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Multiplets in a ligand-field are treated within total-energy density functional calculations by
imposing density matrix constraints on the d-orbital occupation numbers consistent with the local
site and state symmetries. We demonstrate the utility of this approach for the case of isolated Fe
phthalocyanine (FePc) molecules with overall D4h symmetry: We find three stationary states of
3Eg,

3A2g, and
3B2g symmetries of the Fe2+ ion and total energy calculations clearly demonstrate

that the ground state is 3A2g. By contrast, a columnar stacking of the FePc molecules (α-FePc) is
found to change the ground state to 3Eg due to hybridization between adjacent molecules.

PACS numbers: 71.15.Nc, 31.15.es, 75.50.Xx

I. INTRODUCTION

State-of-the-art ab initio electronic structure calculations based on density-functional theory (DFT) have been
recognized as a powerful tool to explore the ground state electronic structure. However, there are systems, such
as transition-metal–based complexes and molecules, where the multiplet structure is essential for understanding the
electronic structure. Because of the inherent multi-determinant nature of the general atomic multiplet problem1, a
general solution remains a challenging issue. Even in the presence of the lower symmetry caused by a ligand- (or
crystal-) field which may lift the atomic multiplet degeneracies, DFT calculations often cannot adequately treat the
experimentally observed multiplet structures, and thus fail to find the true ground state or the lowest state within
a given ligand (or crystal) symmetry. This difficulty is intrinsically related to the fact that the charge (and spin)
density belongs to the completely symmetric representation of a group, but the various multiplets (and their orbital
occupations) transform according to different irreducible representations, i.e., the symmetry of the charge (spin)
densities is not sufficient to distinguish among different multiplets since all the multiplets generate densities of the
same symmetry. In order to overcome such difficulties, it is desirable to find an approach within DFT (LDA/GGA)
calculations to find the lowest state of a given symmetry.
Proposed approaches for calculating multiplet energies in a ligand-field include, for example, combining the DFT

single-particle wave functions and configuration interaction (CI)2,3. Such CI calculations, however, are already outside
of a DFT scheme depending on the charge and spin densities, and are computationally expensive because of the need to
construct appropriate (and/or enormous) multi-Slater-determinants. Alternatively, in the present paper, we propose
a simple DFT approach to treat multiplets in a ligand-field, consistent with the overall symmetry and the symmetry
of the individual state, by imposing a density matrix constraint to control the occupation numbers of electrons in, for
example, the d-orbitals. To illustrate our approach, we search for the ground state multiplet for Fe phthalocyanine
(FePc), a material with technological and biological applications4.

II. STRUCTURE OF FE-PHTHALOCYANINE

An isolated molecule of FePc has the simple planar structure shown in Fig.1 (a), where the Fe2+ (d6) ion located at
the center of the molecule has D4h site symmetry. In condensed form, it shows two polymorphs: a metastable α-form
found in polycrystalline powders or in thin films with ferromagnetic order below 10 K5–9, and a stable paramagnetic
β-form10–13 obtained by sublimation growth as a single crystal or by heating α-FePc at 350◦C. In both forms, the
ligand-field splits the d states into three singlets (dxy, dz2 , and dx2−y2) and one doublet (dxz+yz). Ignoring the high
lying dx2−y2 state that bonds to the four outer N ions, three spin-triplet multiplets — 3Eg (d2xyd

1
z2d3xz+yz),

3B2g

(d1xyd
1
z2d4xz+yz), and

3A2g (d2xyd
2
z2d2xz+yz) — may be constructed, each of which generates a charge and spin density

of D4h symmetry.
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FIG. 1: (Color online) (a) Atomic structure of the Fe phthalocyanine (FePc) molecule; the Fe2+ (d6) ion has D4h symmetry.
(b) Chain structure of α-FePc, characterized by a columnar stacking of the planar molecules with separation of b=3.78 Å and
a tilt angle φ=26.5◦ with respect to the chain axis.

Despite extensive experimental and theoretical investigations spanning decades, which multiplet is the ground state
is still debated: Magnetic anisotropy experiments12,15 originally assigned the 3Eg multiplet as the ground state, but
later magnetic susceptibility and magnetic circular dichroism experiments13,14 favored ground states of either 3B2g or
3A2g symmetry. (There is, however, general consensus that the ground state has S=1.) Meanwhile, recent Mössbauer
spectroscopy and X-ray magnetic circular dichroism (XMCD) experiments8,9 for α-FePc found a 3Eg ground state
with a large orbital moment of 0.53µB, and a large hyperfine field of 66.2T that is parallel to the magnetic moment8.
Magnetization hysteresis experiments, furthermore, indicated that the easy axis of magnetization is parallel to the
molecule plane, i.e., a planar magnetic anisotropy9.
Similarly, DFT calculations are still contradictory: recent pseudo-potential and full-potential linearized augmented

plane wave (FLAPW) calculations16–18 within the generalized gradient approximation (GGA) support the 3Eg ground
state, in which qualitative agreement with experimental observations is obtained for α-FePc9, but the 3A2g or 3B2g

ground state have also been found19–21. Unfortunately, up to now there have not been direct comparisons of the total
energies of the various multiplets within a DFT scheme. Thus, determining the ground state multiplet of the FePc
molecule remains unsolved from both the experimental and theoretical points of view.

III. MODEL AND METHOD

To model a single FePc molecule with D4h symmetry, as shown in Fig. 1(a), we adopt a monolayer slab with infinite
vacuum on both sides, a large in-plane lattice constant of 27 Å, and the atomic positions given by experiment22.
Calculations were done by the film-FLAPW method23,24 and used the GGA25 for exchange-correlation. LAPW basis
sets with cutoffs of |k +G| ≤ 3.6 − 4 a.u.−1 and muffin-tin (MT) sphere radii of 2.3 a.u. for transition-metals, and
1.2 a.u. for N and C, and 0.8 a.u. for H were used; lattice harmonics with angular momenta up to ℓ = 8 for Fe, 6 for
N and C, and 4 for H are employed to expand the charge and spin densities.
Before presenting our strategy to search for given multiplets, we discuss some aspects of the symmetry in more

detail. In D4h symmetry, the non-spherical densities arising from the Fe d-orbitals can be expanded into three
lattice harmonics: K1(~r) = Y20(~r), K2(~r) = Y40(~r), and K3(~r) = (Y44(~r) + Y4−4(~r))/

√
2. Each of the multiplets is

a triplet, i.e., 4 majority and 2 minority d electrons. The majority non-spherical density is the same for all three
multiplets and proportional to ρ↑ ∼ |ud|2 [(2

√
5/7)K1 − (1/7)K2 +

√

5/7K3], where ud is the radial d orbital. The
corresponding minority densities for the various multiplets differ in the coefficients of the lattice harmonics: ρ↓(A2g) ∼
|ud|2 [K2+

√

5/7K3], ρ↓(B2g) ∼ |ud|2 [(2
√
5/7)K1− (8/7)K2], and ρ↓(Eg) ∼ |ud|2 [(−

√
5/7)K1− (3/7)K2+

√

5/7K3].
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Starting with initial non-spherical charge and spin densities corresponding to a given multiplet does not necessarily
lead to self-consistent results for that multiplet. In fact, using a straight mixing scheme for the spin-density, self-
consistent calculations are found to converge to the 3Eg solution regardless of the different initial d-occupancies,
consistent with previous DFT calculations16–18. (Using the “standard” starting density derived from overlapping
spherical densities invariably lead to the 3Eg state.)
In self-consistent calculations, the trajectory of the charge/spin density from an initial one is complicated and

non-linear, making definitive statements regarding the self-consistency process difficult. For the present case of FePc
D4h symmetry, however, the situation is somewhat simplified since the changes during the self-consistency cycle are
mainly governed by the strong hybridization between the minority-spin Fe dxz,yz and neighboring N pz orbital that
form bonding and anti-bonding states. Since the 3Eg state has one electron in the dxz,yz,↓ orbital, the electron
occupies only the bonding state, which drives a self-consistent solution to the 3Eg state. By carefully tailoring the
mixing scheme, we found that we were able to obtain a 3A2g solution (no electron in the dxz,yz,↓ orbital). However,
we were never able to reach a 3B2g solution (two electrons in the dxz,yz,↓ orbital), since electrons need to occupy
both the bonding and anti-bonding states, which is generally an unfavorable electronic structure. Thus, contrary
to conventional expectations and practices, the DFT calculations, even with appropriate initial conditions, are not

guaranteed to treat all multiplets considered, and may not — and often do not — find the true ground state.
To generalize the DFT method to multiplets with given symmetries, we introduce an appropriate functional with

constraint fields,

E[ρ(r)] = EGGA[ρ(r)] +
∑

mm′

µα
m′m(nα

mm′ −Nα
mm′), (1)

where EGGA[ρ(r)] is the usual total energy functional in the GGA, nα
mm′ is a density matrix of d-orbitals of an atom

α, and Nα
mm′ is an occupation number that should be constrained. The µα

m′m is a constraint field (Lagrange multiplier
parameter)26 that can be viewed as a field to constrain the density matrix, such that the desired multiplet structure is
obtained, similar to the external magnetic field in fixed moment calculations. By minimizing Eq. (1), the Kohn-Sham
equation can be written as

[

HGGA +
∑

mm′

µα
m′mP̂α

mm′

]

Φk,b = ǫΦk,b, (2)

where P̂α
mm′ is a projection operator onto the mm′ subspace. The constraint term in the Hamiltonian effectively

projects out the chosen irreducible representation for the overall wave function. If the constraint fields are zero for a
set of nα

mm′ (or the constraints are satisfied), the solution obviously is also a solution to the standard unconstrained
DFT equations; this situation is again similar to fixed moment calculations where the unconstrained solutions are
found when the magnetic constraint fields are zero (or equivalently, the minority and majority Fermi levels are equal).
In the LAPW basis, nα

mm′ is given by the projection of the wave function onto the Yℓm subspace27 as

nα
mm′ =

∑

k,b

fk,b〈Φk,b |P̂α
mm′ | Φk,b〉, (3)

P̂α
mm′ = |uα

ℓ Yℓm〉〈uα
ℓ Yℓm′ |+ 1

〈u̇ℓu̇ℓ〉
|u̇α

ℓ Yℓm〉〈u̇α
ℓ Yℓm′ |, (4)

where k and b refer to a k point in the Brillouin zone and a band index, respectively. Self-consistent calculations
were carried out using the second-variation scheme, i.e., the diagonalization of Eq. (2) was carried out in a basis of
the eigenfunctions, φk,b, of HGGA. Full self-consistency was achieved for the density matrix as well as the charge and
spin densities.
In practice, we specify a set of constraint fields, µα

n, along the directions of the eigenvectors of nα
mm′ consistent with

the site symmetry (e.g., µz2 , µxz=µyz, µx2−y2 , and µxy in the case of D4h symmetry). Then, the µα
mm′ are rotated

back from the µα
n are introduced in Eq. (2), and the corresponding nα

mm′ are determined self-consistently. The total
energy is calculated using Eq. (1), with Nα

mm′ = nα
mm′ .

Note that the self-consistent solution obtained by first applying constraint fields and then decreasing them to
zero need not lead to the same solution as an unconstrained calculation. Although this situation may seem sur-
prising at first, it is rather common and physically significant: Experimentally, there is often a difference in mag-
netization between field-cooled (FC) and zero-field-cooled (ZFC) values, which is of fundamental importance in the
physics of spin-glasses. Computationally, multiple zero-field (unconstrained) magnetic solutions, including the zero-
magnetization/non-magnetic one, often exist; different solutions can be obtained, for example, by (i) using a stag-
gered/uniform magnetic field (those magnitude is then reduced to zero) to pick out AFM/FM order or, (ii) for



4

itinerant electron metamagnets28 and high-spin/low-spin ferromagnets, varying the magnitude of the magnetic field
before removing it. Thus, when multiple solutions exist, as is the case for both multiplets and these specific magnetic
examples, the application of external constraint fields may be helpful, or sometimes even necessary, in order to obtain
the desired unconstrained solution.

IV. RESULTS AND DISCUSSION

The minority-spin occupations, nxz+yz,↓, and the total energy differences, ∆E, with respect to variations of the
µxz(yz),↓ for the single FePc molecule are shown in Fig. 2 (a) and (b), respectively, when the other µn’s are set to
zero. Starting from a superposition of spherical atoms and with no constraints, i.e., µn=0 (closed squares in Fig. 2),
yields the multiplet structure shown in Fig. 3(a): the singlet dxy in the minority-spin states is fully occupied, and
the doublet dxz+yz, located at the top of the valence states, is occupied by one electron, thus corresponding to the
3Eg state. The degeneracy in the doublet dxz+yz occupied by a single electron could be removed by a Jahn-Teller
distortion, as pointed out previously29. We confirmed that the total energy of the system that degrades to a D2h

symmetry turns out to be lower by 45meV/molecule than that with the original D4h symmetry.
When the constraint field µxz(yz),↓ is introduced in the negative direction (cf., Fig. 2), nxz+yz,↓ increases to ∼1.6

electrons; if µxz(yz),↓ is decreased to zero (zero constraint field) the system remains in the stationary solution, i.e.,

the 3B2g state is a metastable solution to the standard GGA equations. In this multiplet structure, Fig. 3(b), the
doublet dxz+yz in the minority-spin states is fully occupied while the singlet dxy shifts up in energy above the valence
top, corresponding to 3B2g. The total energy is now lower than that of the 3Eg state by 43meV/molecule.
In contrast, when µxz(yz),↓ is introduced in the positive direction, nxz+yz,↓ decreases almost to zero, at which point

the doublet dxz+yz in the minority-spin states shifts up above the top of the valence states and the two singlets dxy
and dz2 are fully occupied [Fig. 3(c)]. The total energy of this 3A2g configuration is lower than those of the 3Eg

and 3B2g ones by 97 and 54meV/molecule, respectively. We thus conclude that the ground state of the single FePc
molecule is the 3A2g multiplet.
A phase diagram for the multiplets with respect to the nxz+yz,↓ is summarized in Fig. 2(c), where the constraint

fields µn are set so as to obtain each multiplet solution: µz2,↓ (µxy,↓) = 0.03 (-0.03) htr for 3Eg, 0.03 (0.03) htr for
3B2g, and -0.03 (0.03) htr for 3A2g. Note that each multiplet solution appears only in a restricted narrow range in
nxz+yz,↓ space. This behavior rationalizes the observed difficulty of stabilizing, for example, the 3B2g solution: During
the standard self-consistency process, the occupations of the various Fe (and N) orbitals vary due to hybridization
and Fermi filling effects; if these variations are too large (which may be less than ∼0.1 electron), the solution “jumps”
from the initial 3B2g manifold to the 3Eg one. However, once the solution is “close enough” to the self-consistent one,
the constraint field can be removed and the system will iterate to the metastable solution. Thus, the imposition of
the constraints on the density matrix provides an approach that permits the calculation of states that may be difficult
to stabilize otherwise, independent of the initial densities. These results indicate that different solutions proposed
previously16–21 may be sensitive to (or an accidental result of) calculational details.
Next, we consider the electronic structure of α-FePc in the chain structure shown in Fig. 1(b)6,7. Note that although

the columnar stacking breaks theD4h symmetry at the Fe position, the constraint fields, as done previously, can still be
imposed. No stationary (µn = 0) solutions for the 3B2g and 3A2g states are found, and the ground state is determined
to be 3Eg; the total energy is now lower than those of the 3B2g and 3A2g by about 200 and 100meV/molecule,
respectively, when compared to the lowest energies in the constraint fields.
The calculated band structure along the chain axis and the partial density of states (DOS) of the Fe d-orbitals for

the 3Eg state are shown in Fig. 4. Due to hybridization between the adjacent molecules along the chain axis, the
dxz+yz and dz2 orbitals have large dispersion along the chain axis, and a small energy gap (0.17 eV) in the minority-
spin dxz+yz bands appears, indicating semiconducting behavior. As seen in the DOS, the hybridization pushes the
bonding dxz+yz bands down to lower energy below the top of the valence band, which causes the ground state to be
the 3Eg one.
We also carried out magnetic anisotropy calculations for the chain structure, using the second variational SOC

method and the force theorem30–32, where the magnetic anisotropy energy, EMA, is obtained as the energy eigenvalue
difference for the magnetization oriented along the in-plane and out-of-plane directions with respect to the molecule
plane. The calculations demonstrate that EMA has a large negative value of 0.6meV/molecule, indicating that the
magnetization energetically favors pointing in the planar direction and a large orbital moment of 0.14µB is induced,
in qualitative agreement with recent XMCD experiments9. In addition, the calculated hyperfine field due to the Fermi
contact term is found to have a positive value of 13.4 T, i.e., parallel to the magnetic moment, due to a large positive
contribution from the valence s-like electrons. (The quantitative discrepancy with the Mössbauer experiments8 may
be attributed to the underestimation of the orbital moment in the calculation.)
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FIG. 2: (Color online) (a) Minority-spin dxz+yz occupations, nxz+yz,↓, in the Fe MT sphere and (b) the total energy difference,
∆E, with respect to the constraint field, µxz(yz),↓, for the FePc molecule, where the other µn’s are set to zero. Closed squares
indicate the solution obtained without the constraint field. (c) ∆E as a function of the nxz+yz,↓, where the constraint fields,
µn, are set so as to obtain each multiplet.



6

2

3

2

3

2

3
(c) 3A2g(b) 3B2g(a) 3Eg

x2-y2

–1

0

1

–1

0

1

–1

0

1

E
n
er
g
y
 (
eV
)

xz,yz

xy

z2

z2

z2

xy

xyxz,yz

xz,yz

–3

–2

–1

–3

–2

–1

–3

–2

–1

Minority MajorityMinority Majority
–3 –3 –3

Minority MajorityMinority MajorityMinority Majority
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3A2g, and (c) 3B2g , obtained as stationary states in self-consistent

calculations with zero constraint field (µn=0). Bars (in color) represent weights of d-orbitals. Negative and positive energies
indicate occupied and unoccupied orbitals, respectively.

V. SUMMARY

In summary, we have generalized the DFT total energy calculations to treat different multiplets in a ligand-field by
incorporating a density matrix constraint to control the occupation numbers of electrons in d-orbitals. We have applied
this approach to solve a long-standing question regarding the ground state of FePc: We find three stationary states,
3Eg,

3A2g, and
3B2g, of the Fe

2+ ion in the single FePc molecule, with total energy calculations demonstrating that the
ground state is the 3A2g configuration. The columnar stacking of the FePc molecules in the α-FePc changes the ground
state to 3Eg, due to the hybridization between adjacent molecules along the chain axis. The magnetic anisotropy
calculations indicate that the magnetization is preferentially in-plane and large orbital moments are induced, in
agreement with the recent XMCD experiments.
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