2: A torus (the top and bottom sides and left and
right sides are identified). Subregions A, B, C are defined
as shown. Regions A and C are assumed to be well separated
as compared to the correlation length. The regions AB and
BC correspond to bipartitions of the torus into cylinders in
orthogonal directions.

Stopo
ABC + Stopo

B − Stopo
AB − Stopo

BC ≤ 0 (4)

This inequality implies the TEEs expected from the
disc is not legal for the torus.
For regions where the boundary is topologically trivial

and contractible (such as ABC or B), one expects the
TEE to be independent of the surface on which they are
defined, and hence Stopo

ABC = Stopo
B = −γ. Only regions

AB and BC, whose boundaries wrap around the torus,
are sensitive to the topology of the space they are defined
on. Their TEEs satisfy:

γBC + γAB ≤ 2γ (5)

where we have defined Stopo
AB(BC) = −γAB(BC). Clearly

this does not allow both the TEEs to be 2γ. In fact
if one of them attains its maximal disc value, the other
must vanish. Note, the TEE reduces the total entropy.
Thus, when the entropy of a cut along one of the cycles
of the torus attains its minimum value, i.e. we have most
knowledge about the state on the cut, then along the
orthogonal direction, the entropy associated with a cut
must attain its maximal value, implying our knowledge
is the least. Therefore this can be thought of as an uncer-
tainty relation, between cuts that wrap around different
directions of the torus.

III. EXTRACTING STATISTICS FROM

TOPOLOGICAL ENTANGLEMENT ENTROPY

The modular S and U matrices describe the action
of certain modular transformations on the degenerate
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ground states of the topological quantum field theory.
On the other hand, the braiding and statistics of quasi-
particles are encoded in the S and U matrices. For
Abelian phases, the ij’th entry of the S matrix corre-
sponds to the phase the i’th quasi-particle acquires when
it encircles the j’th quasi-particle. The U matrix is di-
agonal and the ii’th entry corresponds to the phase the
i’th quasi-particle acquires when it is exchanged with an
identical one. Since the MESs are the eigenstates of the
nonlocal operators defined on the entanglement cut, the
MESs are the canonical basis for defining S and U . The
modular matrices are just certain unitary transforma-
tions of the MES basis. As argued in Appendix D, the
S matrix acts on MESs as an operator that implements
π/2 rotation while the US matrix corresponds to 2π/3
rotation of MESs.

A. Algorithm for extracting modular S matrix

from TEE

Since the MES states carry definite quasiparticle quan-
tum number, the modular S matrix may be expressed as
[3]

Sαβ =
1

D

〈

Ξx̂
α|Ξŷ

β

〉

(6)

Here D is the total quantum dimension and x̂ and ŷ
are two directions on a torus. Eqn.6 is just a unitary
transformation between the particle states along different
directions. In the case of a system with square geometry,
the S matrix acts as a π/2 rotation on the MES basis
∣

∣

∣
Ξŷ
β

〉

. In general, however, x̂ and ŷ do not need to be ge-

ometrically orthogonal, and the system does not need to
be rotationally symmetric, as long as the loops defining
∣

∣Ξx̂
α

〉

and
∣

∣

∣Ξ
ŷ
β

〉

interwind with each other. Therefore, the

modular S matrix can be derived even without any pre-
sumed symmetry of the given wave functions. Note that

there is an undetermined phase for each
∣

∣Ξx̂
α

〉

and
∣

∣

∣Ξ
ŷ
β

〉

,

therefore a phase freedom between the rows (columns),
which may be fixed by the existence of an identity parti-
cle.
Let’s start with the two primitive vectors ~w1 and ~w2

that define a torus (Fig.3) and determine the transfor-

mation of the MESs of ~w2 to those of ~w′
2 given by:

~w′
1 = n1 ~w1 +m1 ~w2

~w′
2 = n2 ~w1 +m2 ~w2 (7)

With n1m2 −m1n2 = 1 by definition of the modular
transformation. We restrict n2 = −1, which means the
cross product:

~w2 × ~w′
2 = −~w2 × ~w1 = ~w1 × ~w2 = A (8)

W1

W2

FIG. 3: Vectors ~w1 and ~w2 define a lattice with periodic
boundary conditions. That is, points differing by integer lin-
ear combinations of ~w1 and ~w2 are to be identified as the same
point. The area of the lattice is |~w1 × ~w2| where × denotes
the cross product.

A is the (signed) surface area of the torus.
The corresponding modular matrix can be expanded

as:

(

n1 1− n1m2

−1 m2

)

=

(

1 −n1

1

)(

1
−1

)(

1 −m2

1

)

= U−n1SU−m2

Correspondingly, according to Appendix D the trans-
formation:

R = U−n1SU−m2

Because U matrix is diagonal by definition, its left
(right) matrix product only adds an additional phase fac-
tor to each row (column) and can be eliminated. There-
fore, without any argument on the symmetry, the gener-
alized algorithm:

1. Given a set of ground state wave functions |ξα〉,
calculate the TEE of an entanglement bipartition
along w2 direction, for a linear combination |Φ〉 =
∑

cα |ξα〉 . Search for the minimum of TEE 2γ−γ′
in the cα parameter space. That gives one MES
|Ξβ〉 and the corresponding quantum dimension
2 log (dβ) = 2γ − γ′. Note that the existence of
an identity particle ensures at least one minimum
TEE 2γ − γ′ = 0.

2. iterate step 1 but with cα in the parameter space or-
thogonal to all previous obtained MESs |Ξβ〉. Con-
tinue this process until we have the expressions
for all |Ξβ〉. This gives a unitary transformation
matrix U1 with the αβ’th entry being cαβ , which
changes the basis from |ξα〉 to |Ξβ〉. Note that there
is a relative U(1) phase degree of freedom for each
|Ξβ〉.

3. Repeat step 1 and step 2 but with the entanglement
cut along w′

2 direction, which satisfies Eqn. 7 and
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Eqn. 8, and obtains the unitary transformation
matrix U2.

4. The modular S matrix is given by U−1
2 U1 except for

an undetermined phase for each MES correspond-
ing to a row or a column. The existence of an iden-
tity particle that obtains trivial phase encircling
any quasi-particle helps to fix the relative phase be-
tween different MESs, requiring the entries of the
first row and column to be real and positive. This
completely defines the modular S matrix.

The above algorithm is able to extract the modular
transformation matrix S and hence braiding and mu-
tual statistics of quasi-particle excitations just using the
ground-state wave functions as an input. Further, there
is no loss of generality for non-Abelian phases, which can
be dealt by enforcing the orthogonality condition in step
2 which guarantees that one obtains states with quantum
dimensions dα in an increasing order.

In Appendix E we take the square lattice toric code
model as an example once again, but without presuming
any symmetry of the system.

B. Extracting other modular matrices from TEE

In Appendix E, we calculate the U matrix for the Z2

toric code model, given the simple action of U on |ξab〉.
Though we were unable to find a general algorithm for
the U matrix, as we did for the the S matrix in the last
subsection, in the presence of certain symmetries U can
indeed be extracted given a set of ground-state wave func-
tions |ξα〉. This is achieved by first calculating the action
R on the states |ξα〉 under this symmetry operation, and
then translating it into the action on MESs. Specifically,
the corresponding modular matrix is given by U †RU ,
where the unitary matrix U is obtained through the first
two steps of the algorithm in the last subsection.

The aforementioned symmetry to extract S matrix is
the π/2 rotation, as shown in Sec. IVA3 and the first
example in Appendix E, but it may be generalized to
symmetries such as rotation of other angles and even re-
flection symmetry (see Appendix D). More interestingly,
when the symmetry operation R is a 2π/3 rotation, one
gets the US matrix. Hence, if one starts with an arbi-
trary basis |ξα〉 for the degenerate ground state manifold
of a topological order, the problem of S and U matrices
can be reduced to the transformation property of cho-
sen basis states |ξα〉 under π/2 and 2π/3 rotations and
the unitary transformation that translates |ξα〉 basis to
the MESs |Ξα〉. To illustrate this point, we extract the
US matrix for the Z2 gauge theory in Appendix E by
putting the Z2 toric code on triangular lattice which has
2π/3 rotation symmetry.

IV. DEMONSTRATION OF THE ALGORITHM

TO EXTRACT STATISTICS FROM

ENTANGLEMENT

A. Revisiting Chiral Spin-Liquid: Semionic

Statistics from Entanglement Entropy

In this subsection, to illustrate the state dependence of
TEE, we study the entanglement properties in a lattice
model of an SU(2) spin-symmetric CSL on a torus. The
CSL has the same topological order as the half filled Lan-
dau level ν = 1/2 Laughlin state [21, 44] of bosons (these
bosons can be thought of as residing at the location of
spin up moments), and has two-fold degenerate ground
states on the torus. Even though topological properties
of CSL are well established using field-theoretic meth-
ods [3], unlike continuum Laughlin states, CSL cannot
be dealt with analytically and thus provides a non-trivial
demonstration of our method. In particular, the low en-
ergy theory of CSL predicts a semion which is difficult to
verify in the lattice wavefunction directly. We will show
that our algorithm readily demonstrates the existence of
semion as an excitation in CSL, which is the main ob-
jective of this section. We note that topological order in
the lattice version of CSL can be confirmed by calculating
its topological entanglement entropy (TEE) numerically
using Monte Carlo and verifying that it is non-zero and
agrees with the field theoretical predictions [33]. The fact
that we are working with a generic lattice wave function
rather than an idealized zero correlation length state or
a topological field theory will introduce new conceptual
issues - in particular, the connection between MESs and
lattice ground states will be discussed.
In sectionIVA1 we demonstrate the ground state de-

pendence of CSL using a Variational Monte Carlo (VMC)
algoritm. In sectionIVA2, we review the basics of CSL
so as to illustrate the physical meaning of CSL MESs.
Finally, sectionIVA3 illustrates our algorithm to extract
the mutual statistics of quasiparticles in CSL using the
entanglement data obtained using VMC.

1. Ground State Dependence of TEE in a Chiral Spin

Liquid

We begin by reporting the results of a numerical ex-
periment. We extract TEE of linear combinations of the
two ground states of the CSL, and show that it indeed
depends systematically on the chosen linear combination,
when the entanglement cut wraps around the torus. We
will then predict theoretically the dependence and find
excellent agreement as shown in Fig. 5.
Wave functions of an SU(2) spin symmetric CSL are

obtained in the slave particle construction. We write

the spins as bilinear in fermions ~S = 1
2f

†
σ[~σ]σσ′fσ′

and assume a chiral d-wave state for the fermions.
Operationally, the spin wavefunctions are obtained by
Gutzwiller projection of a dx2−y2 + idxy superconductor
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FIG. 4: The separation of the system into subsystem A, B,
C and environment, periodic or antiperiodic boundary condi-
tion is employed in both x̂ and ŷ directions. a: The subsys-
tem ABC is an isolated square and the measured TEE has
no ground state dependence. b: The subsystem ABC takes
a non-trivial cylindrical geometry and wraps around the ŷ
direction, and TEE may possess ground stated dependence.

to one fermion per site. More technical details regard-
ing this wave function are in Appendix B. We consider
the system on a torus. Before projection, one can write
down different fermion states, by choosing periodic or
anti-periodic boundary conditions along x̂ and ŷ direc-
tions. These boundary conditions are invisible to the
spin degrees of freedom which are bilinear in the fermions
and lead to degenerate ground states[4]. We denote the
ground states by the mean field fluxes in x̂ and ŷ direc-
tions as |ϕ1, ϕ2〉, ϕ1,2 = 0, π. The two fold degeneracy of
the CSL implies that only two of the four ground states
|0, 0〉, |π, 0〉, |0, π〉, |π, π〉 are linearly independent. Here
we consider linear combinations of |0, π〉 and |π, 0〉, which
we have numerically checked to be indeed orthogonal for
the system sizes that we consider:

|Φ(φ)〉 = cosφ |0, π〉+ sinφ |π, 0〉 (9)

We calculated TEE for the state |Φ〉 using VMC
method and Gutzwiller projected wave functions based
on Eqn.B1. An efficient VMC algorithm which allows to
study a linear combination of Gutzwiller projected wave
functions was developed and detailed in Appendix A. To
our knowledge, this is the first numerical study to accom-
plish this.
The geometry and partition of the system are shown

in Fig. 4b. The total system size is 12 lattice spacings
in both directions with rectangles A and B being 6 × 4
and rectangle C 12 × 4. Note that the subsystems AC,
BC, AB, C and ABC all wrap around ŷ direction so that
their TEE will all be equal (and denoted γ′). This is the
quantity we wish to access. For contractible subsystems
A and B it remains the same as that expected for a region
with a single boundary, cut out of a topologically trivial
surface (such as a bigger disc) γ. We use the construction
due to Kitaev and Preskill [15] and effectively isolate the
topological contributions in the limit of small correlation
length, by evaluating the combination of entropies SA +

FIG. 5: The black dots show the numerically measured TEE
2γ − γ′ for a CSL ground state from linear combination
|Φ〉 = cos φ |0, π〉 + sinφ |π, 0〉 as a function of φ with VMC
simulations using geometry in Fig. 4b. The solid curve is the
theoretical value from Eqn. 14. The periodicity is π/2. The
red dots show the TEE for the same linear combination for a
trivial bipartition. In the latter case, TEE is essentially inde-
pendent of φ and again agrees rather well with the theoretical
expectation (the dashed red curve).

SB +SC −SAB −SAC −SBC +SABC . This combination
is related to the TEE by:

−2γ + γ′ = SA + SB + SC

− SAB − SAC − SBC + SABC

= 2SA − 2SAC + SABC (10)

In the second line we have exploited symmetries of
the construction to reduce the problem to calculation of
the Renyi entropy S2 of three regions A, AC and ABC
for each φ. To measure S2 numerically, we calculated
the expectation value of a SwapA operator, see Ref[33]
for an elaboration of the method used. Our results for
2γ−γ′ (φ) corresponding to different linear combinations
parameterized by φ are shown in Fig.5. This is one of the
main results of this work.

We note the TEE strongly depends on the particular
linear combination chosen. The zero of the curve implies
that the TEE γ′ = 2γ, intuitive value for an entangle-
ment cut with two boundaries. The corresponding state
is the MES. We note that the MES occurs at a nontrivial
angle. Understanding this requires connecting the lat-
tice states and the field theory which is done below. We
predict this angle to be 0.125π and the overall TEE de-
pendence to be Eqn. 14, which is plotted as the solid
curve Fig. 5, in rather good agreement with the numeri-
cal data.
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2. Theoretical Evaluation of Ground State Dependence of

TEE in CSL wavefunctions

A calculation of ground-state dependence of TEE in-
volves two steps. In the first step, we ask the following
question: given a state expressed as a linear combination
of MESs, what is the expected TEE? For the CSL, this
question has already been answered by Ref. 22 that TEE
for a state |ψ〉 = a1|1〉+ a2|2〉 is

γ′ − 2γ = log
(

|a1|4 + |a2|4
)

(11)

where |1〉, |2〉 are MESs for cutting the torus in the
direction in question.
Second, we need to understand the relation between

the MES and the physical states that appear in the
Gutzwiller wave function. In general it appears that the
only way to identify MESs in a generic wave function is
by calculating the TEE. However, when the lattice model
has additional symmetry, that can also be used to iden-
tify MESs. Here, we have a 12× 12 system defined on a
square lattice and we will exploit the π/2 rotation sym-
metry to establish a connection between the flux states
|ϕ1, ϕ2〉 of the Gutzwiller ansatz and the MESs.
The Gutzwiller projected ground states of the CSL,

|0, 0〉 and |π, π〉 are clearly invariant under a π/2 rota-
tion symmetry upto a phase factor. A simple calculation
shows that the |0, 0〉 state acquires phase factor −1 while
the |π, π〉 state acquires no phase under rotation. Sim-
ilarly, the states 1√

2
(|0, π〉 ± |π, 0〉) acquire a phase ±1

under rotation. Having established the transformation
of lattice states under rotation, we now study how the
MESs in the field theory respond to rotations. We will
see that π/2 rotation in the basis of the MESs is de-
scribed by the modular S matrix. The eigenvectors of
the modular S matrix will then be identified with lattice
states that are rotation eigenstates.
The CSL has the same topological order as the half

filled Landau level ν = 1/2 Laughlin state [21, 44] of
bosons. The field theory describing the topological order
of a ν = 1/k Laughlin state is described by the follow-
ing Chern-Simons action. Note, here only the very long
wavelength degrees of freedom are retained:

S =

∫

k

4π
aµ∂υaλǫ

µυλ

One can define the Wilson loop operators T1 = eiθ1 =
ei

∮
axdx and T2 = eiθ2 = ei

∮
aydy around the two distinct

cycles of the torus. In terms of θi, the action is given by

S = i
k

2π

∫

dtθ1θ̇2

which implies that at the operator level [θ1, θ2] = i 2πk
or

T1T2 = T2T1e
2πi/k

Owing to the above relation, there are k orthogonal
ground states |ψm〉 that can be chosen to transform under
Ti as

T2|ψm〉 = e2πi(m−1)/k|ψm〉
T1|ψm〉 = |ψm+1〉

In the case of a CSL phase, k = 2. Let us label the two

degenerate ground states as (1, 0)
T
and (0, 1)

T
, which are

eigenstates of T2:

T2 (1, 0)
T

= (1, 0)
T

T2 (0, 1)
T

= − (0, 1)
T

T1 (1, 0)
T

= (0, 1)
T

T1 (0, 1)
T

= (1, 0)
T

The last two equations are due to the commutation
relation T1T2 = −T2T1. It follows that the eigenstates of

T1 are (1, 1)
T
/
√
2 and (1,−1)

T
/
√
2.

The significance of the T1,2 eigenstates is that they are
MESs[22], for cuts whose boundaries are parallel to the
loops used to define T1,2. This is because eigenstates of
these loop operators have a fixed value of flux enclosed
within the relevant cycle of the torus, which minimizes
the entanglement entropy for a parallel cut.
Now consider a π/2 rotation, under which θ1 → θ2 and

θ2 → −θ1 so T1 → T2 and T2 → T−1
1 = T1. Thus, the

matrix representing the effect of π/2 rotation for CSL in
T2 eigenstate basis is:

S =

(

1√
2

1√
2

1√
2

− 1√
2

)

(12)

Note that we have used the symbol S for the above
matrix because it is indeed the modular S matrix of
the Chern-Simons topological quantum field theory cor-
responding to a CSL. We recall that the modular S ma-
trix transforms the eigenstates of one Wilson loop opera-
tor T2 to those of T1. We will return to the discussion of
deriving S matrix for CSL state using the entanglement
properties of the ground states in Sec. IVA3. Here we
restrict ourselves to the calculation of TEE for the CSL.
Since we are interested in the entanglement entropy

with respect to a cut with non-contractible boundaries,
such as the one shown in Fig.1b, let us represent all our
states in the basis of the eigenstates of T2, i.e. the states
(0, 1) and (1, 0). Then, by matching eigenstates of the S
matrix in the above basis and rotation eigenstates of the
lattice problem, we conclude:
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|π, 0〉 =
(

sin
π

8
, cos

π

8

)T

|0, π〉 =
(

cos
π

8
,− sin

π

8

)T

We can now expand the general linear combination
state |Φ(φ)〉 in MESs:

|Φ〉 = cosφ |0, π〉+ sinφ |π, 0〉
=
(

cos
(

φ− π

8

)

, sin
(

φ− π

8

))

(13)

Then, according to Eqn. (2), theoretically one expects
the following expression for TEE:

2γ − γ′ = log
4

3 + sin (4φ)
(14)

which is compared with the numerical data in Fig. 5.
The MES occur at the value of φ = π/8 (mod π/2).

3. Modular S-matrix of CSL from TEE

Let’s consider the CSL wave functions studied in Sec.
IVA1, and assume that we did not have any information
about the individual quantum dimensions or the mod-
ular S matrix. The only information that is provided
is the two-fold degenerate ground-state wave functions
|π, 0〉 and |0, π〉. We construct the linear combination
|Φ〉 as Eqn.13 and calculate its TEE for a non-trivial bi-
partition as Fig.1b on a π/2 rotation symmetric lattice.
Consequently, we get the 2γ − γ′ dependence on param-
eter φ in Fig.5.
We notice that the minimum of the 2γ′ − γ attained

is approximately zero. According to Eqn.2, this implies
that at least one of the quantum dimensions di should be

1. Since the total quantum dimensionD =
√

d20 + d21/2 =
√
2, this implies that d0 = d1/2 = 1. Also, we see that

the MES lies at φ ≈ 0.14π by fitting Fig.5 to Eqn.2.
For system with square geometry the S matrix de-

scribes the action of π/2 rotation on the MESs. Since
the two states |0, π〉 and |π, 0〉 transform into each
other under π/2 rotation, this implies that in the basis
{|0, π〉, |π, 0〉}, the modular S matrix is given by the Pauli
matrix σx. To change the basis to MESs, we just need
a unitary transformation V that rotates |0, π〉 |π, 0〉 basis
to the MESs basis. The V is determined by the fact that
one needs to rotate |0, π〉 |π, 0〉 basis by an angle ≈ 0.14π
to obtain MES (this is the numerically determined value,
the exact value being π/8). Therefore,

S = V †
(

0 1
1 0

)

V

where

V ≈
(

cos(0.14π) − sin(0.14π)eiϕ

sin(0.14π) cos(0.14π)eiϕ

)

from the two MESs: (cos(0.14π), sin(0.14π))T and
(− sin(0.14π), cos(0.14π))T and ϕ is an undecided phase.
This yields the following value for the approximate mod-
ular S matrix

S ≈
(

sin(0.28π) cos(0.28π)eiϕ

cos(0.28π)e−iϕ − sin(0.28π)

)

The existence of an identity particle requires positive
real entries in the first row and column and implies ϕ = 0,
which gives:

S ≈
(

0.77 0.63
0.63 −0.77

)

Comparing this result with the exact expression in
Eqn. 12, we observe that even though the S matrix
obtained using our method is approximate, some of the
more important statistics can be extracted exactly. In
particular, the above S matrix tells us that the quasi-
particle corresponding to d0 = 1 does not acquire any
phase when it goes around any other particle and cor-
responds to an identity particle as expected, while the
quasi-particle corresponding to d1/2 = 1 has semion
statistics since it acquires a phase of π when it encir-
cles another identical particle. Numerical improvements
can further reduce the error in pinpointing the MES and
thereby leading to a more accurate value of the S matrix.
As another application, we study the action of modular
transformation on the MESs |Ξα〉 for the Z2 gauge theory
in Appendix E.

B. Toric code model: A Pedagogical Illustration of

the Algorithm

In this subsection we use the Kitaev’s Toric code model
[11] as a pedagogical example to understand ground-state
dependence of TEE and the nature of the MESs for a Z2

gauge theory.
Consider the toric code Hamiltonian of spins defined

on the links of a square lattice[11]:

H = −
∑

s

As −
∑

p

Bp (15)

where s and p represent the links spanned by star and
plaquette as shown in the Fig.6, and As =

∏

j∈s σ
x
j ,

Bp =
∏

j∈p σ
z
j . Since all individual terms in the Hamil-

tonian commute with each other, ground states are con-
structed from the simultaneous eigenstates of all As and
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FIG. 6: Illustration of a lattice of the toric code model, the
links spanned by star and plaquette are highlighted in red and
blue, respectively.

A B

FIG. 7: A snapshot of the ground state on the cylinder.
Closed-loop strings (“Z2 electric fields”) can wrap around the
cylinder. The ground states are doubly degenerate, corre-
sponding to even and odd winding number sectors. The to-
tal number of string crossings the cut ∆ equals the winding
number, modulo 2. The number of strings crossing at the
boundary Γ is even in the degenerate ground states.

Bp. Define the operator W z(C) associated with a set of
closed curves C on the bonds of the lattice, as follows

W z(C) =
∏

j∈C

σz
j (16)

Then the ground state is an equal superposition of all
possible loop configurations:

∑

C W
z
ab(C)|vacx〉, where

|vacx〉 is a state with σx = −1 on every site. The closed
loops are interpreted as electric field lines of the Z2 gauge
theory. We now consider two geometries, first the cylin-
der and then the torus. The former case has a pair of
degenerate ground states, and is the simplest setting to
demonstrate state dependence of TEE.

1. Cylinder Geometry

On a cylinder, the Hamiltonian in Eqn.15 leads to
a pair of degenerate ground states (the As part of the
Hamiltonian is suitably modified at the boundary of the
cylinder to only include three links). The two normal-
ized ground states |ξ0〉, |ξ1〉, are given by equal superpo-

sitions of electric field loop configurations which have an
even and odd winding number around the cylinder re-
spectively (see Fig. 7). Consider now partitioning the
cylinder into two cylindrical regions A and B. Then
the Schmidt decomposition of these ground states can
be written as:

|ξ0〉 =
1

√

2Nq

∑

{ql}

(

|ΨA
{ql},0〉|Ψ

B
{ql},0〉+ |ΨA

{ql},1〉|Ψ
B
{ql},1〉

)

|ξ1〉 =
1

√

2Nq

∑

{ql}

(

|ΨA
{ql},0〉|Ψ

B
{ql},1〉+ |ΨA

{ql},1〉|Ψ
B
{ql},0〉

)

(17)

where the Nq distinct configurations represented by
{ql} denote the electric field configurations at the cut.
The number of field lines crossing the cut is always even,
since the ground state is composed of closed loops. For
trivial bipartitions, this exhausts all terms in the Schmidt
decomposition [14]. However, given that the boundary of
the cut is non-contractible, the additional index 0, 1 ap-
pears which counts the parity of electric field winding
around the cylinder, within a partition. These are cor-
related between the two partitions, for the fixed winding
number ground states. This is the key difference from
a trivial bipartition, leading to the ground-state depen-
dence of TEE.
We now calculate the entanglement entropy associated

with such a cut for an arbitrary linear combination of
these two ground states |Ψ〉 = c0|ξ0〉 + c1|ξ1〉, with unit
norm. Using Eqn. 17 one can easily verify:

|Ψ〉 = 1
√

2Nq

∑

{ql}
[(c0 + c1)|ΨA

{ql},+〉|Ψ
B
{ql},+〉

+ (c0 − c1)|ΨA
{ql},−〉|Ψ

B
{ql},−〉] (18)

where |ΨA(B)
{ql},±〉 =

(

|ΨA(B)
{ql},0〉 ± |ΨA(B)

{ql},1〉
)

/
√
2. For a

Schmidt decomposition |Ψ〉 =∑a

√
λa|ΨA

a 〉|ΨB
a 〉 the nth

Renyi entropy is given by: Sn = 1
1−n log (

∑

a λ
n
a ). We

arrive at: Sn = 1
1−n logN1−n

q [pn+ + pn−], where p± =

|c0 ± c1|2/2. Recognizing that the closed loop constraint
leads to Nq = 2L−1, where L is the length of the cut, and
using the definition of TEE in Eqn. 1 we have:

γ′n = log 2− 1

1− n
log(pn+ + pn−) (19)

Thus, for the electric field winding eigenstates |ξ0,1〉
where p± = 1/2, the TEE vanishes. However, for their
equal superpositions when one of p+ or p− vanishes, the
TEE attains its maximal value log 2. These are eigen-
states of the Wilson loop operator that encircles the
cylinder and measures the Z2 magnetic flux (vison num-
ber) threading it. An example of such a flux operator is
F =

∏

j∈Q σ
z
j , where Q is a closed curve that loops once
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around the cylinder, such as the boundary Γ in Fig. 7.
Since TEE reduces the entanglement entropy, the maxi-
mum TEE states correspond to MESs. Why these MESs
are eigenstates of flux through the cylinder for this par-
ticular cut? The number of electric field lines crossing the
boundary Γ is always even. This constraint carries some
information and hence lowers the entropy by bringing in
the standard TEE of log 2. On the other hand, the topol-
ogy of the cut boundary Γ allows for a determination of
which magnetic flux sector the cylinder is in. A state
that is not an eigenstate of magnetic flux through the
cylinder leads to a loss of information and hence a posi-
tive contribution to the total entanglement entropy (and
reduces TEE). This suggests that the MESs are eigen-
states of loop operators which can be defined parallel to
the cut Γ. This is further substantiated by the result for
the torus case discussed below, where they are simulta-
neous eigenstates of magnetic flux enclosed by the cut
and electric flux penetrating the cut.

2. Torus Geometry

The four degenerate ground states are distinguished
by the even-odd parity of the winding number of electric
field lines around the two cycles of the torus. The oper-
ator W z(C), which generates the set of closed loops C
can be used to write the ground states:

|ξab〉 =
∑

C

W z
ab(C)|vacx〉

where the subscript a (b) takes on binary values 0, 1
and denotes whether the loops C belong to the even or
odd winding number sectors along the x̂ (ŷ) direction,
and |vacx〉 is a state with σx = −1 on every site. The
four ground states cannot be mixed by any local operator
and hence realize a Z2 topological order. Let us consider
a ground state as the following linear combination:

|Ψ〉 =
∑

a,b=0,1

ca,b |ξab〉 (20)

We are interested in calculating entanglement entropy
for the state |Ψ〉 corresponding to the partition shown
in the Fig.1b and the dependence of TEE on parame-
ters ca,b. After straightforward algebra (see details in
Appendix C), one finds the following expression for sub-
system A with boundaries of length L:

Sn = Llog(2)− γ′n

where

γ′n = 2 log (2)− 1

1− n
log

4
∑

j=1

pnj (21)

and

p1 =
|c00 + c01|2

2

p2 =
|c00 − c01|2

2

p3 =
|c10 + c11|2

2

p4 =
|c10 − c11|2

2
(22)

This is indeed consistent with Eqn.2, given that γ =
logD = log 2 and dj = 1 for an Abelian topological order
with D2 = 4 degenerate ground states. Further, Eqn.21
readily leads to the following four MESs:

|Ξ1〉 =
1√
2
(|ξ00〉+ |ξ01〉)

|Ξ2〉 =
1√
2
(|ξ00〉 − |ξ01〉)

|Ξ3〉 =
1√
2
(|ξ10〉+ |ξ11〉)

|Ξ4〉 =
1√
2
(|ξ10〉 − |ξ11〉) (23)

What is the physical significance of these four states
being the MESs? Similar to the cylinder geometry case,
these states are the simultaneous eigenstates of Wilson
loop operator that encircles the torus and measures the
Z2 magnetic and electric fluxes threading it, as shown
in Table I and Fig.8. We leave more detailed algebra to
Appendix C.
When γ′n is maximized, the corresponding Sn is min-

imized, providing the maximum possible information
about a given state. Since the cut is made along ŷ,
it can measure the Z2 magnetic and electric fluxes di-
rected parallel to x̂. Hence the MES |Ξα〉 with definite
magnetic and electric flux sectors, maximizes the TEE
with γtopo = 2 log(2), a contribution of log(2) from each
of the two boundaries. Linear superposition of differ-
ent MESs |Ξα〉, scrambles the information obtained from
magnetic and electric sectors; especially, at the extreme
case of equal superposition of |Ξα〉, all information about
the global quantum numbers has been lost and we have
γ′ = 0. This offers another example where MESs are the
eigenstates of loop operators defined on the cylinder from
the entanglement cut.

V. CONCLUSION

In this paper, we demonstrated that on general
grounds, the entanglement entropy of topologically or-
dered phases depends on the ground state when the
entanglement cut is non-contractible. Furthermore, we
showed that this dependence can be used to extract
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MES Ty Fy quasi-particle
Ξ1 0 0 1
Ξ2 1 0 m
Ξ3 0 1 e
Ξ4 1 1 em

TABLE I: List of Z2 magnetic flux Ty, Z2 electric flux Fy and
corresponding quasi-particle of Wilson loop operator for the
four MESs |Ξα〉 of the toric code with system geometry in
Fig.1b. The definitions of Ty and Fy are in Appendix C.

FIG. 8: The four minimum entropy states of the Z2 topo-
logical phase corresponding to the bipartition shown in the
figure expressed as linear combinations of the four magnetic
flux states. The magnetic π flux is represented by the thick
blue and green lines.

braiding and statistics of the anyonic quasiparticles in the
topological phase. We also developed an efficient Varia-
tional Monte Carlo (VMC) algorithm to implement our
algoritm to extract braiding and statistics of quasipar-
ticles. We illustrated the general algorithm by studying
two well-known topologically ordered phases, the chiral
spin liquid (CSL) and the Z2 spin liquid using VMC
method and the Z2 toric code model analytically. We
also introduced the concept of minimum entropy states
(MESs) and explained their physical significance.

We note that our algorithm is completely different than
the use of entanglement spectra [38] to extract universal
properties of a topological phase. In particular, our algo-
rithm is valid for all topologically ordered states, includ-
ing those that do not have any edge states, such as Toric
code model. In this context, we note that if edge states
do exist, then the modular matrices extracted using our
algorithm also determine the central charge of the edge
state modulo 8 [18]. Given the ground states, this algo-
rithm determines the topological order to a large extent.
We note that Wen proposed a different way to extract
S and U matrices by calculating the non-abelian Berry
phase [3] which in practice may be difficult to implement,
especially on a lattice, since it requires calculating the de-
generate ground states ψn of the system as function of
the modular parameter τ = ω2/ω1 and calculating the

derivatives such as 〈ψn(τ)|∂τ |ψm(τ)〉.
We note that there may be cases where the π/2 and

2π/3 rotations of the MESs may not be exactly iden-
tifiable with the modular S and US matrices respec-
tively. This may happen, for example, when the particles
have an internal angular momentum which may cause
the wavefunction to acquire an additional phase upon
rotation, over and above the phase due to underlying
topological structure. If the MESs correspond to spin-
singlet spin-liquid wave functions (such as CSL studied
in this paper) and/or string-net models (such as toric
code model) where there is no such internal structure,
there should not be such additional phase. Further, since
all MESs are locally same, they should all acquire same
extra phase due to any local physics and therefore, the
extra phase may be separable from the topological phase.
For quantum Hall systems, because of the bulk-edge

correspondence, the fusion algebra and topological spin
of the bulk quasi-particles also determine the fusion rules
and scaling dimensions for the primary fields in the chiral
CFT at the edge. Therefore, in the context of quantum
Hall systems, the entanglement entropy of the ground
state manifold determines robust features of the fields in
the corresponding edge CFT.
It would also be interesting to consider generalization

of the methods developed in our paper to higher dimen-
sions. Discrete gauge theories furnish the best known
theories with long-range entanglement in D ≥ 3 dimen-
sions and akin to D = 2, they again support degenerate
ground states on the torus. It is known that these these
theories again have non-zero TEE that is proportional
to log(|G|), the number of elements in the gauge group
[45, 46]. A simple generalization of the method devel-
oped in this paper shows that TEE for bipartition that
has non-contractible boundaries will again depend on the
ground state, and one will again find certain MESs that
have the maximum knowledge of the quantum numbers
associated with an entanglement cut. Yet we are not
aware of simple generalization of modular transforma-
tions to higher dimensions, the meaning of the matrix
that relates MESs for orthogonal entanglement cuts in
higher dimensions requires further investigation.
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Appendix A: Variational Monte Carlo method for a

linear combination of wave-functions

To calculate TEE for wave functions of different linear
combinations, it is important to establish a VMC algo-
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rithm for wave function as |Φ〉 = cosφ |Φ1〉 + sinφ |Φ2〉,
where we assume |Φ1〉 and |Φ2〉 are properly normalized.
In our case, |Φ1〉 and |Φ2〉 are two degenerate ground
states, 〈α|Φ1〉 and 〈α|Φ2〉 are single Slater determinants
products for each configuration |α〉, making 〈α|Φ〉 a sum
of two Slater determinants products. However, it may
also be generalized to the situation of any wave func-
tions.
In the VMC scenario, the central quantity to evaluate

in each Monte Carlo step is the ratio of 〈α′|Φ〉 / 〈α|Φ〉,
which now has the form:

〈α′|Φ〉
〈α|Φ〉 =

cosφ 〈α′|Φ1〉+ sinφ 〈α′|Φ2〉
cosφ 〈α|Φ1〉+ sinφ 〈α|Φ2〉

(A1)

It is usually much less costly to calculate ratio of
〈α′|Φ1〉 / 〈α|Φ1〉 and 〈α′|Φ2〉 / 〈α|Φ2〉 if |α〉 and |α′〉 are
locally different. For our case, when |α〉 and |α′〉 differ
only by one spin(electron) exchange, a much less costly
and more accurate algorithm may be implemented for
the ratio of determinants with only one different row or
column. Unfortunately, after linear superposing different
|Φi〉, Eqn.A1 no longer has such a privilege.
However, one can re express Eqn.A1 as:

〈α′|Φ〉
〈α|Φ〉 =

a+ bc · tanφ
1 + c · tanφ

where

a = 〈α′|Φ1〉 / 〈α|Φ1〉
b = 〈α′|Φ2〉 / 〈α|Φ2〉

are again ratio of determinants and can be effectively
evaluated, and

c = 〈α|Φ2〉 / 〈α|Φ1〉

can be efficiently kept track of with c′ = a−1bc when-
ever the update |α〉 → |α′〉 is accepted in a Monte Carlo
step. In practice, numerical check should be included to
make sure error for c does not accumulate too much after
a certain number of Monte Carlo steps.
This algorithm may be easily generalized to the linear

combination of n wave functions, with the computational
cost only n times that for a single wave functions.

Appendix B: Variational wave function for Chiral

Spin Liquid

Chiral Spin Liquid From Gutzwiller Projection:

The lattice wave function for the CSL states that we con-
sider are obtained using the slave-particle formalism by

FIG. 9: Illustration of a square lattice hopping model con-
nected with a d + id superconductor. While the nearest
neighbor hopping is along the square edges with amplitude t
((−t) for hopping along dash lines), the second nearest neigh-
bor hopping is along the square diagonal (arrows in bold),
with amplitude +i∆ (−i∆) when hopping direction is along
(against) the arrow. The two sublattices in the unit cell are
marked as A and B.

Gutzwiller projecting a d+ id BCS state [21, 44]. Specif-
ically, we Gutzwiller project the ground state of the fol-
lowing Hamiltonian of electrons hopping on a square lat-
tice at half filling:

H =
∑

〈ij〉
tijc

†
icj + i

∑

〈〈ik〉〉
∆ikc

†
i ck (B1)

Here i and j are nearest neighbors and the hopping
amplitude tij is t along the ŷ direction and alternating
between t and −t in the x̂ direction from row to row; and
i and k are second nearest neighbors connected by hop-
pings along the square lattice diagonals, with amplitude
i∆ik = i∆ along the arrows and i∆ik = −i∆ against the
arrows, see Fig.9. The unit cell contains two sublattices
A and B. This model leads to a gapped state at half filling
and the resulting valence band has unit Chern number.
This hopping model is equivalent to a d + id BCS state
by an SU(2) Gauge transformation. We take ∆ = 0.5t
to maximize the relative size of the gap and minimize the
finite size effect. Please refer to Ref[33] for further details
regarding the exact form of the wave function.

Appendix C: Minimum entropy states of Toric code

model on dividing torus

In this appendix we Schmidt-decompose the individual
Toric code ground states |Ψ〉 in Eqn.20 for the bipartition
of a torus in Fig.1b. It is helpful to introduce a virtual cut
∆ which wraps around the torus in the x̂ direction, and

define
∣

∣

∣Ψ
A(B)
{ql},b

〉

as the normalized equal superposition
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of all the possible configurations of closed-loop strings
C in the subsystem A (B) with the partition boundary
condition specified by {ql = 0, 1}, l = 1, 2, ..., L(so L is
the total length of the boundary), and the number of
crossings of the virtual cut ∆ modulo 2 equals b = 0, 1.
The four ground states may now be expanded as

|ξab〉 =
1

√

2Nq

∑

{ql}∈ a

(

|ΨA
{ql},0〉|Ψ

B
{ql},b〉

+ |ΨA
{ql},1〉|Ψ

B
{ql},(b+1)mod2〉

)

Here {ql} ∈ a = 0 (1) denotes that the only even (odd)
number of crossings are allowed at the boundary Γ1 (the
number of crossings at the other boundary Γ2 must be
same modulo 2). Nq = 2L−2 equals the total number of
valid boundary conditions {ql} ∈ a in each parity sector.

We calculate entanglement entropy using the reduced
density matrix. Here, ρA = trB|Ψ〉〈Ψ| is readily calcu-
lated,

ρA =
1

2Nq

∑

{ql}∈ even

[

(

|c00|2 + |c01|2
)

(

|ΨA
{ql},0〉〈Ψ

A
{ql},0|

+ |ΨA
{ql},1〉〈Ψ

A
{ql},1|

)

+2Real(c∗00c01)
(

|ΨA
{ql},0〉〈Ψ

A
{ql},1|+ |ΨA

{ql},1〉〈Ψ
A
{ql},0|

)]

+
1

2Nq

∑

{ql}∈ odd

[

(

|c10|2 + |c11|2
)

(

|ΨA
{ql},0〉〈Ψ

A
{ql},0|

+ |ΨA
{ql},1〉〈Ψ

A
{ql},1|

)

+2Real(c∗10c11)
(

|ΨA
{ql},0〉〈Ψ

A
{ql},1|+ |ΨA

{ql},1〉〈Ψ
A
{ql},0|

)]

=
1

2Nq

∑

{ql}∈ even

[

|c00 + c01|2|ΨA
{ql},+〉〈Ψ

A
{ql},+|

+ |c00 − c01|2|ΨA
{ql},−〉〈Ψ

A
{ql},−|

]

+
1

2Nq

∑

{ql}∈ odd

[

|c10 + c11|2|ΨA
{ql},+〉〈Ψ

A
{ql},+|

+ |c10 − c11|2|ΨA
{ql},−〉〈Ψ

A
{ql},−|

]

Here |ΨA
{ql},±〉 = 1√

2

(

|ΨA
{ql},0〉 ±ΨA

{ql},1〉
)

and hold

the orthogonal condition.

From the above expression, it immediately follows that
the Renyi entanglement entropy Sn is given by Eqn.21:

Sn =
1

1− n
log (TrρnA)

=
1

1− n
log





(

1

2Nq

)n

·Nq





4
∑

j=1

(2pj)
n









= logNq +
1

1− n
log

4
∑

j=1

pnj

= L log 2−



2 log 2 +
1

n− 1
log

4
∑

j=1

pnj





where pj are defined in Eqn. 22.
To understand the nature of the corresponding MES in

Eqn. 23, we first discuss the quasi-particle excitations of
the Toric code model. Imagine acting a string operator
defined on the links of the lattice

W z(O) =
∏

j∈O

σz
j

Now W z(O)|vacx〉 is an excited states and still an
eigenstate of As and Bp, with As = −1 at the two ends of
O. We may regard them as electric charge quasi-particles
that cost a finite energy to create and the string con-
necting them as an electric field line. To return to the
ground state, the electric charges need to be annihilated
with each other. One way to do this is to wrap the open
string O parallel to x̂ around the cycle of the torus. O
becomes a closed loop C, yet this changes the parity of
electric field winding number along x̂. We define the elec-
tric charge loop operator that insert an additional electric
field in the x̂(ŷ) direction by the above procedure as a Z2

electric flux insertion operator Tx(Ty).

Tx|ξ1b〉 = |ξ0b〉
Tx|ξ0b〉 = |ξ1b〉
Ty|ξa1〉 = |ξa0〉
Ty|ξa0〉 = |ξa1〉 (C1)

There is also a magnetic field, which determines the
phase of the electric charge as it moves. In particular,
when there is a magnetic field along the ŷ direction of
the torus of 1(0) total flux(mod2), the electric charge
picks up a −(+) sign traveling around the loop around
the x̂ direction, and similarly for the magnetic field along
the x̂ direction. Denoting the insertion operator of such
Z2 magnetic flux as Fy and Fx, the loop operators of the
magnetic charge (vison), we have,

TxFy = −FyTx

TyFx = −FxTy
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They suggest that Tx(Ty) is the magnetic flux measur-
ing operator in the ŷ(x̂) direction and Fx(Fy) is the elec-
tric flux measuring operator in the ŷ(x̂) direction. Note
that both electric and magnetic flux are defined mod-
ulo 2 in correspondence with the Z2 gauge theory. After
simple algebra,

Fy|ξab〉 = (−1)a|ξab〉
Fx|ξab〉 = (−1)b|ξab〉 (C2)

Compare Eqn. C1 and C2 with Eqn. 23, we arrive at
the conclusions listed in Table I.

Appendix D: Modular Transformations

The S and U matrices describe the action of modular
transformations on the degenerate ground states of the
topological quantum field theory on a torus. For Abelian
phases, the ij’th entry of the S matrix corresponds to
the phase the i’th quasi-particle acquires when it encir-
cles the j’th quasi-particle. The U matrix is diagonal and
the ii’th entry corresponds to the phase the i’th quasi-
particle acquires when it is exchanged with an identical
one. Let us first review the geometric meaning of these
transformations. Labeling our system by complex coor-
dinates z = x + iy, the torus may be defined by the
periodicity of ω1 and ω2 along the two directions ê1 and
ê2 (need not to be orthogonal) i.e. z ≡ z + ω1 ≡ z + ω2.
Now consider a transformation

(

ω1

ω2

)

→
(

ω′
1

ω′
2

)

=

(

a b
c d

)(

ω1

ω2

)

(D1)

where a, b, c, d ∈ Z. Since our system lives on a lattice,
the inverse of the above matrix should again have integer
components, hence the determinant ad−bc = 1. One can
show that matrices with these properties form a group,
called SL(2,Z). Interestingly, all the elements in this
group can be obtained by a successive application of the
following two generators of SL(2,Z):

• S =

(

0 1
−1 0

)

. This transformation corresponds

to ω1 → ω2 and ω2 → −ω1 and therefore, for a
square geometry corresponds to rotation of the sys-
tem by 90o.

• U =

(

1 1
0 1

)

. Under this transformation ω1 →
ω′
1 = ω1 + ω2 and ω2 → ω′

2 = ω2. Consider a
loop on the torus with winding numbers n1 and
n2 along ω1 and ω2 directions. By definition of
the U transformation, the winding numbers in the
transformed basis:

n1ω1 + n2ω2

= n1(ω
′
1 − ω′

2) + n2ω
′
2

= n′
1ω

′
1 + n′

2ω
′
2

where n′
1 = n1 and n′

2 = n2 − n1 are the winding
numbers along the ω′

1 and ω′
2 directions.

The transformation properties of the resulting MESs
under modular transformations would yield the desired
S and U matrices. Further, for a symmetry transfor-
mation of F (S,U) on (ω1, ω2)

T , the corresponding mod-
ular transformation on MESs would yield the modular
F(S,U) matrix.
In the main text, we have obtained S and U matrices

for the toric code model from the action of these transfor-
mations on the basis states |ξab〉. We now show that one
can also obtain the US matrix by studying the action of
2π/3 rotation R2π/3 on the MESs (provided that R2π/3 is
symmetry of the model). To see this, consider a triangu-
lar lattice that is defined by two lattice vectors (complex

numbers) ω1, ω2 with ω1 = (1, 0) and ω2 = (1/2,
√
3/2).

The transformation of our interest is the transformation
of ω1, ω2 under R2π/3 rotation: ω1 → ω′

1 = −ω1+ω2 and
ω2 → ω′

2 = −ω1. Therefore, one can write the R2π/3-
matrix

R2π/3 =

(

−1 1
−1 0

)

(D2)

This matrix belongs to the group SL(2,Z) and simple
algebra shows that R2π/3 = US. One may also check

that R3
2π/3 = 1 as one might expect. Therefore, knowing

the action of R2π/3 on the MESs would lead to the US
matrix.

Appendix E: Modular matrices of Z2 gauge theory

by transforming minimum entropy states

Let’s study the action of modular transformation on
the MESs |Ξα〉 for the Z2 gauge theory in Sec. IVB and
compare the resulting modular matrices with the known
results.
First consider a π/2 rotation symmetric square sample.

Under π/2 rotation, |ξab〉 → |ξba〉. According to Eqn.23,
the transformation for the MESs |Ξα〉 for cuts along ŷ:

|Ξ1〉 →
1

2
(|Ξ1〉+ |Ξ2〉+ |Ξ3〉+ |Ξ4〉)

|Ξ2〉 →
1

2
(|Ξ1〉+ |Ξ2〉 − |Ξ3〉 − |Ξ4〉)

|Ξ3〉 →
1

2
(|Ξ1〉 − |Ξ2〉+ |Ξ3〉 − |Ξ4〉)

|Ξ4〉 →
1

2
(|Ξ1〉 − |Ξ2〉 − |Ξ3〉+ |Ξ4〉)
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Hence, the modular S matrix is given by

S =
1

2







1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1







This is exactly what one expects from the topolog-
ical quantum field theory corresponding to the zero
correlation length deconfined-confined Z2 gauge theory.
There are four flavors of quasi-particles in the spectrum:
1,m, e, em, as we have shown in Table I. The electric
charge e and magnetic charge (vison) m both have self-
statistics of a boson and pick up a phase of π when they
encircle each other (and as a corollary, the same phase
when they encircle em). By studying S, one gets the self
and mutual statistics for quasi-particles encircling each
other.
In Sec III A we further show that symmetry is not re-

quired to determine the S matrix. In Eqn. 23 we have
shown the MESs for cuts along w2 = ŷ direction:

|Ξ1〉 =
eiϕ1

√
2
(|ξ00〉+ |ξ01〉)

|Ξ2〉 =
eiϕ2

√
2
(|ξ00〉 − |ξ01〉)

|Ξ3〉 =
eiϕ3

√
2
(|ξ10〉+ |ξ11〉)

|Ξ4〉 =
eiϕ4

√
2
(|ξ10〉 − |ξ11〉)

where ϕi are undetermined phases for MESs |Ξi〉. The
unitary matrix U1 connecting the w2 MESs and the elec-
tric flux states:

U1 =
1√
2









eiϕ1 eiϕ2

eiϕ1 −eiϕ2

eiϕ3 eiϕ4

eiϕ3 −eiϕ4









(E1)

On the other hand, it is straightforward to verify that
for loops along w′

2 = −x̂+ ŷ direction, which satisfies our
requirement Eqn.8, the corresponding MESs:

|Ξ′
1〉 =

eiϕ
′

1

√
2
(|ξ00〉+ |ξ11〉)

|Ξ′
2〉 =

eiϕ
′

2

√
2
(|ξ00〉 − |ξ11〉)

|Ξ′
3〉 =

eiϕ
′

3

√
2
(|ξ01〉+ |ξ10〉)

|Ξ′
4〉 =

eiϕ
′

4

√
2
(|ξ01〉 − |ξ10〉)

again ϕ′
i are undetermined phases for MESs |Ξ′

i〉. The
unitary matrix U2 connecting the w′

2 MESs and the elec-
tric flux states:

U2 =
1√
2









eiϕ
′

1 eiϕ
′

2

eiϕ
′

3 eiϕ
′

4

eiϕ
′

3 −eiϕ′

4

eiϕ
′

1 −eiϕ′

2









(E2)

Combining Eqn. E1 and E2, we can write down the
modular S matrix as:

S = U−1
2 U1

=
1

2









ei(ϕ1−ϕ′

1
) ei(ϕ2−ϕ′

1
) ei(ϕ3−ϕ′

1
) −ei(ϕ4−ϕ′

1
)

ei(ϕ1−ϕ′

2
) ei(ϕ2−ϕ′

2
) −ei(ϕ3−ϕ′

2
) ei(ϕ4−ϕ′

2
)

ei(ϕ1−ϕ′

3
) −ei(ϕ2−ϕ′

3
) ei(ϕ3−ϕ′

3
) ei(ϕ4−ϕ′

3
)

ei(ϕ1−ϕ′

4
) −ei(ϕ2−ϕ′

4
) −ei(ϕ3−ϕ′

4
) −ei(ϕ4−ϕ′

4
)









To ensure the existence of an identity particle in accord
with the first row and column, we impose the conditions:

ϕ′
1 = ϕ′

2 = ϕ′
3 = ϕ′

4

= ϕ1 = ϕ2 = ϕ3 = ϕ4 + π

This leads to the following modular S matrix:

S =
1

2







1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1







which is indeed the correct result for Z2 toric code.
Now consider the transformation corresponding to U

matrix as described in Appendix D, where n′
1 = n1 and

n′
2 = n2 − n1 are the winding numbers along the ω′

1

and ω′
2 directions. Using this expression and Eqn.23, the

transformation for MESs from w2 cut to w′
2 cut:

|Ξ1〉 → |Ξ1〉
|Ξ2〉 → |Ξ2〉
|Ξ3〉 → |Ξ3〉
|Ξ4〉 → −|Ξ4〉

This leads to the following modular U matrix:

U =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1






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Again, this is what is expected from the Z2 gauge the-
ory. The sign of −1 on the last entry of the diagonal cor-
responds to the fermionic self statistics of the em while
the positive signs correspond to the bosonic self statistics
of 1, e and m particles.
To see a more generic example to derive the U matrix

from rotation symmetry, we first define the toric code on
a triangular lattice, with system dimensions such that
the 2π/3 rotation is a symmetry of the system. The
Hamiltonian is same as Eq. 15 with the star ‘s′ denoting
six links emanating from a vertex while the plaquette
‘p′ now involves three links. We again denote the four
degenerate ground states on a torus as |ξab〉 with a, b =
0, 1 denoting the parity of electric field along the non-
contractible cycles. The relation between the MESs |Ξα〉
and the states |ξab〉 remains unchanged (Eqn. 23). The
calculation for the transformation under 2π/3 proceeds
analogously to that for π/2 rotation and one finds:

R2π/3|ξ00〉 = |ξ00〉
R2π/3|ξ01〉 = |ξ10〉
R2π/3|ξ10〉 = |ξ11〉
R2π/3|ξ11〉 = |ξ01〉

Translating the action of R2π/3 on the states |ξα〉 to
that on states |Ξα〉, one finds

US =
1

2







1 1 1 1
1 1 −1 −1
1 −1 1 −1
−1 1 1 −1







Combining the expression and the S matrix, one ob-
tains

U =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1







as expected.
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