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Accounting for the effects of disorder on the transport properties of electronic devises is in-
dispensible for comparison with experiment. However, theoretical treatment of disorder presents
essential difficulty because the disorder breaks the periodicity of the system. The coherent poten-
tial approximation (CPA) solves this problem by replacing the disordered medium with a periodic
effective medium. However, calculating the electron current within CPA requires summing scat-
tering diagrams to infinite order called vertex corrections. In this work we reformulate CPA for
non-equilibrium electron transport (NE-CPA). This approach, based on the non-equilibrium Green
function formalism, greatly simplifies the treatment of disordered transport by eliminating the vertex
corrections.

I. INTRODUCTION

Disorder is present in electronic devices either by de-
sign (e.g. doping) or as an inevitable side effect of the
experimental process. Therefore, for theoretical models
to quantitatively compare with experiments, it is neces-
sary that the disorder is included in the models. Unfortu-
nately, in the present state of the theory, accounting for
the effects of disorder on the transport properties of de-
vices is too cumbersome and it is rarely done in practice.
The vast majority of theoretical reports involve ideal sys-
tems. The reason is that calculating the electronic struc-
ture and properties relies essentially on the periodicity of
the system. Thus, there is a principal difficulty in treat-
ing random disorder because it breaks this periodicity.

There are many possible types of disorder but the
most commonly considered are: (i) substitutional dis-
order when impurity atoms substitute randomly for host
atoms in the lattice and (ii) magnetic disorder when the
magnetic moment directions deviate randomly from the
spin quantization axis. The coherent potential approx-
imation (CPA) is a powerful tool to threat these types
of disorder.1 It is based on the the Green function (GF)
formalism, which is especially suitable for that purpose
because a perturbative expansion can be developed for
the GF.2 CPA replaces the actual environment seen by
an electron by an effective periodic medium which is
characterized by a complex self-energy. This self-energy
or energy dependent coherent potential is obtained self-
consistently from the requirement that the scattering
vanishes on average in the effective medium. Originally
CPA was introduced by Soven in 19673 and indepen-
dently by Taylor.4 Velicky et al. formulated the single-
site approximation to the CPA.5

The CPA technique for electron transport was devel-
oped by Velicky in 1969 for the purpose of calculating
the conductivity in disordered systems using the Kubo
formula.6 The steady-state electron current of a non-
interacting system can be expressed through the product
of the retarded and advanced GFs.7,8 In the presence of
disorder the GFs cannot be decoupled and the current

expression contains diagrams to infinite order. The first
term, called ’bubble’ or CPA term, contains no scatter-
ing and represents the specular conductance. The rest
of the terms, known as vertex corrections (VCs), give all
the contributions to the diffusive conductance. Compar-
ing CPA with brute force supercell calculations show that
taking into account the diffusive contributions is essential
to describe the conductance correctly.9–11 Therefore, VCs
are extremely important, however, calculating them can
present a substantial technical difficulty.12 Recently, it
was shown that the on-site vertex function which appears
within the single-site CPA formalism play the role of the
local chemical potential within the Büttiker’s voltage-
probe approach.13

CPA has been implemented within the framework of
several electronic structure methods, such as Korringa-
Kohn-Rostoker (KKR)14,15 and Linear Muffin-Tin Or-
bitals (LMTO).16,17 Recently Guo et al. showed that
calculating steady-state current using the charge den-
sity from first principles calculations can lead to large
errors.18 They introduces a ’non-equilibrium vertex cor-
rection’ (NVC) to account for the non-equilibrium charge
distribution. However, this NVC is a correction to the
electronic structure, not the current which is calculated
using the standard CPA plus VCs methodology.

In this work we propose a non-equilibrium formula-
tion of CPA (NE-CPA) for electron transport through
disordered systems. The method is based on the non-
equilibrium GF (NEGF) formalism.19 Within this for-
malism there are two independent GFs, the retarded G
and the Keldysh F . The proposed method relies on the
fact that the non-equilibrium current operator depends
linearly on the Keldysh GF. Therefore, in the presence
of disorder the current is directly expressed through the
NEGF of the effective medium. Within NE-CPA the ex-
pression for the current contains only one term which is
equivalent to CPA plus VCs to infinite order. In addition
the Keldysh GF already contains the non-equilibrium
charge distribution information. Thus NE-CPA provides
a much simpler, precise and efficient method to calculate
transport in disordered systems.
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FIG. 1. Schematic view of the two-probe setup consisting
of two electrodes and a scattering region. In this case, the
scattering region is a tunnel barrier with a disordered layer in
the middle.

II. METHODOLOGY

We assume that the wavefunction can be expanded in
terms of a linear combination of orbitals localized around
each atomic site (LCAO). In this basis the Hamiltonian
of the system can be written as

H =
∑

nm,αβ,σ

Hσ
nm,αβc

†
nασcmβσ (1)

where n,m are site, α, β orbital, and σ spin indices re-
spectively. The Hσ

nm is Hamiltonian matrix element be-
tween two sites n and m for spin σ. The current is nor-
mally calculated in the two-probe setup, schematically
shown in Fig. 1. The current flows between the left (L)
and right (R) electrodes through a central scattering re-
gion (C).
The continuity equation requires that the current

should be the same anywhere in the system. Therefore,
the current operator is obtained from the continuity con-
dition to be

Î =
e

i~

∑

n,αβ,σ

(Hln,αβ,σc
†
lασcnβσ −Hnl,αβ,σc

†
nασclβσ) (2)

We adopt the principal layer (PL) convention according
to which the PL is the smallest unit cell in the z direction
such as there is hopping only between nearest neighbor
PLs. Therefore, the site position is r = R+τ where R =
(ρ, z) is a lattice vector consisting of the two-dimensional
vector ρ in the plane and the PL number z and τ is the
atomic positions within the PL. Thus, the site index can
be decomposed to n = (ρ, z, τ). Then the expectation
value of the operator gives the physical current through
PL i to be7

I =
e

~

∑

ρρ′

Tr [Hi+1,i(ρ
′, ρ)Fi,i+1(ρ, ρ

′; t, t+)− (3)

Hi,i+1(ρ
′, ρ)Fi+1,i(ρ, ρ

′; t, t+)]

where both H and F are matrices with respect to the
indices (τ, α, σ) and matrix multiplication is assumed.
The F = G< +G> is the Keldysh NEGF.19

The expression above is general and applies to any sys-
tem out of equilibrium. In the steady-state situation, we

can make a Fourier transform from time to energy space

I =
e

~

∫

dE Tr [Hi+1,iFi,i+1(E)−Hi,i+1Fi+1,i(E)] (4)

where now the trace includes a sum over all repeating in-
dices including the in-plane vectors. This formula has the
simple interpretation as the net flow of charge through a
surface between PL i and i + 1. Due to the continuity
equation, the PL i can be any PL, either in the electrodes
or in the scattering region. Customarily it is chosen to
be at the interface.
The Hamiltonian of the two-probe system without dis-

order can be decomposed as

H = HC +HL +HR + (HCL +HCR + h.c.) (5)

where HC , HL and HR are the Hamiltonian matrix el-
ements of the isolated scattering region, left and right
electrodes, HCR(CL) is the coupling between the scatter-
ing region and the electrodes. We can derive expressions
for the retarded and the Keldysh GF under the assump-
tion that each electrode of the system is maintained at a
local equilibrium with two different chemical potentials
µL and µR. As input we have the GF of the discon-
nected parts, gCC and gLL(RR). The GF of the isolated

scattering region is gCC = (E − HC)
−1. The surface

GFs for the semi-infinite electrodes is obtained using one
of the available standard methods.20,21 Using those we
can construct the ’connected’ retarded GF of all regions
by treating the overlap between them as perturbation
V = HCL +HCR + h.c.. Projecting the Dyson equation2

on the central region we get

G0
CC = gCC + gCCHCLG

0
LC + gCCHCRG

0
RC (6)

where G0
CC is the retarded GF of the scattering region

coupled to the leads without disorder and G0
L(R)C is the

retarded GF between the left (right) lead and the scat-
tering region. Then we project the Dyson equation at
the interface to obtain

G0
L(R)C = gLL(RR)HL(R)CG

0
CC (7)

Then, combining these two equations yields

G0
CC = gCC + gCCΣG

0
CC (8)

where Σ = ΣL +ΣR is the self-energy due to connection
of the scattering region to the electrodes

ΣL(R) = H†
L(R)CgLL(RR)HL(R)C (9)

Note that the self-energy matrix elements are in the scat-
tering region. Here we use the zero superscript to signify
the quantities before disorder is introduced. Thus, the
expression for the connected GF becomes

G0 = (I − gΣ)−1g = (E −HC − ΣL − ΣR)
−1 (10)
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Next we write down the quantum kinetic equation19 for
the ’connected’ Keldysh GF projected on the scattering
region without disorder

F 0
CC = f0

CC+ f0
CCHCLG

0†
LC + gCCHCLF

0
LC

+ f0
CCHCRG

0†
RC + gCCHCRF

0
RC

(11)

where f0
CC is the Keldysh GF in the isolated scatter-

ing region, should not be confused with the Fermi-Dirac
distribution function f . Caroli et al. assumed that the
retarded and advanced GFs of isolated barrier are real
yielding that the Keldysh GF of the isolated barrier is
zero.7 It can be shown in general that even if there are
states in the scattering region and the Keldysh GF of the
isolated scattering region is nonzero, the steady-state cur-
rent does not depend on the Keldysh GF of the isolated
scattering region and the terms proportional to f0 can
be dropped out22

F 0
CC = gCCHCLF

0
LC + gCCHCRF

0
RC (12)

Next we project the quantum kinetic equation on the
interface

F 0
L(R)C = f0

LL(RR)HL(R)CG
0†
CC + gLL(RR)HL(R)CF

0
CC

(13)

where f0
LL(RR) = (2fL(R) − 1)(g†LL(RR) − gLL(RR)) is the

Keldysh GF of the isolated left (right) lead which are
assumed in equilibrium. Combining these two equations
yields

F 0 = iG0 [(2fL − 1)ΓL + (2fR − 1)ΓR]G
0† (14)

where ΓL(R) is proportional to the imaginary part of the
self-energy ΣL(R)

ΓL(R) = i(ΣL(R) − Σ†
L(R)) (15)

and has the meaning of the lifetime of the states in the
central region (finite due to the connection to the elec-
trodes) or in other words it is the escape rate to the leads.
Furthermore, substituting this in the expression for the
current eq. (4), we obtain that under steady-state con-
ditions the current can be expressed entirely through the
retarded GF

I =
e

h

∫

dE(fL − fR)Tr[ΓL(E)GLR(E)ΓR(E)G†
RL(E)]

(16)

where the integrand T = ΓLG
0
LRΓRG

0†
RL is the trans-

mission probability. This formula is originally due to
Caroli et al.7, who derived it in the absence of disorder.
Later Meir and Wingreen showed that it is valid for any
non-interacting electron system in an arbitrary external
potential, including disorder.8

Our objective here is to calculate the current through
a disordered medium. For any particular disorder con-
figuration we can obtain the full G and F and calculate
the current via eqs. (4) or (16) which will give identical

results. Since for any particular configuration the two
expressions give the same result then the configurational
average over all disorder configurations must be the same

〈I〉 ∼
∫

dE
∑

j

(Hi+1,j;i,j〈Fi,j;i+1,j〉 −Hi,j;i+1,j〈Fi+1,j;i,j〉)

=
∫

dE(fL − fR)Tr[〈ΓLGLRΓRG
†
RL〉],

(17)
which means that we could either account for disorder
through the configuration average of the Keldysh GF or
through taking the product and subsequent configura-
tional average of the retarded and advanced GFs. Both
methods will give identical results regardless of how dis-
order is treated.

A. CPA: Standard formulation

First we will calculate the current using the stan-
dard CPA technique for G and eq. (16) for the cur-
rent. We consider the classical non-magnetic binary alloy
case when two atomic species A and B randomly occupy
each lattice site with probabilities p and 1 − p respec-
tively. The method is easy generalizable for other types
of disorder. The disordered medium can be described by
H = H ′

0 + V , where H ′
0 = H0 + ΣL + ΣR is the pe-

riodic part of the Hamiltonian and V is the deviation
from periodicity. Typically the periodic part is given by
the average Hamiltonian H0 = 〈H〉 which is the spirit of
the virtual crystal approximation (VCA).2 If we consider
only on-site disorder

∑

n Vnc
†
ncn, the retarded GF of the

disordered medium is given by the Dyson equation

Gnm = G0
nm +

∑

l

G0
nlVlGlm (18)

The essence of the CPA is to replace the disordered
medium with a periodic effective medium described by
a yet unknown coherent potential H̄ = H ′

0 +Σ, where Σ
is on-site. The coherent potential Σ is complex energy-
dependent quantity which physically can be viewed as
the self-energy due to disorder. Then the Dyson equation
can be written through the GF of the effective medium
Ḡ = (E − H̄)−1 as

Gnm = Ḡnm +
∑

l

Ḡnl (Vl − Σ)Glm (19)

where Ḡnm = G0
nm +

∑

l

G0
nlΣḠlm. Expanding the equa-

tion into infinite series we obtain2

Gnm = Ḡnm +
∑

l

ḠnltlḠlm +
∑

l,l′

ḠnltlḠll′tl′Ḡl′m + · · ·

(20)
where tl is the single-site scattering matrix

tl = (Vl − Σ)(1 − Ḡll(Vl − Σ))−1 (21)

and it is understood that in the expansion each consecu-
tive t’s are on the different sites. We can define the full
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retarded scattering matrix

Tll′ = tlδll′ + tlḠll′ tl′ +
∑

k

tlḠlktkḠkl′tl′ + · · · (22)

which encapsulates the information for all scattering
events. With the help of the full t-matrix we can rewrite
eq. (20) only as a function of the GF of the effective
medium

Gnm = Ḡnm +
∑

ll′

ḠnlTll′Ḡl′m. (23)

In order to obtain the unknown coherent potential Σ
we impose the condition that the scattering vanishes on
average in the effective medium 〈T 〉 = 0. Satisfying this
condition means that the average GF coincides with that
of the effective medium 〈G〉 = Ḡ. Practically it is diffi-
cult to satisfy this condition for the full t-matrix because
it would mean setting 〈tl1tl2 ..tlm〉 = 0 to arbitrary or-
der. Within the single-site approximation to CPA, cor-
relations of electron scattering between different sites are
neglected which means that T = T (〈t〉) only. Thus, the
requirement that the single-site t-matrix vanishes on av-
erage

〈tl〉 = ptAl + (1− p)tBl = 0 (24)

guarantees that 〈T 〉 = 0. In effect single-site approxima-
tion means that scattering from a single site is included
exactly but scattering from two or more sites is neglected.
In diagrammatic terms this means that all crossing dia-
grams in the expansion for 〈T 〉 are ignored and the only
contribution comes from the ladder diagrams.2,23

The procedure for evaluating the coherent potential
is as follows: We work in the two-probe setup in which
the current flows along the z-axis and system is periodic
in the xy- plane perpendicular to the current direction.
Therefore, we use the mixed (k‖,z) representation and
perform a Fourier transform in the plane. In this repre-
sentation the GF of the effective medium is

Ḡ(k‖) = (I −G0(k‖)Σ)
−1G0(k‖) (25)

where the coherent potential is independent on k‖ (how-
ever, it is layer dependent). Then we apply the require-
ment eq. (24) that the average single-site t-matrix is
equal to zero for any layer l in the scattering region

0 = ptAl + (1− p)tBl =
= p(V A

l − Σl)(I − Ḡll(V
A
l − Σl))

−1+
+ (1− p)(V B

l − Σl)(I − Ḡll(V
B
l − Σl))

−1
(26)

where Ḡll = 1
VBZ

∫

dk‖Ḡll(k‖) is the inverse Fourier

transform of the retarded GF on site l. Eqs. (25) and
(26) are a non-linear system of equations for Ḡ and Σ.
We solve this system for all disordered layers simultane-
ously using non-linear solvers such as Newton-Raphson.
The coherent potential is in general complex and energy
dependent through Ḡ.

After obtaining the coherent potential (and respec-
tively the GF of the effective medium) we can proceed to
calculate the transmission. Let indices a (b) denote the
first principal layer of the barrier to the left (right). The
formula for the transmission probability in real space is

T = Tr[Γa(ρ1, ρ2)Gab(ρ2, ρ3)Γb(ρ3, ρ4)G
†
ba(ρ4, ρ1)] (27)

where the trace is a shorthand for the sum over all
repeating indices. Making use of the periodicity in
the plane we Fourier transform as follows Ḡ(ρ, ρ′) =
1
N

∑

k‖
Ḡ(k‖) exp(ik‖(ρ− ρ′)) and the same for Γ. Next

we calculate the configuration average of the transmis-
sion probability

〈T 〉 = Tr〈ΓLGΓRG
†〉 =

= Tr[ΓLḠΓRḠ
†] + Tr[ΓLḠ〈T ḠΓRḠ

†T †〉Ḡ†]
(28)

Substituting in this expression the expansion of the scat-
tering matrix eq. (22) we obtain contributions to the
transmission probability to infinite order

< T (E) >= T (0) + T (1) + T (2) + ... (29)

where all the terms contain only the retarded GF of the
effective medium Ḡ and the single-site scattering matrix
tl, in addition to the escape rates Γ which do not depend
on the disorder. The first term in the expansion is the
so-called the ’bubble’ diagram

T (0) = Tr[Γa(ρ1, ρ2)Ḡab(ρ2, ρ3)Γb(ρ3, ρ4)Ḡ
†
ba(ρ3, ρ4)] =

=
∫

dk‖Tr[Γa(k‖)Ḡab(k‖)Γb(k‖)Ḡ
†
ba(k‖)]

(30)
which does not depend on the disorder configuration
and represents the transmission of the effective medium.
Since the effective medium is periodic in the plane, k‖ is
a good quantum number and the transmission is specu-
lar. Vertex corrections are the diagrams of higher order
in tl. The first order correction is

T (1) = Tr[〈Γa(ρ1, ρ2)Ḡal(ρ2, ρ3)tl(ρ3)Ḡlb(ρ3, ρ4)×

×Γb(ρ4, ρ5)Ḡ
†
bl(ρ5, ρ6)t

†
l (ρ6)Ḡ

†
la(ρ6, ρ1)〉] =

=
∫

dk1‖dk2‖Tr[Γa(k1‖)Ḡal(k1‖)×

×〈tlḠlb(k2‖)Γb(k2‖)Ḡ
†
bl(k2‖)t

†
l 〉Ḡ

†
la(k1‖)]

(31)
which involves processes of electron transmission from a
state with momentum k1‖ to a state with momentum k2‖

i.e. the transmission is diffusive. Similarly expressions
can be derived for the higher order diagrams and the
expressions become increasingly involved.

B. CPA: Non-equilibrium formulation

Next we calculate the current applying the NE-CPA
technique for F and then using eq. (4) for the current.
Within the NEGF formalism the full GF for a disordered
system obeys a generalized Dyson equation19

Ĝnm = Ĝ0
nm +

∑

l

Ĝ0
nlV̂lĜlm (32)
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where Ĝ =

(

Gc G<

G> G̃c

)

and V̂ =

(

V c V <

V > Ṽ c

)

. The

various NEGFs are defined as usual19

iGc
12 = 〈T Ψ̂1Ψ̂

†
2〉, iG̃c

12 = 〈T̃ Ψ̂1Ψ̂
†
2〉

iG<
12 = −〈Ψ̂†

2Ψ̂1〉, iG>
12 = 〈Ψ̂1Ψ̂

†
2〉

(33)

where 1 = (t1, r1) and 2 = (t2, r2) and T and T̃ mean
chronological and reverse chronological ordering of the
field operators. Since the perturbation comes from a sin-
gle particle time-independent operator V , one can obtain
explicitly the general form using the Keldysh perturba-

tion technique V̂ =

(

V 0
0 −V

)

. Since the components of

Ĝ are not linearly independent, we use the Keldysh linear

transformation Ĝ′ = R−1ĜR, where R = 1
2

(

1 1
−1 1

)

,

to obtain an equation for Ĝ′ =

(

0 G†

G F

)

and V̂ ′ =
(

0 V
V 0

)

.19 Here G and G† are the retarded and ad-

vanced GF and F is the Keldysh GF defined as follows

G = Gc −G< = −G̃c +G>

F = Gc + G̃c = G> +G< (34)

Since the equations for the retarded and the advanced
GF are equivalent, the transformed generalized Dyson
equation is equivalent to two independent equations, the
Dyson equation for the retarded GF

Gnm = G0
nm +

∑

l

G0
nlVlGlm (35)

and the quantum kinetic equation for the Keldysh GF19

Fnm = F 0
nm +

∑

l

F 0
nlV

†
l G

†
lm +

∑

l

G0
nlVlFlm (36)

At this point we carry out the CPA recipe for the NEGF.
We start from the generalized Dyson equation for disor-
dered system eq. (32) where we replace the disordered
medium out of thermodynamical equilibrium with a pe-
riodic effective medium described by a yet unknown gen-

eralized coherent potential Σ̂ =

(

Σc Σ<

Σ> Σ̃c

)

as follows

Ĝnm = ˆ̄Gnm +
∑

l

ˆ̄Gnl

(

V̂l − Σ̂
)

Ĝlm (37)

After transformation Σ̂′ = R−1Σ̂R =

(

Ω Σ
Σ† 0

)

. This

generalizeed coherent potential consists of the standard
coherent potential Σ and the non-equilibrium coherent
potential Ω. Physically Ω can be viewed as the non-
equilibrium part of the self-energy due to disorder. The
two independent equations of the transformed general-
ized Dyson equations become eq. (19) for the retarded

GF already considered and

Fnm = F̄nm −
∑

l

ḠnlΩG
†
lm+

+
∑

l

F̄nl(Vl − Σ†)G†
lm +

∑

l

Ḡnl(Vl − Σ)Flm

(38)

where F̄nm = F 0
nm +

∑

l

(G0
nlΩḠ

†
lm + F 0

nlΣ
†Ḡ†

lm +

G0
nlΣF̄lm). Next we rewrite eq. (38) as the infinite

expansion of contributions containing the retarded, ad-
vanced and Keldysh GFs of the effective medium

Fnm = F̄nm +
∑

l

(

ḠnlτlḠ
†
lm + F̄nlt

†
l Ḡ

†
lm + ḠnltlF̄lm

)

+

+
∑

l,l′

(

ḠnltlḠll′τl′Ḡ
†
l′m + ḠnlτlḠ

†
ll′t

†
l′Ḡ

†
l′m+

+ ḠnltlF̄ll′ t
†
l′Ḡ

†
l′m + F̄nlt

†
l Ḡ

†
ll′t

†
l′Ḡ

†
l′m+

+ ḠnltlḠll′tl′ F̄
†
l′m

)

+ · · ·

(39)
where by analogy with tl we have defined a non-
equlibrium single-site t-matrix

τl = tlF̄llt
†
l − tl(Vl − Σ)−1Ω(Vl − Σ†)−1t†l (40)

Note that in eq. (39) each consecutive t’s and τ ’s are
on the different sites. Next we introduce the Keldysh
counterpart of the full scattering matrix

TF
ll′ = τlδll′ + tlḠll′τl′ + τlḠ

†
ll′t

†
l′ + tlF̄ll′ t

†
l′ + · · · (41)

and eq. (39) can be written through the full t-matrices
and the GFs of the effective medium

Fnm = F̄nm+

+
∑

ll′

(

ḠnlT
F
ll′Ḡ

†
l′m + F̄nlT

†
ll′Ḡ

†
l′m + ḠnlTll′ F̄l′m

)

(42)
Eventually we conclude that the NEGF can be written
through the NEGF of the effictive medium

Ĝnm = ˆ̄Gnm +
∑

ll′

ˆ̄GnlT̂ll′
ˆ̄Gl′m (43)

where the full non-equilibrium scattering matrix is de-
fined as

T̂ll′ = t̂lδll′ + t̂l
ˆ̄Gll′ t̂l′ +

∑

k

t̂l
ˆ̄Glk t̂k

ˆ̄Gkl′ t̂l′ + · · · (44)

and T̂ =

(

TF T
T † 0

)

and t̂l =

(

τl tl
t†l 0

)

are the full and

the single-site t-matrices of the effective medium.
Then following the prescription, we apply require-

ment that scattering vanishes on average in the effec-
tive medium 〈T̂ 〉 = 0 which implies that both 〈T 〉 =
〈TF 〉 = 0. Within the single-site approximation the NE-
CPA condition becomes 〈t̂l〉 = 0 which is equivalent to
two independent conditions, eq. (24) for tl and the addi-
tional condition

〈τl〉 = 0 (45)
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The procedure for solving for the non-equilibrium co-
herent potential is as follows: (i) the CPA condition eq.
(26) combined with the eq. (25) allows to evaluate Σ
identical to the standard CPA; (ii) after Σ is obtained,
we write down the quantum kinetic equation in the ma-
trix notation for the Keldysh GF of the effective medium

F̄ (k‖) = F 0(k‖) +G0(k‖)ΩḠ
†(k‖)+

+ F 0(k‖)Σ
†Ḡ†(k‖) +G0(k‖)ΣF̄ (k‖)

(46)

where the non-equilibrium coherent potential Ω is inde-
pendent on k‖. Now we can combine the terms involving

F̄ to obtain

F̄ (k‖) = Ḡ(k‖)ΩḠ
†(k‖)+

+ (I −G0(k‖)Σ)
−1F 0(k‖)(I +Σ†Ḡ†(k‖))

(47)
The second equation is obtained from eq. (45) that the
average of the non-equilibrium single-site scattering ma-
trix 〈τl〉 is equal to zero for any layer l in the scattering
region

0 = pτAl + (1− p)τBl =

= p(tAl F̄llt
A†
l −

− tAl (V
A
l − Σ)−1Ω(V A

l − Σ†)−1tA†
l )+

+ (1− p)(tBl F̄llt
B†
l −

− tBl (V
B
l − Σ)−1Ω(V B

l − Σ†)−1tB†
l )

(48)

where F̄ll = 1
VBZ

∫

dk‖F̄ll(k‖) is the inverse Fourier
transform of the Keldysh GF at layer l. We solve the
linear system of eqs. (47) and (48) to determine F̄ and
Ω. Practically, it is a much easier to solve linear eqs. (47)
and (48) for the NE-CPA than the non-linear system of
eqs. (25) and (26) for the standard CPA. Also problems
with convergence to the wrong solutions do not arise as
it could happen in the non-linear solver. Finally, the
average NEGF are equal to the NEGF of the effective
medium 〈F 〉 = F̄ .
Substituting eq. (38) in eq. (4), the average transmis-

sion is simply related to the Keldysh GF of the effective
medium

〈T 〉 =
∑

j

(

Hi+1,j;i,j F̄i,j;i+1,j −Hi,j;i+1,j F̄i+1,j;i,j

)

(49)
Therefore, it follows that the non-equilibrium transmis-
sion probability given by eq. (49) is equivalent to that
given by eq. (28) which contains VCs to infinite order.

III. EXAMPLE: TUNNEL JUNCTION WITH

DISORDERED BARRIER

In order to demonstrate the method we consider a sim-
ple example consisting of a tunnel junction with a plane
of impurities within the barrier (Fig. 1). We use a single
band tight-binding model characterized with onsite en-
ergy ε and hopping integral t. Despite its simplicity this
model has been shown to be capable of predicting the

correct properties of several phenomena including spin
transfer torque,24–28 interlayer exchange coupling,29 and
resistive switching phenomena.30 Its predictions compare
well to the results of first-principles calculations.31 The
two electrodes are assumed to be locally in equilibrium
at two different chemical potentials µL and µR under
finite bias µL − µR = eV , where V is the applied volt-
age. Under this assumption electrons will flow from the
electrode with higher chemical potential to that with
a lower. For simplicity sake we assume that the volt-
age drop occurs linearly across the barrier, which is ac-
counted in the Hamiltonoian via an external potential

term
∑

i

eVic
†
i ci. The electronic temperature is taken

into account via the Fermi-Dirac distribution functions
fL/R = (1 + exp (E − µL(R))/kT )

−1. The atoms are at
zero temperature and stay fixed at their equilibrium po-
sitions. In the electrodes the onsite energy ε0 = 0 eV
can be considered as a reference. Then in the barrier we
choose ε = 9eV. For the impurity we consider two cases:
(i) weak scattering (ε′ = 6eV) and (ii) strong scatter-
ing (ε′ = 3eV). Hopping is the same between all sites
t = 1eV. The simplest structure has five layers in the
barrier where the impurity layer is in the middle. Two
impurity concentrations are considered low: (p = 1%)
and high (p = 20%). We calculate the I-V curves when
we apply voltage of up to 1.0V symmetrically. The sys-
tem is considered to be at low temperature 3K.
The density of states (DOS) of the electrodes consists

of a metallic band centered at 0 with a dispersion of
±6eV. At finite bias the left band is shifted down by
−∆V/2 and the right up by ∆V/2. The DOS in the bar-
rier (Fig. 2) shows the onset of the conduction band at
around 3eV. Then the impurity bands appear around 6
and 3eV for weak and strong scattering respectively. For
weak scattering it overlaps with the conduction band and
the net effect is to modify the conduction band minimum.
For strong scattering it appears as a separate band. The
impurity band is small and narrow at low concentrations
and becomes larger and wider at high concentrations.
The tail of the impurity band will influence the trans-
mission and we expect larger effect when the impurity
band is closer to the Fermi level and resonance scatter-
ing when the impurity band falls in the bias window.
We calculate the current using (i) the standard CPA

approach with vertex corrections to infinite order and
(ii) non-equilibrium CPA. For our toy model the various
quantities are scalars which commute with each other.
Due to this simplification it is possible to derive a formula
for the vertex corrections to any finite order and also sum
all the corrections exactly to infinite order. The first
order correction becomes

T (1) = 〈|tl|
2〉
∫

dk‖Ḡ
†
la(k‖)Γa(k‖)Ḡal(k‖)×

×
∫

dk‖Ḡlb(k‖)Γb(k‖)Ḡ
†
bl(k‖)

(50)

If we continue to write explicitly the higher order VCs, a
patten emerges (after some lengthy algebra) which allows
us to calculate the higher order corrections recursively as
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FIG. 2. Density of states in the barrier for weak (a) and strong
(b) scattering. Both low and high impurity concentration are
shown.

follows

T (n) = T (n−1)Ql,

Ql = 〈|tl|
2〉
[

∫

dk‖|Ḡll(k‖)|
2 −

∣

∣

∫

dk‖Ḡll(k‖)
∣

∣

2
]

(51)
which implies that the vertex corrections to infinite order
can be summed exactly as a geometric progression

〈T 〉 = T 0 + T (1)/(1−Ql) (52)

and if the term |Ql| < 1 the sum converges.

Additional advantage of the toy model of a single-band
model and one impurity layer is that we can obtain an an-
alytical expression for Ω. Following the NE-CPA method
we solve eqs. (47) and (48) analytically using the linear
dependence of F̄ on Ω

F̄ll = α+ βΩ,
Ω = α(V A

l − Σ)(V B
l − Σ†)((V A

l − Σ)Ḡll+

+ Ḡ†
ll(V

B
l − Σ†)− β(V A

l − Σ)(V B
l − Σ†)− 1)−1

(53)
where the coefficients are

α =
∫ dk‖

(2π)2F
0
ll(k‖)(1 + 2Re(ΣḠll(k‖)) + |ΣḠll(k‖|

2)

β =
∫ dk‖

(2π)2G
0
ll(k‖)Ḡ

†
ll(k‖)(1 + ΣḠll(k‖))

(54)

The I-V curves calculated using both approaches are
shown in Fig. 3 for the strong scattering case with high
impurity concentration. In the first case we calculate the
current due to bubble term plus vertex corrections to in-
finite order. The contribution from different orders of
the VCs is also plotted for comparison. From the results
several observations can be made: (i) when the impu-
rity band is far from the bias window CPA alone gives
a reasonable result and the VCs converge very quickly;
(ii) however, if the the impurity band is in the bias win-
dow CPA captures only a very small part of the part of

the contribution to the current. Also the higher order
vertex corrections are by no means small, which means
that the expansion is not perturbative. In particular for
strong scattering summation to infinite order is necessary
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FIG. 3. Current density as a function of applied bias (a) and
transmission as a function of energy (b) for strong scattering
and high impurity concentration. The result for CPA, CPA
with VCs to finite order, CPA with VCs to infinite order, and
NE-CPA are plotted.

to correctly describe the transmission. This confirms the
importance of the vertex corrections;9,10 (iii) NE-CPA
always gives the same result as the standard CPA with
VCs to infinite order.

IV. CONCLUSIONS

In summary, we propose a non-equilibrium formula-
tion of CPA for electron transport. This approach makes
use of the fact that the non-equilibrium current is lin-
ear with respect to the NEGF and therefore the average
current is simply expressed through the GF of the effec-
tive medium. This removes the need to calculate vertex
corrections to infinite order. The single-step NE-CPA
formalism is equivalent to CPA plus vertex corrections
to infinite order. This is demonstrated in a model cal-
culation of a tunnel barrier with an impurity layer for
a range of concentrations and scattering strengths. The
NE-CPA is formulated in matrix form and therefore it
is easily extendable to general LCAO Hamiltonians, in-
cluding magnetic. Indeed the approach would show its
true worth when implemented within the framework of
more realistic electronic structure calculations.
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