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We present a systematic study of the role of Anderson orthogonality for the dynamics after a
quantum quench in quantum impurity models, using the numerical renormalization group. As shown
by Anderson in 1967, the scattering phase shifts of the single-particle wave functions constituting
the Fermi sea have to adjust in response to the sudden change in the local parameters of the
Hamiltonian, causing the initial and final ground states to be orthogonal. This so-called Anderson
orthogonality catastrophe also influences dynamical properties, such as spectral functions. Their
low-frequency behaviour shows non-trivial power laws, with exponents that can be understood using
a generalization of simple arguments introduced by Hopfield and others for the X-ray edge singularity
problem. The goal of this work is to formulate these generalized rules, as well as to numerically
illustrate them for quantum quenches in impurity models involving local interactions. As a simple yet
instructive example, we use the interacting resonant level model as testing ground for our generalized
Hopfield rule. We then analyse a model exhibiting population switching between two dot levels as
a function of gate voltage, probed by a local Coulomb interaction with an additional lead serving
as charge sensor. We confirm a recent prediction that charge sensing can induce a quantum phase
transition for this system, causing the population switch to become abrupt. We elucidate the role of
Anderson orthogonality for this effect by explicitly calculating the relevant orthogonality exponents.

PACS numbers: 02.70.-c, 05.10.Cc, 71.27.+a, 72.10.Fk, 73.21.La, 75.20.Hr, 78.20.Bh

I. INTRODUCTION

The Anderson orthogonality (AO) catastrophe1,2

refers to the response of a Fermi sea to a change in a
local scattering potential, described, say, by a change
in Hamiltonian from Ĥi to Ĥf . Such a change induces
changes in the scattering phase shifts of all single-particle
wave functions. This causes the initial ground state |Gi〉
of Ĥi and the final ground state |Gf〉 of Ĥf , both describ-
ing a filled Fermi sea but w.r.t. different single-particle
wave functions, to be orthogonal in the thermodynamic
limit, even if the changes in the single-particle wave func-
tions are minute. The overlap of the respective ground
states scales as1–3

|〈Gi|Gf〉| ∼ N−
1
2 ∆2

AO , (1)

where N is the number of particles in the system, and the
exponent ∆AO characterizes the degree of orthogonality.

AO underlies the physics of numerous dynamical
phenomena such as the Fermi edge singularity,3–6 the
Altshuler-Aronov zero bias anomaly7 in disordered con-
ductors, tunnelling in metals8 and into strongly inter-
acting Luttinger liquids,9–13 and optical absorption in-
volving a Kondo exciton,14–16 where photon absorption
induces a local quantum quench, to name but a few. Re-
cently, AO has also been evoked17,18 in an analysis of
population switching (PS) in quantum dots (the fact that
the population of individual levels of a quantum dot may
vary non-monotonically with the gate voltage), and was
argued to lead, under certain conditions involving a local
Coulomb interaction with a nearby charge sensor, to a

quantum phase transition.
One of the goals of the present work is to analyse the

latter prediction in quantitative detail. Another is to
generalize arguments that were given in Refs. 14–16, for
the role of AO for spectral functions of the excitonic An-
derson model, to related models with a similar struc-
ture. Thus, we present a systematic study of the role of
Anderson orthogonality for the dynamics after a quan-
tum quench in quantum impurity models involving local
interactions, using the numerical renormalization group
(NRG).19,20 We thereby extend a recent study,21 which
showed how ∆AO can be calculated very accurately (with
errors below 1%) by using NRG to directly evaluate over-
laps such as 〈Gi|Gf〉, to the domain of dynamical quan-
tities.

The spectral functions that characterize a local
quantum quench typically show power-law behaviour,
∼ ω−1+2η, in the limit of small frequencies, where η typ-
ically depends on ∆AO.3–6 For the case of the X-ray edge
singularity, Hopfield5 gave a simple argument to explain
the relation between ∆AO and η. We frame Hopfield’s
argument in a more general setting and numerically il-
lustrate the validity of the resulting generalized Hop-
field rule (Eq. (29) below) for several non-trivial models.
In particular, we also analyse how this power-law be-
haviour is modified at low frequencies when one adds to
the Hamiltonian an extra tunnelling term, that describes
transitions between the Hilbert spaces characterizing the
“initial” and “final” configurations. This effect plays a
crucial role in understanding the abovementioned quan-
tum phase transition for population switching.

The paper is organized as follows. In Sec. II we review
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various consequences of AO in different but related set-
tings, and formulate the abovementioned generalization
of Hopfield’s rule. In Sec. III we illustrate this rule for the
spinless interacting resonant level model (IRLM), involv-
ing a single localized level interacting with the Fermi sea
of a single lead. We consider this model without and with
tunnelling, and study a quantum quench of the energy
of its local level, focussing on signatures of AO in each
case. Finally, in Sec. IV and Sec. V we discuss population
switching without and with a charge sensor, respectively,
confirming that if the sensor is sufficiently strongly cou-
pled, AO indeed does cause population switching to be-
come a sharp quantum phase transition. Section VI offers
concluding remarks and outlines prospective applications
of the present analysis.

II. VARIOUS CONSEQUENCES OF
ANDERSON ORTHOGONALITY

In this section we review various consequences of AO,
in different but related settings. We begin by recalling
two well-known facts: first, the relation between the ex-
ponent ∆AO and the charge that is displaced due to the
quantum quench, ∆ch; and second, the role of ∆AO in
determining the asymptotic long-time power-law decay
of correlation functions GX(t) involving an operator X̂†

that connects the initial and final ground state.

Then we consider the spectral function AX(ω) asso-
ciated with GX(t), which correspondingly shows asymp-
totic power-law behaviour, ∼ ω−1+2η, for small frequen-
cies, where the exponent η depends on ∆AO. We recall
and generalize an argument due to Hopfield, that extends
the relation between η and ∆AO to composite local op-
erators. Finally, we recapitulate how all these quantities
can be calculated using NRG.

For simplicity, we assume in most of this section that
the Fermi sea consists only of a single species of (spinless)
electrons.The generalization to several channels needed
in subsequent sections (in particular for discussing PS),
is straightforward and will be introduced later as needed.

Although the concepts summarized in subsections II B
to II F below apply quite generically to a wide range of
impurity models, for definiteness we will illustrate them
by referring to a particularly simple example, to be called
the “local charge model” (LCM), which we define next.

A. Local charge model

The LCM describes a single spinless localized level,
to be called dot level (alluding to a localized level in
a quantum dot), interacting with a single Fermi sea of
spinless electrons [see Fig. 1(a)]:

ĤLCM(n̂d) = U n̂d ĉ
†ĉ+

∑
ε

ε ĉ†εĉε . (2)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 1: (a) Cartoon of the Hamiltonian (2) for the LCM.
(b) to (g) Cartoons of the occupation of the dot and a half-
filled lead, for U > 0, for several states discussed in the text.
(b) and (c) give two equivalent depictions of the ground state

|G0〉 of Ĥ0. (c) depicts the fact that |g0〉 can be written as
a superposition of the form |0〉c|Q〉rest + |1〉c|Q − 1〉rest, in-
dicating complementary occupations of the first site and the
rest of a half-filled Wilson chain (defined in Sec. II F below).
Here |0〉c (which obeys ĉ|0〉c = 0) and |1〉c = ĉ†|0〉c describe
the first site of the Wilson chain being empty or filled, re-
spectively; the charge in the rest of the Wilson chain is corre-
spondingly distributed in such a way that both components of
the superposition have the same total charge, Q. (d) depicts

the ground state |G1〉 of Ĥ1, indicating that charge on the dot
pushes charge in the lead away from the dot site. (e) shows

the effect of applying d̂† to |G0〉, the latter depicted according

to (b). Similarly, (f) and (g) show the effect of applying ĉ†d̂†

or ĉd̂† to |G0〉, the latter depicted according to (c). The dis-
placed charge flowing inwards from infinity towards the dot
as each of the states (e) to (g) evolves to the final ground
state |G1〉 of (d) is ∆d < 0, ∆d − 1 < 0 or ∆d + 1 > 0, re-
spectively. Comparison of (f) and (g) with (e) shows average
charge differences of +1 and −1, respectively, in accord with
the Hopfield-type argument summarized by Eq. (15).

Here ĉε and d̂ are annihilation operators for Fermi sea

states and the dot state, respectively, n̂d = d̂†d̂ counts the

number of dot electrons, and ĉ ≡ ψ̂(0) ≡∑ε ĉε destroys
a Fermi sea electron at the position of the dot. The
interaction is taken to be repulsive, U > 0. There is no
tunnelling between dot and sea. Therefore, the Hilbert
space separates into two distinct sectors, in which the
local charge operator n̂d has eigenvalues nd = 0 and nd =
1, respectively. The Hamiltonians describing the Fermi
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sea in the two distinct sectors are

Ĥ0 = ĤLCM(nd = 0) =
∑
ε

ε ĉ†εĉε , (3a)

Ĥ1(U) = ĤLCM(nd = 1) =
∑
ε

ε ĉ†εĉε + Uĉ†ĉ . (3b)

We will denote their respective ground states [illustrated
in Figs. 1(b,c) and 1(d), respectively] by

|G0〉 = |0〉|g0〉 , |G1〉 = |1〉|g1〉 , (4)

where |0〉 and |1〉 = d̂†|0〉 describe the dot state with
charge 0 or 1, respectively, and |g0〉 and |g1〉 the corre-
sponding Fermi sea ground states.

The LCM contains all ingredients needed for AO, hence
we will repeatedly refer to it below as an explicit example
of the general arguments to be presented. [Corresponding
LCM passages will sometimes appear in square brackets,
so as not to disrupt the general flow of the discussion.]
Explicit numerical results for the LCM will be presented
in Sec. III A below.

B. AO and the displaced charge

For the ensuing discussions, it will be useful to distin-
guish between two types of quenches, to be called type 1
and 2, which we now discuss in turn.

Type 1 quench: For a type 1 quench, some parameter
of the Hamiltonian is changed abruptly (e.g. by a sudden
change of gate voltage for one of the gates defining a
quantum dot). Taking the LCM as an example, suppose
that the value of the interaction in the LCM is changed
suddenly from U to U ′ for a fixed local charge of nd = 1.
This corresponds to a type 1 quench with

Ĥi = Ĥ1(U) , Ĥf = Ĥ1(U ′) , (5a)

|Gi〉 = |1〉|g1,i〉 , |Gf〉 = |1〉|g1,f〉 . (5b)

The overlap of initial and final ground states,

|〈Gi|Gf〉| = |〈g1,i|g1,f〉| ∼ N−
1
2 ∆2

AO , (6)

will vanish in the thermodynamic limit due to AO, since
the two Fermi sea states |g1,i〉 and |g1,f〉 feel scattering
potentials of different strengths.

In his classic 1967 papers,1,2 Anderson showed that
for this type of situation the exponent ∆AO in Eq. (6)
is equal to the change in scattering phase shifts at the
Fermi surface divided by π, in reaction to the change
in the strength of the scattering potential. (The correct
expression for ∆AO first appeared in Ref. 2.) According
to the Friedel sum rule,22–25 the change in phase shifts
divided by π, in turn, is equal to the displaced charge ∆ch

(in units of e) that flows inward from infinity into a large
but finite volume (say Vlarge) surrounding the scattering
site, in reaction to the change in scattering potential, so
that ∆AO = ∆ch. To be explicit,

∆ch ≡ 〈Gf |n̂tot|Gf〉 − 〈Gi|n̂tot|Gi〉 , (7)

where n̂tot ≡ n̂sea +ndot counts the total number of elec-
trons within Vlarge, with n̂sea counting the Fermi sea elec-
trons and n̂dot counting the electrons on the dot. [For the
LCM, n̂dot = n̂d.]

The relative sign between ∆AO and ∆ch (+ not −) is
a matter of convention, which does not affect the orthog-
onality exponent ∆2

AO. Our convention,21 which agrees
with standard usage,26 is such that ∆AO > 0 (or < 0)
if the change in local potential induces electrons to flow
inward toward (outward away from) the scattering site.

For the LCM quench of Eq. (5) above, the initial and
final states have the same dot charge, nd = 1, hence
the displaced charge reduces to ∆ch ≡ 〈g1,f |n̂sea|g1,f〉 −
〈g1,i|n̂sea|g1,i〉. However, such a simplification will not
occur for more complex impurity models involving tun-

nelling between dot and lead [of the form (d̂†ĉ+ ĉ†d̂)], so
that the local charge is not conserved. Examples are the
interacting resonant level model [Eq. (40) below], or the
single-impurity Anderson model [Eq. (51) below].

For such a model, consider a type 1 quench from Ĥi

to Ĥf , implemented by a sudden change in one or several
model parameters, in analogy to Eq. (5a). Although the
corresponding ground states |Gi〉 and |Gf〉 will no longer
have the simple factorized form of Eq. (5b), they will still
exhibit AO as in Eq. (1). Moreover, the decay exponent is
still equal to the displaced charge, ∆AO = ∆ch, given by
Eq. (7). (For a NRG verification of this fact, see Ref. 21.)

Type 2 quench: For a type 2 quench, all model param-
eters are kept constant, but the system is switched sud-
denly between two dynamically disconnected sectors of
Hilbert space characterized by different conserved quan-
tum numbers. Taking again the LCM of Eq. (2) as an ex-
ample, suppose that the local charge is suddenly changed,
say from nd = 0 to 1, while all model parameters are kept
constant. This corresponds to a type 2 quench with

Ĥi = Ĥ0 Ĥf = Ĥ1 , (8a)

|Gi〉 = |0〉|g0〉, |Gf〉 = |1〉|g1〉. (8b)

A physical example of such a quench would be core level
X-ray photo-emission spectroscopy (XPS), where an in-
cident X-ray photon is absorbed by an atom in a crystal,
accompanied by the ejection of a core electron from the
material.27 This amounts to the sudden creation of a core
hole, which subsequently interacts with the Fermi sea of
mobile conduction electrons (but does not hybridize with
them). Thus, in this example n̂d would represent the hole

number operator n̂h = ĥ†ĥ.
More generally, a type 2 quench presupposes a Hamil-

tonian Ĥ(n̂x) that depends on a conserved charge, say n̂x
[such as n̂d for the LCM], with eigenvalues nx [such as
nd = 0 or 1]. The Hilbert space can then be decom-
posed into distinct, dynamically disconnected sectors,
labelled by nx and governed by effective Hamiltonians
Ĥ(nx), whose ground states have the form |G(nx)〉 =
|nx〉|g(nx)〉. A type 2 quench is induced by an operator,

say X̂† [such as d̂† for the LCM], whose action changes
the conserved charge, thereby connecting two distinct



4

sectors, say 〈n′x|X̂†|nx〉 = 1, with n′x 6= nx. For such
a quench we make the identifications

Ĥi = Ĥ(nx) Ĥf = Ĥ(n′x) , (9a)

|Gi〉 = |nx〉|g(nx)〉, |Gf〉 = |n′x〉|g(n′x)〉. (9b)

The overlap 〈Gi|Gf〉 = 0 vanishes trivially, because
〈nx|n′x〉 = 0. However, define

|ψi〉 ≡ X̂†|Gi〉 (10)

to be the “initial post-quench state” obtained by the ac-
tion of the charge switching operator X̂† on the initial
ground state. [Fig. 1(e) illustrates this state for the LCM

with X̂† = d̂†.] Then the overlap

OX ≡ |〈ψi|Gf〉| = |〈g(nx)|g(n′x)〉| ∼ N− 1
2 ∆2

X (11)

again shows AO, since it is equal to the overlap of two
Fermi sea ground states corresponding to different local
charges. The corresponding exponent in Eq. (11) can
again be related to a displaced charge, ∆X = ∆ch

X , but
now the latter should compare the total charge within
Vlarge described by the states |Gf〉 and |ψi〉:

∆ch
X ≡ 〈Gf |n̂tot|Gf〉 − 〈ψi|n̂tot|ψi〉 . (12)

∆ch
X can be interpreted as the charge (in units of e) that

flows into Vlarge during the post-quench time evolution

from |ψi〉 to |Gf〉 subsequent to the action of X̂†. To
simplify notation, we will often omit the superscript ch
distinguishing the displaced charge ∆ch

X from the AO ex-
ponent ∆X , since the two are equal in any case.

Composite type 2 quench: Let us now consider a more
complicated version of a type 2 quench, induced by a
composite operator of the form Ŷ † = Ĉ†X̂†. Here X̂†

switches between disconnected sectors of Hilbert space
as above, while Ĉ† does not; instead, Ĉ† is assumed to
be a local operator which acts on the dot or in the Fermi
sea at the location of the dot, but commutes with n̂x.
For the LCM, an example would be Ĉ† = ĉ†, so that Ŷ †

creates two electrons, one on the dot, one in the Fermi
sea at the site of the dot.

A physical realization hereof is furnished by the edge-
ray edge effect occurring in X-ray absorption spec-
troscopy (XAS), where an incident X-ray photon is ab-
sorbed by an atom in a crystal, accompanied by the

creation of a core hole (X̂† = ĥ†) and the transfer of
a core electron into the conduction band of the metal
(Ĉ† = ĉ†).27 Another example is the Kondo exciton dis-
cussed in Refs. 15,16, where the absorption of a photon
by a quantum dot is accompanied by the creation of an
electron-hole pair on the dot, described by Ĉ† = ê† and

X̂† = ĥ†, respectively. In this example, the hole num-

ber n̂h = ĥ†ĥ is conserved, but the dot electron number
n̂e = ê†ê is not, since the Hamiltonian contains dot-lead
hybridization terms of the form (ê†ĉ+ĉ†ê) (see Refs. 15,16
for details).

For a composite type 2 quench, the initial and fi-
nal Hamiltonians and ground states are defined as in
Eqs. (9), but the post-quench initial state is given by

|ψ′i〉 ≡ Ŷ †|Gi〉 = Ĉ†|ψi〉 , (13)

with |ψ′′i 〉 ≡ N |ψ′i〉 the normalized post-quench initial
state and N a normalization constant. The overlap of
|ψ′i〉 with the final ground state |G′f〉 to which it evolves
in the long time limit has the form

OY ≡ |〈ψ′i |G′f〉| = |〈g(nx)|Ĉ|g′(n′x)〉| ∼ N− 1
2 ∆2

Y . (14)

The exponent ∆Y arising here is related to ∆X and can
be found using the following argument, due to Hopfield.5

Due to the action of Ĉ†, the states |ψ′i〉 and |ψi〉 describe
different amounts of initial post-quench charge within the
volume Vlarge. We will denote the difference by

∆C ≡ 〈ψ′′i |n̂tot|ψ′′i 〉 − 〈ψi|n̂tot|ψi〉 . (15)

For example, if Ĉ† is a local electron creation or an-
nihilation operator, then ∆C = 1 or −1, respectively
[as illustrated in Fig. 1(f) and (g)]. However, since an
initial charge surplus or deficit at the scattering site is
compensated, in the long-time limit, by charges flowing
to or from infinity, the ground states |G′f〉 and |Gf〉 to-
wards which |ψ′i〉 and |ψi〉 evolve, respectively, will differ
only by one Fermi sea electron at infinity, and hence for
practical purposes describe the same local physics. In
particular, the charge within Vlarge is the same for both,
〈G′f |n̂tot|G′f〉 = 〈Gf |n̂tot|Gf〉. Therefore, the total dis-

placed charge associated with the action of Ŷ † is

∆Y ≡ 〈G′f |n̂tot|G′f〉 − 〈ψ′′i |n̂tot|ψ′′i 〉 = ∆X −∆C , (16)

where the second equality follows from Eqs. (15) and
(12). The exponent governing the AO decay in Eq. (14)
is thus given by Eq. (16). Since ∆C is a trivially known
integer, knowledge of ∆X for a type 2 quench suffices to
determine the AO exponents ∆Y for an entire family of
related composite quenches.

To conclude this section, we note that a type 1 quench
can always be formulated as a type 2 quench, by intro-
ducing an auxiliary conserved degree of freedom (say n̂h),
whose only purpose is to divide the Hilbert space into two
sectors (labelled by nh = 0 or 1), within which some pa-
rameters of the Hamiltonian take two different values.
For example, if the quench involves changing U to U ′,
this can be modelled by replacing U by U + n̂h(U ′ − U)
in the Hamiltonian. For an example, see Sec. III C.

C. AO and post-quench time evolution

After a sudden change in the local Hamiltonian, AO
also affects the long-time limit of the subsequent time
evolution, and hence the low-frequency behaviour of cor-
responding spectral functions. A prominent example is
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optical absorption,3–6,14–16 for which AO leaves its im-
print in the shape of the absorption spectrum, by re-
ducing the probability for absorption. This is familiar
from the x-ray edge problem.4 In particular, in the limit
of absorption frequency ω very close to (but above) the
threshold for absorption, the zero-temperature absorp-
tion spectrum has a power-law form, with an exponent
that is influenced by AO. Recent demonstrations of this
fact can be found in studies, both theoretical14,15 and
experimental,16 of exciton creation in quantum dots via
optical absorption, whereby an electron is excited from a
valence-band level to a conduction band level.

In this subsection, we will analyse the role of AO for
the time evolution after a type 2 quench of the form (8).
We consider the following generic situation: For t < 0,
a system is in the ground state |Gi〉 of the initial Hamil-

tonian Ĥi (with ground state energy Ei), describing a
Fermi sea under the influence of a local scattering poten-
tial. At t = 0, a sudden change in the local potential
occurs, described by the action the local operator X̂†. It
switches sector nx to n′x, yielding the post-quench initial

state |ψi〉 = X̂†|Gi〉 at time t = 0+, and switches the

Hamiltonian from Ĥi to Ĥf .
The subsequent dynamics can be characterized by the

correlator

GX(t) ≡ −ieiω0tθ(t)〈Gi|X̂(t)X̂†|Gi〉 , (17)

where X̂(t) = eiĤitX̂e−iĤf t, reflecting the fact that X̂

switches Ĥf to Ĥi. The phase factor eiω0t is included
for later convenience, with ω0 to be specified below [after
Eq. (26)].

Since the Fermi sea adjusts in reaction to the sudden
change in local potential at t = 0, AO builds up and the
overlap function GX(t) decreases with time. It is known
since 1969 that in the long-time limit it decays in power-
law fashion as3,5

GX(t) ∼ t−∆2
X , (18)

where ∆X is the exponent governing the AO decay of
OX in Eq. (11). This can be understood heuristically by
expanding Eq. (17) as

ie−i(Ei+ω0)tGX(t) = θ(t)〈ψi|e−iĤf t|ψi〉 (19a)

= θ(t)〈ψi|ψi(t)〉 (19b)

= θ(t)
∑
n

e−iEnt|〈ψi|n〉|2 , (19c)

where |ψi(t)〉 = e−iĤf t|ψi〉 describes the time-evolution
for t > 0, and |n〉 and En represent a complete set of

eigenstates and eigenenergies of Ĥf . In the long-time
limit Eq. (19c) will be dominated by the ground state

|Gf〉 of Ĥf (with eigenenergy Ef), yielding a contribution

|〈ψi|Gf〉|2 that scales as N−∆2
X [by Eq. (11)]. Now, as

time increases, the effect of the local change in scattering
potential is felt at increasing length scales L(t) ∼ vf t,

with vf the Fermi velocity; regarding |Gf〉 as the lowest

eigenstate of Ĥf in a box of size N ∼ L(t), the AO of

|〈ψi|Gf〉|2 ∼ L(t)−∆2
X implies Eq. (18).

For a composite type 2 quench induced by Ŷ † = Ĉ†X̂†,
we can conclude by analogous arguments that the corre-
lation function

GY (t) ≡ −ieiω0tθ(t)〈Gi|Ŷ (t)Ŷ †|Gi〉 , (20)

behaves in the long-time limit as a power-law

GY (t) ∼ t−∆2
Y , (21)

where ∆Y is the displaced charge of Eq. (16).

D. Effects of AO on non-quench dynamics

Up to now we assumed that operators such as Ŷ trans-
fer the system between decoupled sectors of the Hilbert
space. However, the value of ∆2

Y obtained in this decou-
pled case is also important in determining the behaviour
of the system if one modifies the Hamiltonian by intro-
ducing a local perturbation of the form

ĤY = γY Ŷ + H.c. , (22)

which couples the two dynamical sectors, where γY (as-
sumed to have units of energy) is small with respect to the
other energy scales in the problem. For example, in the

LCM, Eq. (2), Ŷ could be a tunnelling term, Ŷ = ĉ†d̂, as
we discuss in much more detail in Sec. III. By Eq. (21),

the scaling dimension of ĤY around the “disconnected
sectors fixed point” γY = 0 is ηY = ∆2

Y /2. This means
that to lowest order in γY , the RG flow of γY upon re-
ducing a high-energy cutoff is governed by the following
RG equation28

DRG
d(γY /DRG)

dDRG
= (ηY − 1)

γY
DRG

, (23)

where DRG is the running cutoff, which decreases along
the flow. Its initial value is the “bare” cutoff of the un-
renormalized system, to be denoted by D. Thus, γY
is relevant, marginal or irrelevant under renormaliza-
tion around this fixed point if ηY < 1, = 1 or > 1,
respectively.28 If γY is irrelevant, its effect is perturba-
tive, and to leading order the system behaves as if γY = 0.
If γY is relevant, it grows until γY /DRG becomes of order
1 (assuming γY has units of energy), and Eq. (23) loses
its validity. This happens at an energy (cutoff) scale of

D∗ = D
(γY
D

)1/(1−ηY )

. (24)

Hence, at energies (temperature, frequency, etc.) above
D∗ the system is in the vicinity of the γY = 0 fixed point,
and γY can be treated perturbatively. At energies lower
than D∗, the behaviour will in general be governed by a
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new, strong-γY fixed point, where the previously separate
sectors become strongly-coupled. The details would then
depend on the specific system. In addition, observables
(expectation values and correlation functions) will show
scaling behaviour as function of, e.g., temperature and
frequency, when energies are measured in units of D∗

and are small with respect to the cutoff D.
For future reference, we also introduce the correlator

Geq
C (t) ≡ −iθ(t)〈G|eiĤtĈe−iĤtĈ†|G〉 ∼ it−2ηeqC (25)

of an operator Ĉ† that does not switch between dynam-
ically disconnected sectors, i.e. that commutes with n̂x
[examples of such operators are given in the discussion
before Eq. (13) above]. Similarly, in the presence of the

Ŷ -term in Eq. (22), n̂x is not conserved, and the opera-

tors X̂ or Ŷ themselves no longer switch between discon-
nected sectors. Then Eq. (25) is a standard equilibrium

correlator, with Ĥi = Ĥf , in contrast to the quench cor-
relator GX(t) of Eq. (25), where Ĥi 6= Ĥf . In the rest
of this Section we return to the disconnected case, where
terms such as Ŷ in Eq. (22) are absent (γY = 0).

E. AO and spectral functions

Next we consider the spectral function corresponding
to GX(t),

AX(ω) ≡ − 1

π
=

 ∞̂

0

dtei(ω+i0+)tGX(t)

 (26a)

=
∑
n

|〈n|X̂†|Gi〉|2δ(ω − En + Ei + ω0) . (26b)

It evidently has the form of a golden-rule transition rate
for X̂†-induced transitions with excitation energy ω+ω0

and is non-zero only for ω above the threshold frequency
ωth = (Ef − Ei) − ω0. For simplicity, we will here and
henceforth set ωth = 0 by choosing ω0 = Ef − Ei. Note
the sum rule

´
dωA(ω) = 〈Gi|X̂X̂†|Gi〉, which can be

used as consistency check for numerical calculations.
Equation (18) implies that in the limit ω → ωth = 0,

the spectral function behaves as

AX(ω) ∼ ω−1+2ηX , ηX = 1
2∆2

X . (27)

Now consider the spectral function AY (ω) involving

the composite type 2 quench operator Ŷ † = Ĉ†X̂†,

AY (ω) ≡ − 1

π
=

 ∞̂

0

dtei(ω+i0+)tGY (t)

 (28a)

=
∑
n

|〈n|Ŷ †|Gi〉|2δ(ω − En + Ei + ω0) . (28b)

Equations (21) and (16) immediately lead to the predic-
tion

AY (ω) ∼ ω−1+2ηY , ηY = 1
2 (∆X −∆C)2 , (29)

to be called the generalized Hopfield rule, since the
essence of the argument by which we have obtained it
was first formulated by Hopfield.5

A physical situation for which Eq. (29) is relevant is the
edge-ray edge effect occurring in X-ray absorption spec-

troscopy (XAS). There we have Ŷ † = ĉ†ĥ† (as explained
above), and ∆C = 1. Thus Eq. (29) yields

Ahc(ω) ∼ ω−1+(∆h−1)2 = ω−2∆h+∆2
h (30)

reproducing a well-established result for the X-ray edge
absorption spectrum [Ref. 5, p. 48; Ref. 6, Eq. (66)]. In
the literature, −2∆h is often called the “Mahan contri-
bution” to the exponent, and ∆2

h the AO contribution.
Since ∆h ≤ 1, one has 2∆h > ∆2

h, i.e. “Mahan wins”, and
Ahc(ω) diverges at small frequencies. For present pur-
poses, though, it is perhaps somewhat more enlightening
to adopt Hopfield’s point of view, stated in Eq. (29), ac-
cording to which both terms, −2∆h and ∆2

h arise from
the AO exponent (∆h − 1)2.

Equations (11), (27) and (29) will play a central role
in this work. Their message is that the near-threshold
behaviour of spectral functions of the type defined in
Eq. (26) is governed by an AO exponent that can be ex-
tracted from the overlap 〈ψi|Gf〉 between the initial post-
quench state |ψi〉 and the ground state |Gf〉 to which it
evolves in the long-time limit.

To conclude this section, we remark that the above
analysis generalizes straightforwardly to models involving
several species or channels of electrons, say with index µ,
provided that the channel index is a conserved quantum
number (i.e. no tunnelling between channels occurs).21

Then the initial and final ground states will be products
of the ground states for each separate channel, so that
Eq. (1) generalizes to

|〈Gi|Gf〉| ∼
∏
µ

N
− 1

2 ∆2
AO,µ

µ . (31)

All power laws discussed above that involve ∆2
AO (or

quantities derived therefrom) in the exponent can be sim-
ilarly generalized by including appropriate products over
channels.

F. AO exponents and NRG

Results of the above type have been established analyt-
ically, in the pioneering papers from 1969, Refs. 3–6, only
for the simple yet paradigmatic case of the X-ray edge ef-
fect. Nevertheless, relations such as Eqs. (18), (21) and
(29) can be expected to hold for a larger class of mod-
els, as long as the setting outlined above applies. Indeed,
they have been fruitfully evoked in numerous works in the
past, including the famous Anderson-Yuval treatment of
the anisotropic Kondo model29 and recent NRG studies
thereof30, works on electron tunnelling in metals,8 stud-
ies of the auxiliary spectral functions for pseudo fermions
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and slave bosons for the U = ∞ single-impurity An-
derson model,31 an analysis of a quantum phase tran-
sition involving Ising-coupled Kondo impurities,32,33 and
recent studies of the Kondo exciton,14–16 to name but
a few. The purpose of the present work is to system-
atically explore the validity of the connections between
the AO overlap of Eq. (11) and the frequency-domain
correlators of Eqs. (27) and (29), for a series of mod-
els of increasing complexity. We shall do so numerically
using NRG, since for most of these models an analyti-
cal treatment along the lines of Refs. 3 and 6 would be
exceedingly tedious, if not impossible. However, the req-
uisite numerical tools are available within NRG,31,34 and
have become very accurate quantitatively due to recent
methodological refinements.15,35,36

NRG, developed in the context of quantum impurity
models, offers a very direct way of evaluating the overlap,
since it allows both ground states |Gi〉 and |Gf〉 to be
calculated explicitly. Models treatable by NRG have the
generic form Ĥ = ĤB + Ĥd. Here

ĤB =

nc∑
µ=1

∑
ε

ε ĉ†εµĉεµ , (32)

describes a free Fermi sea involving nc channels of
fermions, with constant density of states ρ per channel
and half-bandwidth D = 1/(2ρ). (When presenting nu-
merical results, energies will be measured in units of half-
bandwidth by setting D = 1.) Ĥd, which may involve
interactions, describes local degrees of freedom and their
coupling to the Fermi sea.

Wilson discretized the spectrum of Ĥ0 on a logarithmic
grid of energies ±DΛ−k (with Λ > 1, k = 0, 1, 2, . . . ),
thereby obtaining exponentially high resolution of low-
energy excitations. He then mapped the impurity model
onto a semi-infinite “Wilson tight-binding chain” of sites
k = 0 to∞, with the impurity degrees of freedom coupled
only to site 0. To this end, he made a basis transforma-
tion from the set of Fermi sea operators {ĉεµ} to a new

set {f̂kµ}, with f̂0µ ∝ ĉµ ≡ ψµ(0) ≡∑ε ĉεµ, chosen such

that they bring Ĥ0 into the tridiagonal form

ĤB '
nc∑
µ=1

∞∑
k=1

tk(f̂†kµf̂k−1,µ + h.c.) , (33)

with hopping matrix elements tk ∝ DΛ−k/2 that decrease
exponentially with site index k along the chain. Because
of this separation of energy scales, the Hamiltonian can
be diagonalized iteratively by solving a Wilson chain of
length k (restricting the sum in Eq. (33) to the first k
terms) and increasing k one site at a time. The number
of kept states at each iteration will be denoted by Nk.

For a Wilson chain of length k, the effective level spac-
ing of its lowest-lying energy levels is set by the small-
est hopping matrix element of the chain, namely Λ−k/2;
such a Wilson chain thus represents a real space system
of volume Vlarge ∼ Λk/2. Thus, the overlap between the

two ground states of a Wilson chain of length k can be
expressed as21

|k〈Gi|Gf〉k| ∼ Λ−
k
4 ∆2

AO ≡ e−αk , (34)

where α ≡ (log Λ/4)∆2
AO. Explicit calculations show21

that an exponential decay of the form Eq. (34) applies for
the overlap between any two states |Ei〉k and |Ef〉k rep-
resenting low-lying excitations w.r.t. |Gi〉k and |Gf〉k at
iteration k, respectively. More technically, k〈Ei|Ef〉k ∼
e−αk holds whenever |Ei〉k and |Ef〉k represent NRG
eigenstates with matching quantum numbers from the
k-th NRG shell for Ĥi and Ĥf , respectively, and their
overlap is calculated for increasing k. For multi-chain
models, we note that channel-specific exponents such as
∆AO,µ [see Eq. (31)] can be calculated, if needed, by con-
sidering Wilson chains with channel-dependent lengths.21

Within the framework of NRG, a consistency check is
available for the value of ∆AO extracted from Eq. (34):
∆AO should be equal to the displaced charge ∆ch of
Eq. (7), which can also be calculated directly from NRG
by calculating the expectation value of n̂tot for |Gi〉
and |Gf〉 individually.21 This check was successfully per-
formed, for example, in Refs. 14 and 15, within the con-
text of the single impurity Anderson model; for a recent
systematic study, see Ref. 21. We have also performed
this check in the present work wherever it was feasible.

Within NRG, it is also possible to directly calculate
spectral functions such as AX(ω) of Eq. (26). To this
end, one uses two separate NRG runs to calculate the
ground state |Gi〉 of Ĥi and an approximate but com-

plete set of eigenstates |n〉 of Ĥf .
35,36 The Lehmann sum

in Eq. (26) can then be evaluated explicitly,37,38 while
representing the δ-functions occurring therein using a log-
Gaussian broadening scheme. To this end, we follow the
approach of Ref. 38, which involves a broadening param-
eter σ. (The specific choice of NRG parameters Λ, Nk
and σ used for spectral data shown below will be spec-
ified in the legends of the corresponding figures.) That
this approach is capable of yielding spectral functions
whose asymptotic behaviour shows power-law behaviour
characteristic of AO has been demonstrated recently in
the context of the Kondo exciton problem.14–16 In the ex-
amples to be discussed below, we will compare the power-
law exponents extracted from the asymptotic behaviour
of such spectral functions to the values expected from
AO, thus checking relations such as Eq. (27) for AX(ω)
and Eq. (29) for AY (ω).

III. INTERACTING RESONANT LEVEL
MODEL

In this section we consider the effect of AO on dy-
namical quantities in the context of the spinless inter-
acting resonant level model (IRLM).13,39 (The effects of
AO for some static properties of this model were studied
in Ref. 30.) The purpose of this exercise is to illustrate
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several effects that will be found to arise also for more
complex models considered in subsequent sections. The
IRLM involves a single localized level, to be called dot
level (alluding to localized levels in a quantum dot), in-
teracting with and tunnel-coupled to a single Fermi sea.
We consider first the case without tunnelling, in which
case the IRLM reduces to the LCM introduced in Sec. II
above, where adding an electron to the dot at time t = 0
constitutes a type 2 quench. This leads to AO between
the initial and final ground states, and corresponding
non-trivial AO power laws, ω−1+2η, in spectral functions.
We then turn on tunnelling, which connects the sectors
of Hilbert space for which the dot is empty or filled, and
hence counteracts AO. Correspondingly, the power-laws
get modified at frequencies smaller than the renormal-
ized level width, ω . Γren, where the AO behaviour is
replaced by simple Fermi liquid behaviour; the effects of
AO do survive, however, in a regime of intermediate fre-
quencies, Γren < ω < D. Finally, we consider quenches of
the position of the dot level, in which case AO reemerges.

A. Without tunnelling: LCM

In this subsection we present numerical results for
the IRLM without tunnelling, corresponding to the lo-
cal charge model of Eq. (2), depicted in Fig. 1(a). We

consider the type 2 quench of Eq. (8), with X̂† = d̂†.
The initial and final ground states |Gi〉 and |Gf〉 are il-
lustrated in Figs. 1(b,c) and 1(d), respectively, and the

post-quench initial state |ψi〉 = d̂†|Gi〉 in Fig. 1(e). With
these choices the overlap |〈ψi|Gf〉| of Eq. (11) becomes

Od ≡ |〈G0|d̂|G1〉| = |〈g0|g1〉| ∼ N−
1
2 ∆2

d . (35)

The corresponding displaced charge obtained from
Eq. (12) is

∆ch
d = 〈g1|n̂sea|g1〉 − 〈g0|n̂sea|g0〉 , (36)

since |Gf〉 and |ψi〉 describe the same dot charge, nd = 1.
We used NRG to calculate the overlap Od of Eq. (35)

and extract the exponent ∆d from its exponential decay
with Wilson chain length [Eq. (34)], for several values of
U . As consistency check, we also calculated the displaced
charge ∆ch

d [Eq. (36)]. As shown in Fig. 2(a), the results
for ∆d (crosses) and ∆ch

d (pluses) agree very well. The
displaced charge ∆ch

d is < 0, since the repulsive interac-
tion pushes charge away from the local site. Its magni-
tude |∆ch

d | depends on the interaction strength: as U is
increased from 0 to ∞, the displaced charge goes from 0
to − 1

2 , reflecting the complete depletion of the initially
half-filled Wilson chain site directly adjacent to the dot
site [compare Figs. 1(b) and 1(d)]. Figure 2(a) shows
that the numerical results for ∆d and ∆ch

d (symbols) also
agree with the analytical result (solid line) obtained for
the phase shift obtained from elementary scattering the-
ory [see e.g. Ref. 13, Eq. (25.29)],

∆d = − 1

π
tan−1 (πρU) , (37)

−0.5

−0.25
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∆
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Figure 2: (Color online) Numerical results for the LCM of
Eq. (2), for the type 2 quench of Eq. (8), whose initial, final
and post-quench initial states |Gi〉, |Gf〉 and |ψi〉 are depicted
in Figs. 1(b,c), 1(d) and 1(e-g), respectively. (a) Comparison
of the decay exponent ∆d obtained from Eq. (35) (crosses)
with the displaced charge ∆ch

d from Eq. (36) (pluses), for a
number of different values of U . The two values agree very
well (they differ by less than 0.1%), also with the analytic
prediction Eq. (37) (solid line). As expected, ∆d → −1/2
for U → ∞. (b) Comparison of two ways of determining
the AO exponents η that govern the low-energy asymptotic
behaviour A ∼ ω−1+2η of the spectral functions of Eqs. (39),
related to Figs. 1(e-g): exponents obtained by fitting a power
law to the corresponding spectra [shown in (c)] are shown
as crosses (marked “spec”, for “spectra”); the corresponding
exponents expected from Eq. (39), using the results of (a) for
∆d, are shown as dots (marked “exp” for “expected”). We
find a maximal deviation of less than 1%. Here and in all
similar figures below, the dashed lines are only guides to the
eye. (c) Asymptotic low-frequency dependence of the spectra
Eqs. (39), for U = 1, on a double logarithmic plot, allowing
the corresponding exponents η to be extracted.

with ρ the density of states in the Fermi sea (cf. Sec. II F).

To study the influence of AO on dynamical quantities,
we consider simple and composite type 2 quenches in-
duced by acting on the initial ground state |Gi〉 = |G0〉
with the operators

X̂† = d̂† , Ŷ †1 = ĉ†d̂† , Ŷ †2 = ĉd̂† . (38)

All three operators describe transitions between the nd =
0 and 1 sectors. The analysis of Sec. II E applies directly,
with the identifications Ĥi = Ĥ0 and Ĥf = Ĥ1, while

∆C = ±1 for Ŷ †1 or Ŷ †2 , respectively [see Fig. 1(e-g)]. In
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Figure 3: (Color online) (a) Cartoon of the Hamiltonian
(40) for the IRLM. (b) The renormalized level width Γren,
calculated via the dot’s charge susceptibility, 1/πχc,

30 (dots)
or via Eq. (41) (solid line), shown as a function of U for εd = 0
and several values of Γ. As U increases from 0, Γren/Γ begins
to differ significantly from its initial value, namely 1, only
once U becomes comparable to the band-width, reaching its
maximal value (Γ/D)−1/2 for U � D.

particular, Eqs. (27) and (29) imply:

Ad(ω) ∼ ω−1+2ηd ηd = 1
2∆2

d , (39a)

Adc(ω) ∼ ω−1+2ηdc ηdc = 1
2 (∆d − 1)2 , (39b)

Adc†(ω) ∼ ω−1+2η
dc† ηdc† = 1

2 (∆d + 1)2 . (39c)

Using NRG, we calculated these three spectra for several
values of U (cf. Fig. 2(c)). In the limit of small ω, the
spectra show clear power law behaviour, ω−1+2η. The
exponents ηd, ηdc, ηdc† extracted from these spectra are
shown in Fig. 2(b) (crosses, marked “spec”, for “spec-
tra”). They agree well with the values expected (dots,
marked “exp”, for “expected”) from Eqs. (39), based on
the value for ∆d extracted from Eq. (35). Thus, all ways
of determining ∆d are completely consistent, confirming
the validity of the above analysis.

B. With tunnelling: IRLM

The previous subsection focused on a switch between
two sectors of the Hilbert space, with nd = 0 and nd = 1,
that were not coupled dynamically, but governed instead
by two distinct Hamiltonians, Ĥi and Ĥf . In the present
subsection, we consider the case that the sectors with
nd = 0 and nd = 1 are coupled by tunnelling between dot
and lead, so that the notion of an initial and final Hamil-
tonian, acting in decoupled sectors of Hilbert space, does
not apply. The dynamics is governed instead by the single
Hamiltonian Ĥi = Ĥf = ĤIRLM, given by [see Fig. 3(a)]

ĤIRLM = εd d̂
†d̂ + U(d̂†d̂ − 1/2)(ĉ†̂c − 1/2) (40)

+
∑
ε

ε ĉ†εĉε +

√
Γ

πρ

∑
ε

(d̂†̂cε + ĉ†εd̂) .

We assume, here and in all later settings, that the hy-
bridization of the dot level with the Fermi sea states is ε-
independent, with Γ being the bare width of the dot level.
Here, in contrast to the local charge model of Eq. (2), the
interaction term is taken to be particle-hole symmetric,
so that the model is particle-hole symmetric for εd = 0.

The presence of the interaction, U , is known to ef-
fectively modify the level width,30,39 both by depleting
the electron density in the leads near the dots and thus
making tunnelling-out easier, and by inducing AO in the
leads when the dot occupancy changes. The net result is
that the renormalized level width increases with increas-
ing U , and hence is always relevant. A practical way
to define the renormalized level width is in terms of the
charge susceptibility, Γren ≡ 1/πχc. For the particle-hole
symmetric case considered here (or more generally, for
εd � Γren), the value of Γren (first found in Ref. 39) can
be obtained as follows: identify it with the cutoff scale
of Eq. (24), Γren ' D∗, replace ηY there by ηdc† from

Eq. (39c), insert γY ∝
√

Γ [Eq. (40)] on the right-hand
side of Eq. (24), which gives

Γren = D(Γ/D)1/(2−(1+∆ph
d )2) , (41)

and take

∆ph
d = − 2

π
tan−1 (πρU/2) . (42)

∆ph
d can be interpreted as the change in scattering phase

shift that a system with Γ = 0, εd = 0 experiences if the
local occupancy is changed abruptly from nd = 0 to 1.
The form of Eq. (42) is analogous to Eq. (37) for ∆d,
with two differences: since the final scattering potentials
being compared have amplitude −U/2 and U/2 (instead
of 0 and U), the argument of tan−1 has an extra factor
of 1/2, and there is an extra prefactor of 2.

The dependence of Γren on U is illustrated in Fig. 3(b),
which shows good agreement between the NRG results
for 1/πχc (dots) and the analytic formula (41) (lines).
For U much smaller than the bandwidth D, Γren/Γ is es-
sentially equal to 1; it strongly increases once U becomes
of the order D, and saturates to (Γ/D)−1/2 for U � D.

Let us now consider the equilibrium spectral functions
for the operators of Eq. (38), Aeq

d , Aeq
dc and Aeq

dc† . They

are defined as in Eq. (26) but with Ĥf = Ĥi, because for
the IRLM, where nd is not conserved, none of these oper-
ators induces a quench. Therefore, the ω → 0 behaviour
of their correlators is expected (and indeed found) to be
independent of AO, since the behaviour in this regime is
governed by the strong level-environment hybridization
fixed point. However, in intermediate frequency regime,
ω∗ < ω < D, where ω∗ ' Γren, the dynamics is governed
by the Γ = 0 LCM fixed point, hence AO behaviour still
shows up. Intuitively, 1/ω∗ corresponds to the time scale
within which charge equilibration takes place. Below the
energy scale ω∗ the quantum impurity becomes strongly
correlated with the Fermi sea; above it, tunnelling can be
treated perturbatively. Let us therefore discuss the two
regimes, ω below or above ω∗, separately.
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Figure 4: (Color online) (a)-(c) The equilibrium spectral
functions Aeq

d (ω), Aeq
dc(ω) and Aeq

dc†(ω) for the IRLM, showing

a crossover from trivial power laws, ω−1+2ηeq , for ω < ω∗, to

AO power laws, ω−1+2η0 , for ω∗ < ω < D, with the crossover
frequency ω∗ given by Γren. (d) Comparison of the exponents
ηeq (triangles) and η0 or η′d (crosses) extracted from the spec-
tra shown in (a-c), with the values expected from Eqs. (43) for
ηeq (solid lines), and from Eqs. (44) for η0 or from Eq. (45)
for η′d (dashed lines with dots), for several values of U . In
(a), arrows indicate the scale ω̄∗ that separates the regimes
ω∗ < ω < ω̄∗ and ω̄∗ < ω < D, where Aeq

d scales according to
Eqs. (45) or (44a), respectively.

In the regime ω � ω∗, the spectral functions are found
to have the following asymptotic form Aeq ∼ ω−1+2ηeq

[cf. Fig. 4(a-c)]:

Aeq
d (ω) ∼ ω0 , ηeq

d = 1/2 , (43a)

Aeq
dc(ω) ∼ ω3 , ηeq

dc = 2 , (43b)

Aeq
dc†(ω) ∼ ω3 , ηeq

dc† = 2 . (43c)

The exponents arising here can be understood an-
alytically using elementary, though not entirely trivial

arguments, based on the fact that at low energies the
system is in the vicinity of the fixed point where the
level is strongly-hybridized with its surroundings, and
the lowest-lying excitations of this model have Fermi liq-
uid properties. We refer the reader to the Appendix for
a detailed analysis.

Now consider the regime ω∗ < ω < D, where physics
is governed by the LCM (no hybridization) fixed point.
As shown in the corresponding regime of ω/Γren > 1
in Fig. 4(a-c), each of the equilibrium spectral functions
Aeq
d , Aeq

dc and Aeq
dc† , exhibits another, different power-law

there,

Aeq
d (ω) ∼ ω−1+2η0d , η0

d = 1
2 (∆ph

d )2 , (44a)

Aeq
dc(ω) ∼ ω−1+2η0dc , η0

dc = 1
2 (∆ph

d − 1)2 , (44b)

Aeq
dc†(ω) ∼ ω−1+2η0

dc† , η0
dc† = 1

2 (∆ph
d + 1)2 , (44c)

where Eqs. (44b)-(44c) are valid in the entire range
ω∗ < ω < D, whereas Eq. (44a) is valid only for
ω̄∗ < ω < D, where ω̄∗ > ω∗, as we explain below.
Remarkably, Eqs. (44) have the same form as Eqs. (39),

except that ∆d is replaced by ∆ph
d of Eq. (42), i.e. by

the AO exponent involved in abruptly changing the lo-
cal occupancy from 0 to 1 (in the absence of tunnelling).
That this exponent should emerge is natural, since the
corresponding correlators Gd, Gdc and Gdc† all involve an
operator d† that places an electron on the dot at time
t = 0. Although the dot occupancy nd(t) will relax
back to its initial value ni

d in the long time limit, this
requires times t � 1/ω∗. In contrast, the lead electrons
react to the change in local charge on the much shorter
time scale 1/D. Thus, in the window of intermediate
times, 1/D � t � 1/ω∗, corresponding to frequencies
ω∗ � ω � D, the situation is similar to that of the pre-
vious subsection, where we had Γ = 0 and a change in
dot occupancy from 0 to 1 induced changes in the lead
phase shifts, accompanied by AO. Thus, the exponents
η0 arising in Eq. (44) can be identified as the (equilib-
rium) scaling dimensions of the corresponding operators
calculated in the absence of tunnelling (which is why we
use a superscript 0 on such exponents, here and below).
This explains the similarity between the behaviour de-
scribed by Eqs. (44) and Eqs. (39). Note that the scaling

dimension η0
dc† [Eq. (44c)] of the tunnelling operators d̂ĉ†

and ĉ†d̂ satisfy 0 ≤ η0
dc† ≤ 1/2 [since for U > 0, we have

−1 ≤ ∆ph
d ≤ 0, by Eq. (42)], thus tunnelling is always

relevant around the LCM fixed point for this model.
As was mentioned above, the power law Eq. (44a) de-

scribing the increase of Aeq
d (ω) with decreasing ω is not

valid for the entire high frequency range ω∗ < ω < D, but
only for its upper subrange ω̄∗ < ω < D, with ω∗ < ω̄∗.
The reason is that Aeq

d (ω) contains another contribution,
to be called “sub-Lorentzian”, that grows more rapidly
than Eq. (44a) with decreasing ω, causing a crossover to
the form

Aeq
d (ω) ∼ ω−1+2η′d , η′d = − 1

2 −∆ph
d + (∆ph

d )2 , (45)
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in the range ω∗ < ω < ω̄∗. The origin of this non-
AOC contribution can be understood by analyzing the
behaviour predicted by the LCM fixed point (no hy-
bridization, Γ = 0) in the non-interacting limit, U = 0:
In this limit, Aeq

d,U=0(ω) reduces to the delta-function
density of states of a non-interacting resonant level dis-
connected from the environment: indeed Eq. (44a) yields
Aeq
d,U=0(ω) ∼ ω−1, which corresponds to the imaginary

part of (ω + i0+)−1 [Eq. (44a) does not specify the pref-
actor, though, which in this limit is 0+, i.e. infinitesi-
mally small]. Since Aeq

d,U=0(ω) has no support at high
frequencies for Γ = 0, it is sensitive to the effects of fi-
nite Γ, which turns it into a Lorentzian (see Eq. (A.2)
of the Appendix) that decays as ω−2. Now, when inter-
actions are turned on, U 6= 0, two changes occur. First,
the tails of the Lorentzian are modified40,41 to take the
sub-Lorentzian form (45), which decays somewhat slower
than ω−2 (since η′d is less negative than − 1

2 ). Second,
Aeq
d,U 6=0(ω) acquires an AOC term of the form Eq. (44a),

which now contributes to the high frequency behaviour.
Since its exponent is η0

d is less negative than η′d, the AOC
contribution decays more slowly than the sub-Lorentzian
contribution and hence will dominate for sufficiently large
ω. Thus there will be a crossover scale, ω̄∗ [marked by
arrows in Fig. 4(a)], such that the AOC behaviour (44a)
holds for ω̄∗ < ω < D while the sub-Lorentzian behaviour
(45) holds for ω∗ < ω < ω̄∗. For U = 0, the crossover
scale is given by ω̄∗ = D, as explained above. It decreases
with increasing U , as seen in Fig. 4(a), and drops below
ω∗ when U becomes of order D. The exponent η′d be-
comes less negative with increasing U , but remains close
to its U = 0 value of − 1

2 (implying nearly Lorentzian

ω−2 tails) as long as U � D, as seen in Fig. 4(d). When
U passes D, η′d increases past η0

d, but at that point the
frequency window ω∗ < ω < ω̄∗ has already shrunk to
zero.

In contrast to Aeq
d (ω), the spectral functions Aeq

dc(ω)
and Aeq

dc†(ω) do have non-vanishing high frequency tails
even for U = 0 and Γ = 0, which evolve into the AOC be-
haviour for U 6= 0. Thus, the analogue of the “Lorentzian
tail” is always subleading, so that a scale corresponding
to ω̄∗ does not show up and Eqs. (44b)-(44c) are valid in
the entire range ω∗ < ω < D.

Finally, we mention that Aeq
dc†(ω) contains a delta-

peak of the form a δ(ω), with weight a = |〈Gi|d̂ĉ†|Gi〉|2.
This follows from its Lehmann representation of the form

(28b), because the ground state expectation value of d̂ĉ†

is non-zero. (Since the latter statement does not hold

for d̂ and ĉd̂, which do not conserve particle number, the
corresponding spectral functions Aeq

c (ω) and Aeq
dc(ω) lack

a δ(ω) contribution.) The delta-function peak in Aeq
dc†(ω)

is, however, unrelated to AOC physics, and hence will not
be discussed any further. (Similar δ(ω)-function peaks
occur for some of the other equilibrium spectral func-
tions discussed further below, but they will likewise be
ignored in the present paper.)
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Figure 5: (Color online) (a) Cartoon of the quench which
occurs when an electron-hole pair is created at time t = 0,
see Eq. (47). (The cartoon depicts the situation relevant for
exciton creation by absorption of a photon, which excited an
electron from a valence-band to a conduction band level of a
semiconducting quantum dot.) (b) The exponent ∆h [from
Eq. (11)] and the displaced charge ∆ch

h [from Eq. (12)], for
the quench of Eq. (46), as function of the quench range W .
(c) Corresponding values of the AO exponents ηhd, ηhdc and
ηhdc† , extracted from the asymptotic behaviour ω−1+2η of
spectral functions (crosses), or as expected from Eqs. (50)
(dots). Typically, relative errors are less than 1%.

C. Quantum quench of level position

In the previous subsection we emphasized the impor-
tance of the scale ω∗, which separates the low- and
intermediate-frequency regimes, showing trivial expo-
nents or AO exponents, respectively. It is instructive
to study the role of the scale ω∗ in a slightly different
but related context, namely quench spectral functions
involving a quantum quench of the level position. This
will shed further light on the AO between states with
different local level occupancies.

Concretely, we consider initial and final Hamiltonians
that both are of the form Eq. (40), but with initial and
final level positions that are symmetrically spaced on op-
posite sides of the model’s symmetry point at εd = 0:

εi
d = W/2

quench−→ εf
d = −W/2 . (46)

Although this is an example of a type 1 quench, it will be
convenient (mainly for notational reasons) to reformulate
this situation as a type 2 quench. To this end we use the
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Figure 6: (Color online) (a) The AO exponent ∆h [ex-
tracted according to Eq. (11)] as function of W/Γren, for sev-
eral values of U . For W/Γren � 1, ∆h approaches its max-
imal value ∆max

h . As W is reduced below Γren, ∆h drops
below its maximal value and decreases with W [linearly so
for W/Γren � 1]. (b) The final and initial occupancies nf

d

(squares, upper curves) and ni
d (circles, lower curves) as func-

tions of W/Γren, for the same values of U [same color code
as in (a)]. (c) The maximal value ∆max

h of the AO exponent
∆h, extracted from the W/Γren � 1 regime of (a) (crosses,
“calc”), or expected from Eq. (48) (solid line, “exp”); the
relative deviations are well below 1%.

Hamiltonian

Ĥ = W (1/2− n̂h)n̂d + U(n̂d − 1/2)(ĉ†̂c− 1/2)

+
∑
ε

ε ĉ†εĉε +

√
Γ

πρ

∑
ε

(d̂†̂cε + ĉ†εd̂) , (47)

where we have introduced an auxiliary degree of freedom,
called “hole” (in analogy to the role of holes in exciton
creation by optical absorption14–16), with hole counting

operator n̂h = ĥ†ĥ. The hole has no dynamics; its only
role is to distinguish two distinct sectors of Hilbert space,
in which the dynamics is described by Ĥi or Ĥf , with hole
number nh = 0 or 1, respectively [see Fig. 5(a)]. The type
2 quench that switches between these sectors is induced

by X̂† = ĥ†. The overlap Oh ∼ N−
1
2 ∆2

h between the
initial and final ground states is characterized by an AO
exponent ∆h [Eq. (11)] that is equal to the charge ∆ch

h
displaced by the quench [Eq. (12)].

The magnitude of ∆h increases with the rangeW of the
quench, as shown in Fig. 5(b) (linear scale) and Fig. 6(a)
(log-log scale). Note, in particular, that the scale on
which the quenching range, W , needs to change in order
for the AO exponents to change significantly, is given by
Γren. This is natural: when W � Γren, the two states

|Gi〉 and |Gf〉 connected by the quench describe dots with
strongly different occupancies, ni

d ' 0 vs. nf
d ' 1, see

Fig. 6(b). Hence the AO [Eq. (11)] of the corresponding
Fermi seas will be strong. The maximum possible value
of the exponent ∆h is

∆max
h = 1 + ∆ph

d , (48)

with ∆ph
d (U) < 0 given by Eq. (42). The first term simply

gives the U → ∞ value of the change in dot occupancy
induced by the quench, namely 1; the second term reflects
the reaction of the Fermi sea to this change, cf. Sec. III B.

Following the arguments of Sec. II E, the nonequilib-
rium spectral functions AY (ω), defined for

Ŷ †1 = d̂†ĥ† , Ŷ †2 = ĉ†d̂†ĥ† , Ŷ †3 = ĉ d̂†ĥ† , (49)

are expected to show the following AO behaviour for
ω → 0:

Ahd(ω) ∼ ω−1+2ηhd ηhd = 1
2 (∆h − 1)2 , (50a)

Ahdc(ω) ∼ ω−1+2ηhdc ηhdc = 1
2 (∆h − 2)2 , (50b)

Ahdc†(ω) ∼ ω−1+2η
hdc† ηhdc† = 1

2∆2
h . (50c)

The reason for the specific form of the exponents is that
for the correlators Ghd, Ghdc or Ghdc† , at t = 0 the local
charge (on the d-level or in the Fermi sea) is increased
by one, two or zero, respectively [i.e. ∆C = 1, 2 or 0 in
Eq. (16)]. Figure 5(c) shows that the exponents (crosses)
extracted from the asymptotic behaviour AY (ω) are in-
deed in good agreement with values expected (dots) from
Eqs. (50).

IV. POPULATION SWITCHING WITHOUT
SENSOR

The models investigated so far served as testing ground
for the influence of AO on various types of spectral func-
tions. The following two sections have the concrete moti-
vation to clarify the role of AO in the context of quantum
dot models that display the phenomenon of population
switching (PS).17,18,32,33,42–47 In such models, a quantum
dot, tunnel-coupled to leads, contains levels of different
widths and is capacitively coupled to a gate voltage that
shifts the levels energy relative to the Fermi level of the
leads. Under suitable conditions, an (adiabatic) sweep of
the gate voltage induces an inversion in the population
of these levels (a so-called population switch), implying
a change in the local potential seen by the Fermi seas in
the leads. Goldstein, Berkovits and Gefen (GBG) have
argued in Ref. 17,18 that in this context AO can play an
important role. In particular, they pointed out that for
a model involving a third lead acting as a charge sensor,
the effects of AO can be enhanced to such an extent that
population switching becomes abrupt, i.e. turns into a
phase transition. Our goal is to elucidate the influence
of AO by using the tools developed above in the context
of the IRLM.
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Figure 7: (Color online) (a) Cartoon of the Hamiltonian (51)
for the asymmetric SIAM. (b) The occupations nL (solid lines)
and nR (dashed lines) of the left and right level, respectively,
as functions of εd, for several values of ΓR, at a fixed ratio of
ΓR/ΓL = 20. As εd is lowered past the particle-hole symmet-
ric point at εd = −U/2, population switching occurs, with nR
changing from near 1 to near 0, and vice versa for nL. Inset:
zoom into the switching region around εd = −U/2, showing
that the switch is continuous (as function of εd) even though
the switching region becomes narrower for decreasing ΓR. (c)
Comparison of b0WPS [from Eqs. (52) and (56), crosses], TK

[from Eq. (57), solid], and the inverse pseudospin suscepti-
bility 1/χs (pluses). All three quantities evidently decrease
similarly with decreasing ΓR/U .

In the present section, we will study population switch-
ing in a two-lead model (without charge sensor), which is
equivalent to an anisotropic Kondo model.17,18,48–51 The
corresponding Kondo temperature, TK, sets the width of
the population switch as function of gate voltage. We
calculate the spectral function Aeq

Y (ω) of the pseudospin-
flip operator and show that TK also acts as the crossover
scale ω∗ that separates a low-frequency regime showing
Fermi-liquid power laws from an intermediate-frequency
regime revealing AO exponents. We investigate the ori-
gin of the latter by a quantum quench analysis similar
to that of Sec. III C above. In the following section, we
will generalize the model by adding a charge sensor and
analyse how this enhances the effects of AO.

A. Width of switching regime

We consider a model involving two single-level dots
(µ = L,R) and for convenience choose their level ener-
gies εd to be equal, so that the PS always occurs at the
particle-hole symmetric point, εd = −U/2. (Note that PS
occurs also for non-degenerate levels, as long as their level
spacing is smaller than the difference of their level widths
Γµ.) The levels have an electrostatic coupling U > 0 and
are each tunnel-coupled to its own lead [see Fig. 7(a)]:

ĤSIAM =
∑
µ

εd d̂
†
µd̂µ + Ud̂†Ld̂Ld̂

†
Rd̂R (51)

+
∑
εµ

ε ĉ†εµĉεµ +
∑
µ

√
Γµ
πρ

∑
ε

(d̂†µĉεµ + ĉ†εµd̂µ) ,

(We use notation analogous to that of Sec. III B.) We
choose the level widths to be strongly asymmetric and
will use a fixed value of their ratio, ΓR/ΓL = 20, through-
out. The model thus has the form of a spin-asymmetric
single-impurity Anderson model (SIAM), where µ acts as
pseudospin index.

As illustrated in Fig. 7(b), this model shows PS when
εd is decreased past εd = −U/2 (the particle-hole sym-
metric point): as this “switching point” is crossed, the
occupancy of the broad level (dashed lines) changes from
near 1 to near 0, and vice versa for the narrow level (solid
lines). We define the width of the switching regime, WPS,
as the difference,

WPS ≡ εd(nR+)− εd(nR−) , (52)

between those two values of εd, located symmetrically on
either side of the switching point, at which the occupation
of the right level is nR+ ≡ 3

4n
max
R+ (> 1

2 ) or nR− = 1 −
nR+ (< 1

2 ), respectively, where nmax
R+ is the largest value

reached by nR for εd > −U/2, to the right of the PS.
Figure 7(b) and its inset show that the width of the

switching regime decreases with decreasing Γµ, without,
however, dropping to zero as long as the level widths
are non-zero. This behaviour can be understood as
follows.17,18,48–51 In the vicinity of the particle-hole sym-
metric point, only two local charge configurations are rel-
evant, namely those with occupancies (nL, nR) equal to
(0, 1) or (1, 0). The spin-asymmetric SIAM can thus be
mapped onto an anisotropic Kondo model by a Schrieffer-
Wolff transformation. This leads to an anisotropic pseu-
dospin exchange interaction of the form

Ĥexch =
Jz
4

(d̂†Ld̂L − d̂†Rd̂R)(ĉ†LĉL − ĉ†RĉR)

+
Jxy
2

(ĉLĉ
†
Rd̂
†
Ld̂R + h.c.)

+Beff(d̂†Ld̂L − d̂†Rd̂R)/2 , (53)

respectively, with coupling constants given by

Jz = UL + UR, Jxy = 2
√
ULUR , (54)
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where

ρUµ =
Γµ
π

(
1

εd + U
+

1

|εd|

)
, (55)

and effective magnetic field

Beff = b0(εd + U/2), b0 =
4(ΓR − ΓL)

πU
. (56)

Since ΓR � ΓL in our system, the Kondo model is highly
anisotropic, Jz � Jxy. The corresponding Kondo tem-
perature is given by the following expression [see also
Eq. (59) below]:48

TK =

√
U(ΓL + ΓR)

π
exp

[
πεd(U + εd)

2U(ΓL − ΓR)
ln

ΓL

ΓR

]
. (57)

Note that TK decreases exponentially if Γµ is decreased
with a fixed ratio of ΓR/ΓL and actually becomes zero
for Γµ = 0 (the argument of the exponent in Eq. (57) is
negative, since εd < 0).

Now, TK can be associated with the energy gained
by forming a ground state involving a screened local
pseudospin, which in the present setting translates to a
ground state involving a coherent superposition of config-
urations with local occupancies (0, 1) and (1, 0). Screen-
ing will cease when εd deviates sufficiently from the sym-
metry point −U/2 that the effective magnetic field |Beff |
exceeds TK, in which case the ground state will be dom-
inated solely by the (0, 1) or (1, 0) configuration, instead
of involving a coherent superposition of both. Thus the
switching width will be set by b0WPS ' TK, up to a nu-
merical constant of order unity.

Figure 7(c) confirms this expectation. It shows that b0
times the switching width WPS [from Eq. (52)] (crosses)
and the Kondo temperature TK at εd = −U/2 [from
Eq. (57)] (solid line), when plotted as functions of ΓR/U
at fixed ΓR/ΓL, are indeed almost perfectly proportional
to each other. As a numerical consistency check, Fig. 7(c)
also shows the inverse of the zero-temperature pseu-
dospin susceptibility of the dot levels, 1/χs (pluses), con-
firming that TK = 1/χs. (This is analogous to the rela-
tion Γren = 1/πχc of Sec. III B.)

B. AO in dynamics of pseudospin-flip operator

Let us now explore the role of AO in population switch-
ing. To this end, we note that the effective exchange in-
teraction Ĥexch of Eq. (53) is similar in structure to the
IRLM of Eq. (40): both involve two charge configurations
[(0,1) and (1,0) for Eq. (53), or 0 and 1 for Eq. (40)],
which induce different phase shifts in the leads due to
a dot-lead interaction term (parametrized by Jz in the
former and U in the latter), and which are connected by
a tunnelling term (parametrized by Jxy in the former, Γ
in the latter). More formally, the relation between the
IRLM and PS is revealed by the equivalence of both mod-
els to the Kondo model (for the IRLM, this equivalence
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Figure 8: (Color online) (a) The pseudospin-flip spectral
function Aeq

Y (ω) [cf. Eq. (58)] for the PS model without charge
sensor, for several values of ΓR/U with fixed ratio ΓR/ΓL,
calculated at εd = −U/2: plotting Aeq

Y (ω)/Aeq
Y (TK) versus

ω/TK yields a scaling collapse. The frequency dependence of
the curves qualitatively changes at TK: for ω < TK we find
Fermi liquid behaviour, ∼ ω3 (dotted line), while for ω > TK

each curve shows a non-trivial AO power-law, ∼ ω−1+2η0Y

[Eq. (61)], exemplified by the dashed and dash-dotted lines
for ΓR/U = 0.2 and 0.05, respectively. (b) Comparison of
the values for η0Y expected from Eq. (61b) (solid line), or ex-
tracted from the spectral function Aeq

Y (ω) (crosses) by fitting
Eq. (61a) to it in the intermediate-frequency regime between
TK and the high frequency maximum. For each curve in panel
(a), two arrows of corresponding color above and below the
curve, indicate the fitting range’s upper and lower ends, re-
spectively. None of the fitting ranges extend below 103TK

(hence the accumulation of arrows there), since below this
value the logarithmic corrections discussed in the text become
significant, causing the curves to bend. The effect of these
logarithmic corrections increases with increasing ΓR/U , since
this reduces the width of the fitting range [see (a)], causing
the relative error between crosses and solid line to increases
from 1% for ΓR/U = 0.05 to 10% for ΓR/U = 0.2.

is discussed, e.g., in Refs. 13,30,39). Thus, we may ex-
pect AO to play a similar role for both models, and hence
perform an analysis similar to that in Sections III B and
III C.

Specifically, since by Eqs. (54) and (55) Jxy � Jz, let
us study the spectral function Aeq

Y (ω) of the pseudospin-

flip operators occurring in Ĥexch,

Ŷ † = ĉLĉ
†
Rd̂
†
Ld̂R , Ŷ = d̂†Rd̂LĉRĉ

†
L . (58)

These induce transitions between the local charge con-
figurations (0,1) and (1,0) and simultaneously add an
electron to one lead while removing an electron from
the other. (Such a transition does not constitute a
quench, since for the present model nd is not conserved.)



15

Aeq
Y should, in some respects, be analogous to Adc† of

Sec. III B. We have thus calculated Aeq
Y numerically, us-

ing the Hamiltonian ĤSIAM of Eq. (51). Indeed, Fig. 8(a),
which shows Aeq

Y (ω) for several values of ΓR/U , exhibits
several features reminiscent of Fig. 4(c) for Adc†(ω): (i)

Since Ŷ is relevant at the Jxy = 0 fixed point, having
there a scaling dimension η0

Y < 1 [cf. Eq. (61b) below],
there exists a crossover scale ω∗, separating a regime in-
termediate frequencies, where the system is effectively
close to the Jxy = 0 fixed point, and a regime of very
low frequencies, where the system is governed by strong
pseudospin-screening fixed point. Eq. (24) then implies

ω∗ ' ωhe

(
Jxy
ωhe

)1/(1−η0Y )

, (59)

where ωhe is a high-energy scale set by the minimum of
the bandwidth or the cost of local charge fluctuations.
By Eqs. (54), (55), and (61b), ω∗ is nothing else but
the Kondo temperature (57), in the limit ΓR � ΓL ad-
dressed here. (ii) When properly rescaled by plotting
Aeq
Y (ω)/Aeq

Y (ω∗) versus ω/ω∗, all curves collapse onto
each other in the regime ω . D. (iii) In the low-frequency
regime ω � ω∗ we find the same Fermi-liquid power law
(dotted line)

Aeq
Y (ω) ∼ ω3 , ω � ω∗ , (60)

dictated by the pseudospin screening fixed point, as for
Adc†(ω) [cf. Eq. (43c)]. (An analytical explanation for
this fact is given at the end of the Appendix.) (iv) In
an intermediate-frequency regime ω∗ . ω . ωhe, i.e., in
the vicinity of the Jxy = 0 fixed point, we find an AO-
dominated power law,

Aeq
Y (ω) ∼ ω−1+2η0Y , ω∗ . ω . ωhe . (61a)

Indeed, though the numerical calculation of Aeq
Y (ω) was

performed using the full Hamiltonian ĤSIAM of Eq. (51),
tunnelling is not important on the short time-scales that
govern the frequency regime ω > ω∗. Hence, we expect
the exponent η0

Y found from Eq. (61a) to be equal in value
to that which one would obtain in the ω → 0 limit of a
calculation performed in the absence of pseudospin-flips,
i.e. using Ĥexch with Jxy = 0.

In the absence of pseudospin-flips, the correlator in-
volving Ŷ would actually constitute a type 2 quench
correlator, because Ŷ † changes (n̂L − n̂R), which is a
conserved quantum number for Hamiltonians without
pseudospin-flips. Therefore, the expected value of η0

Y
can be predicted using the generalized Hopfield rule
[Eq. (29)]. For the present case of two channels that
are not interconnected by tunnelling, so that the total
charge within each channel is conserved, it can be ap-
plied to each channel separately, adding the correspond-
ing exponents21 [cf. Eq. (31)]:

η0
Y = 1

2 (∆L + 1)2 + 1
2 (−∆R − 1)2 . (61b)

Here ∆µ describes the change in phase shift, divided by
π, induced in lead µ by a pseudospin-flip; it is given by
Eq. (42), with U replaced by Uµ [from Eq. (55)]. The ap-
plicability of these arguments is confirmed by Fig. 8(b),
which shows that the exponents extracted from the nu-
merical spectra (crosses) agree quite well with the values
expected from Eq. (61b) (solid line).

The agreement is not perfect, though, and deteriorates
with increasing ΓR/U , i.e. with increasing ω∗ ' TK. To
understand this, recall that the AO power law results
from analysing the RG equations to lowest-order approx-
imation in Jxy. To that order the simple RG Eq. (23) is
valid, and renormalization of Jz (and therefore of η0

Y )
is negligible. As full Kondo RG equations show, this
requires Jz � Jxy, or more accurately (Jz/Jxy)2 �
1.25 Subleading terms cause logarithmic corrections in
1/ ln(ω/TK). In our studies, we used a fixed ratio of
(Jz/Jxy)2 ' 5.5 [cf. Eqs. (54)-(55)], which is not large
enough for the logarithmic corrections to be entirely neg-
ligible. Thus, pure AOC behaviour can be expected only
at the high-frequency end of the range ω∗ < ω < D,
while deviations from AOC behaviour should become no-
ticeable as ω decreases and becomes closer to ω∗. In-
deed, this expectation is borne out in Fig. 8(a), in which
the fitting ranges used are marked by arrows: The best
AOC behaviour (straightest line on log-log plot) is found
at high frequencies for the smallest values of ΓR/U , for
which the range ω∗ < ω < D is widest. However, with in-
creasing ΓR/U , which increases ω∗ and hence reduces the
range ω∗ < ω < D, the AOC and non-AOC behaviours
become increasingly harder to separate, resulting in the
deviations, evident in Fig. 8(b), between the exponent
extracted numerically and predicted analytically.

Up to the caveat just discussed (which would disap-
pear in the limit ΓR/ΓL � 1), Eq. (61b) allows us to
understand why PS is always continuous in this model:
Since −1 ≤ ∆µ ≤ 0, the scaling dimension of Ŷ satisfies
η0
Y ≤ 1, as mentioned above, implying that this opera-

tor always remains a relevant perturbation around the
Jxy = 0 fixed point, and does not flow to zero at low
energy scales. This means that AO, although present,
is not strong enough to completely suppress the ampli-
tude for pseudospin-flip transitions. Hence, the two sec-
tors (0, 1) and (1, 0) are always coupled by the effective
low-energy Hamiltonian, so that population switching is
continuous.17,18

C. AO induced by quench of level positions

As mentioned above, the operators Ŷ † and Ŷ connect
two configurations with different local occupancies, (0,1)
and (1,0). To shed further light on the AO between such
configurations, we now perform a quantum quench anal-
ysis similar to that of Sec. III C. We consider a type 1
quench, Ĥi → Ĥf , induced by changing the level posi-
tion εd from a value above the symmetry point, favouring
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Figure 9: (Color online) AO for the PS model without charge
sensing. The exponent ∆AO [extracted from Eq. (1)] (solid
lines with dots) is shown as function of quench size W/U
[Eq. (62)], for several values of ΓR/U with fixed ratio ΓR/ΓL,
showing that AO becomes significant once W increases past
TK/b0 (indicated by dashed vertical lines). The exponent
∆AO increases linearly with W for W � TK/b0, and satu-
rates to a maximal value of

√
2 [Eq. (63)] for W � TK/b0.

The corresponding values of ∆ch [from Eq. (7)] are not shown
but agree with ∆AO with relative errors of a few percent.

(0,1), to one below, favouring (1,0):

εi
d = −U/2 +W/2

quench−→ εf
d = −U/2−W/2 . (62)

The corresponding ground states, |Gi〉 and |Gf〉, will dis-
play AO as in Eq. (1). Based on the lessons learnt from
Sec. III C, the corresponding exponent ∆AO will increase
with the width W of the quench. Indeed, Fig. 9 [to be
compared with Fig. 6(a)] shows that ∆AO increases from
close to 0 for W much below TK/b0 (indicated by vertical
dashed lines) to a maximal value of

∆max
AO =

√
(1)2 + (1)2 =

√
2 (63)

for W � TK/b0. This maximal value reflects the dis-
placed charge ∆ch [cf. Eq. (7)] induced by a very strong
quench: both nL and nR are ' 0 (or ' 1) if the
level position is far above (or below) the Fermi energy,
εi
d = −U/2 + W/2 � 0 (or � 0), cf. Fig. 7(b), thus the

displaced charge associated with both nL and nR is 1.
(The contribution to ∆ch from the leads turns out to be
negligible here,21 since for sufficiently large W the Fermi
sea is essentially decoupled from the dot.)

D. Summary for PS without sensor

The results of this section can be summarized as fol-
lows: (i) The energy scale setting the width of PS is
proportional to TK. (ii) This can directly be attributed
to AO: as shown in Fig. 9, the ground states of two con-
figurations on opposite sides of the switching points ex-
hibit strong AO when their level positions differ by more
than TK/b0. Thus, quantum fluctuations between them,

induced by operators such as Ŷ and Ŷ †, are strongly
suppressed. (iii) For the present model PS will always

be continuous as a function of εd, because (for given U)
TK is non-zero for any fixed choice of ΓL and ΓR (al-
though exponentially small), and AO ceases to be im-
portant (∆AO ' 0) once εd comes within TK/b0 of the
switching point. Conversely, however, it should now also
be plausible that an essentially abrupt PS will be achiev-
able if, by a suitable modification of the model, the degree
of AO between the configurations (0,1) and (1,0) can be
enhanced sufficiently to push TK to zero even for finite
ΓL and ΓR. As pointed out by GBG,17,18 this can be
achieved by adding a charge sensor, to which we turn
next.

V. POPULATION SWITCHING WITH SENSOR

Figure 10: Cartoon of the Hamiltonian (64), describing an
asymmetric SIAM with an additional sensor lead coupled elec-
trostatically to the left dot.

In this section we study the effects of adding an electro-
statically coupled charge sensor to the model of the pre-
vious section, as proposed by GBG,17,18 and analyse how
this enhances the effects of AO. In particular, we show
that by increasing the sensor coupling strength (US), the
effective Kondo temperature (T S

K) can be driven to zero,
implying that population switching becomes abrupt. (A
study of how additional leads increase the effects of AO
for static quantities has recently been performed in sim-
ilar context, involving a multi-lead IRLM.30 Similarly,
AO is also known to play an important role for a model
of Ising-coupled Kondo impurities,32,33 which can be
mapped onto a model similar, though not identical, to
that studied below.

A. Width of switching regime

GBG proposed to extend the asymmetric SIAM stud-
ied above by introducing a third lead as “charge sensor”
for the left dot (see Fig. 10). For simplicity, it is taken
to have the same density of states as the other two leads,
but in contrast to the latter, it couples to the left dot
only electrostatically (not by tunnelling), with interac-
tion strength US (with ĉS ≡

∑
ε ĉεS):

Ĥ = ĤSIAM (64)

+
∑
ε

ε ĉ†εSĉεS + US(d̂†Ld̂L −
1

2
)(ĉ†SĉS −

1

2
) .
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Figure 11: (Color online) Population switching for the
charge sensor model of Eq. (64). (a) nR(εd) (solid lines) and
nL(εd) (dashed lines) for several values of US/U , plotted ver-
sus (εd+U/2)/WPS in a pseudo-logarithmic fashion (“pseudo”
in that the x-axis is plotted logarithmic with positive and
negative values to the left and right of the switching point,
respectively, represented by the vertical solid line). The hor-
izontal light solid lines indicate the values of nR which define
the widths W S

PS of the PS regimes. The noisy behaviour of
the curves for US = 5U at small values of εd indicates that
our analysis cannot resolve smaller values for εd as we are
reaching the limits of double precision numerical accuracy.
(b) Inset: T S

K/TK as function of US/U , showing the rapid de-
crease of the Kondo temperature with increasing coupling.
Main panel: lnT S

K/ lnTK versus (U∗S − US)/U , plotted on a
log-log scale (dashed line with dots), together with a linear
fit using Eq. (66) (solid line).

A plot of nL and nR as functions of εd for this model
looks essentially similar to Fig. 7(b), showing population
switching at εd = −U/2. However, when the strength of
the coupling US is increased, the width of the PS, say
W S

PS, is strongly reduced below the value WPS it had
for US = 0, as predicted by GBG. This is illustrated in
Fig. 11(a), which shows nR (solid lines) and nL (dashed
lines) as functions of (εd+U/2)/WPS, using a logarithmic
scale to zoom in on the immediate vicinity of the PS. In
fact, as US approaches a critical value U∗S , the width W S

PS
drops exponentially towards zero, until it becomes too
small to be resolved within double precision numerical
accuracy.

The behaviour of W S
PS is mimicked by that of the

Kondo temperature, calculated via the pseudospin sus-
ceptibility, T S

K ≡ 1/χs. We find that it decreases relative
to its US = 0 value TK, precisely in proportion to W S

PS,

such that

T S
K

TK
=
W S

PS

WPS
(65)

holds within our numerical accuracy.
The transition from a continuous to an abrupt PS as

US crosses U∗S has been predicted to be of the Kosterlitz-
Thouless type.17,18 This implies that T S

K is expected to
approach zero according to

− lnT S
K ∼ (U∗S − US)

γ
, (66)

where γ = −1/2. To test whether our data is con-
form to this expectation, Fig. 11(b) shows ln(T S

K)/ ln(TK)
vs. (U∗S − U) on a log-log plot. Indeed, we find a
straight line for US not too close to U∗S , consistent with
Eq. (66). We extract the values γ = −0.54 ± 0.06 and
U∗S/U = 6.78 ± 0.32, by making linear fits over several
somewhat different fitting ranges and taking the average
and standard deviation of the fit parameters as final fit-
ting results. The relatively large errors of about 10% are
a consequence of the fact that it is not possible to obtain
data for US closer to U∗S , since this would drive T S

K below
the level of numerical noise.

We note that analytical calculations based on Refs. 17
and 18 [using the more accurate criterion, Jz(U

∗
S ) =

Jxy(U∗S ) in the notation of these papers] predict the crit-
ical interaction to be U∗S/U ∼ 7.6. The agreement of
this prediction with the numerical result of 6.8 is quite
respectable, given the inaccuracies in both the numerical
and analytical calculations [for the latter, inaccuracies
arise since the cutoff scheme employed in the analyti-
cal calculation is different from the one realized numeri-
cally. The cutoff appears explicitly in the arguments of
the functions Q in Eqs. (6) to (10) of Ref. 17].

Though the above results unambiguously show that
the width of PS decreases exponentially as US approaches
a critical value U∗S , an analysis based purely on W S

PS can
not access the critical point itself or the regime beyond.
We therefore proceed now with a numerical calculation of
the dynamics of the pseudospin-flip operator, for which
we are not constrained to US < U∗S .

B. AO in dynamics of pseudospin-flip operator

The reason for the US-dependence of WPS and T S
K is

that the introduction of the sensor (US 6= 0) increases the
influence of AO in the leads. As pointed out by GBG,
the scaling dimension of Ŷ acquires an extra contribution
1
2∆2

S due to the sensor lead:

ηS
Y = 1

2 (∆L + 1)2 + 1
2 (−∆R − 1)2 + 1

2∆2
S , (67)

where ∆S is given by Eq. (42), with US replacing U . In
analogy with Eq. (59),

TSK ' ωhe

(
Jxy
ωhe

)1/(1−ηSY )

. (68)
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Figure 12: (Color online) (a) The pseudospin-flip spectral
function Aeq

Y (ω) [cf. Eq. (58)] for the PS model with charge
sensor, for several values of US/U , calculated at εd = −U/2:
plotting Aeq

Y (ω)/Aeq
Y (T S

K) versus ω/T S
K yields a scaling col-

lapse. The general shape of the curves is similar to those
shown in Fig. 8: for ω < T S

K we find Fermi liquid behaviour,
∼ ω3 (dotted line), while for ω > T S

K each curve shows a non-

trivial AO power-law, ∼ ω−1+2ηSY [cf. Eq. (61)], exemplified
by the dashed and dash-dotted lines for US/U = 0 and 5, re-
spectively. (b) Comparison of the values for ηSY expected from
Eq. (67) (solid line), or extracted from power-law fits to the
spectral functionAeq

Y (ω) in the intermediate-frequency regime
between TK and the high frequency maximum (crosses). Ar-
rows in panel (a) indicate the fitting ranges, as in Fig. 8(a).
The relative errors are below 5%, where the errors decrease
with increasing US for similar reasons as in Fig. 8. The light
horizontal line indicates ηSY = 1. (We were unable to obtain
reliable data for US around 7U , presumably because this is too
close to U∗S .) (c) Aeq

Y (ω)/Aeq
Y (TK) versus ω/TK for US = 8U .

The AO power-law behaviour ω−1+2ηSY extends down to the
smallest frequencies accessible, illustrating that the crossover
scale T S

K has become undetectably small.

By increasing US and thereby ∆2
S, it is thus possible to

drive ηS
Y beyond 1. This will render the pseudospin-flip

operators Ŷ and Ŷ † irrelevant at the Jxy = 0 fixed point,
thus suppressing quantum fluctuations between the (0,1)
and (1,0) configurations, and, hence, pushing T S

K down
to zero.

To check this scenario explicitly, we have studied the
US-dependence of ηS

Y by extracting it from the spectral
function Aeq

Y (ω), calculated at the particle-hole symmet-
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Figure 13: (Color online) AO for the PS model with charge
sensing. The exponent ∆AO [extracted from Eq. (1)] (solid
lines with dots) is shown as function of quench size W/U
[Eq. (62)], for several values of US/U , with fixed values of ΓR

and ΓL. We see that T S
K/b0 (indicated by dashed vertical lines)

is pushed to zero as US increases past U∗S/U ' 6.78. Already
for US/U ≥ 6 the curves are essentially indistinguishable, in
that they do not deviate from their constant value for all
W/U -values accessible to our analysis. For W � T S

K/b0 the
exponent ∆AO saturates to a maximal value given by Eq. (71).
The corresponding values of ∆ch [from Eq. (7)] are not shown
but agree with ∆AO with relative errors of a few percent.

ric point for several values of US. The general shape of
Aeq
Y , shown in Fig. 12(a), is similar to that of Fig. 8(a)

for US = 0: For frequencies well below ω∗ ' T S
K, Aeq

Y (ω)
scales as

Aeq
Y (ω) ∼ ω3 , ω � ω∗ , (69)

while in the regime of intermediate frequencies, ω∗ .
ω . ωhe (cf. Sec. IV B), the spectrum shows AO power-
law behaviour,

Aeq
Y (ω) ∼ ω−1+2ηSY , ω∗ . ω . ωhe . (70)

Indeed, Fig. 12(b) shows that the values for ηS
Y ex-

tracted from the spectra (crosses) agree fairly well with
those expected from Eq. (67). As before, deviations from
pure AO behaviour can be seen for ω & ω∗. Moreover,
for sufficiently large US/U , the exponents ηS

Y increase
past 1, confirming that the pseudospin-flip operators be-
come irrelevant. In that case the AO power low be-
haviour remains valid down to zero frequency, as shown
in Fig. 12(c), since the scale T S

K has been pushed to zero.

C. AO induced by quench of level positions

To further highlight the effect of AO on T S
K, let us con-

sider again the quench of level position [Eq. (62)] studied
in Sec. IV C, and repeat the analysis presented there, but
now for several different values of US/U . Figure 13 shows
the results for the exponent ∆AO. For large values of W
the AO factor reaches its maximal value

∆max
AO =

√
(1)2 + (1)2 + ∆2

S . (71)
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This is similar to Eq. (63) for the model without sen-
sor, but includes the additional contribution ∆2

S [given
by Eq. (42), with US replacing U ] from the displaced
charge induced in the sensor lead by the change in local
occupancy of the left dot from nL = 0 to 1.

The most important feature of Fig. 13 is the fact that
the crossover scale T S

K/b0 (indicated by vertical dashed
lines) is rapidly pushed to extremely small values as
US/U is increased. Indeed, for US = 8U , which lies be-
yond the critical value of U∗S/U ' 6.78 discussed above,
∆AO is essentially pinned to its maximal value down to
the smallest values of quench range W that we can access
numerically. This is consistent with the fact that the cor-
responding spectral function Aeq

Y (ω) at US = 8U , shown
in Fig. 12(c), shows nontrivial AO power laws down to the
lowest frequencies accessible, with no trace of a Fermi-
liquid ω3. This demonstrates very clearly, if somewhat
indirectly, that the PS will be abrupt for US > U∗S .

D. Summary for PS with sensor

Let us summarize the results of this section, by way of
extending the list of salient points collected in Sec. IV D.
(iv) The presence of a charge sensor reduces the crossover
scale T S

K, which reaches zero at a critical coupling U∗S
[Fig. 11]. (v) This reduction is due to the increased
effect of AO in the leads, which increases the scaling
dimension ηS

Y [Fig. 12]; when the latter passes 1 (cor-
responding to US = U∗S ), the pseudospin-flip operators
become irrelevant, hence Jxy flows to zero and T S

K van-
ishes, rendering the PS abrupt. (vi) Correspondingly,
for US > U∗S , the spectrum Aeq

Y (ω) shows nontrivial AO

power-law behaviour, ω−1+2ηSY , all the way down to the
smallest frequencies accessible [Fig. 12(c)], and a low-
frequency regime showing Fermi-liquid exponents does
not exist.

VI. CONCLUDING REMARKS

The goal of this paper was to elucidate the role of
the Anderson orthogonality catastrophe in giving rise to
anomalous scaling dimensions in dynamical correlation
functions for quantum impurity models. To this end, we
have studied several setups involving (interacting) quan-
tum dots and (non-interacting) leads. The quantum dots
and leads may be interconnected electrostatically, or also
through tunnel-coupling. In our analysis we focussed on
the asymptotic behaviour of various correlation functions
G(t) and the corresponding spectral functionsA(ω) in the
limit of long times or low frequencies, respectively. Their
asymptotic behaviour could be understood via a general-
ized version of Hopfield’s rule, whose validity was checked
and confirmed through an extensive NRG analysis. Our
main result regarding the behaviour of spectral functions
in the different models considered are summarized in Ta-
ble I. As a particular application, we performed a detailed

Fermi-liquid

exponents
AO exponents

(a)

(b)

AO exponents

Figure 14: Schematic depiction of an equilibrium spectral
function Aeq

Y (ω) for the cases that the local charge relaxation
rate ω∗ is (a) larger or (b) smaller than the lead level spacing
δE.

study of population switching, both without and with a
third lead that acts as a charge sensor. We confirmed
a previous prediction17,18 that when the charge sensor
is sufficiently strongly coupled, population switching can
turn into an abrupt quantum phase transition.

Aside from presenting a systematic discussion of the
generalized Hopfield rule, which, hopefully, will be use-
ful for practitioners in the fields, several general features
have emerged from our analysis:

(1) In the context of a local quantum quench of type
1, where a change of parameters switches the Hamilto-
nian from Ĥi to Ĥf , each lead-dot electrostatic coupling
gives rise to an AO factor in the ground state overlap
|〈Gi|Gf〉|, reflecting a change in the many-body configu-
ration of the lead when the charging state of the dot is

modified. This AO factor scales as N
− 1

2 ∆2
µ

µ , where Nµ
is the number of electrons in lead µ and ∆µ the change
in the scattering phase, divided by π, in that lead. (AO
factors from leads that are not interconnected by tun-
nelling, so that the total charge within each channel is
conserved, are multiplicative [Eq. (31)].21 )

(2) AO also arises for a type 2 quench, induced by an

operator X̂† that connects initial and final ground states
|Gi〉 and |Gf〉 lying in dynamically disconnected sectors
of Hilbert space. In particular, AO influences the corre-
sponding quench spectral function AX(ω) which scales as

AX(ω) ∼ ω−1+∆2
X [Eq. (27)]. For a Hamiltonian without

tunnelling terms such as the LCM of Eq. (2), the spectral

function for X̂† = d̂† thus scales as Ad(ω) ∼ ω−1+∆2
d .

(3) When a type 2 quench has the form of a tunnelling

operator, Ŷ † = ĉd̂†, the asymptotic power law is modified

to become Adc† ∼ ω−1+(∆d+1)2 [Eq. (39c)], implying a
scaling dimension η0

dc† = 1
2 (∆d + 1)2. For a particle-

hole symmetric interaction term [as in Eq. (40)], we have
−1 ≤ ∆d ≤ 0 [Eq. (42)], implying that 0 ≤ η0

dc† ≤ 1/2,
thus tunnelling between a dot and a single lead is always
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Table I: Summary of our main results regarding the behaviour of spectral functions Aeq
Y (ω) of the form Eq. (28), for those

models considered in the present paper for which the Hamiltonian contains a hybridization operator connecting two dynamical
sectors of the Hilbert space (hence the superscript “eq” on Aeq

Y (ω). The first two columns specify the Section number, the model
name, and a reference to the schematic diagram and the equation defining it. The hybridization gives rise to an energy scale
ω∗ (given in the third column by its name and a reference to the equation defining it) separating high from low energy regimes.

Ŷ † ≡ Ĉ†X̂† is an operator which transfers the system between two dynamical sectors, and thus would lead to orthogonality
catastrophe effects in the absence of hybridization. For ω � ω∗ the hybridization can be neglected in a first approximation

and the spectral function displays AO behaviour, Aeq
Y (ω) ∼ ω−1+2η0Y . In the low frequency regime ω � ω∗ the hybridization is

effectively strong, and simple Fermi liquid behaviour arises, Aeq
Y (ω) ∼ ω−1+2η

eq
Y with integer 2ηeqY . For each operator Ŷ specified

in the fourth column, the values of ηeqY and η0Y , together with a reference to the relevant equation, are given in columns five

and six. The quantities ∆ph
d , ∆L, ∆R, and ∆S occurring in column six are given by Eqs. (42) with U replaced by U , UL, UR,

and US , respectively. It should be noted that more complicated behaviour can occur for ω & ω∗. In addition, ω∗ can be zero if
the hybridization operator is irrelevant, as may happen for the population switching system in the presence of a charge sensor,
cf. Sec. V.

Sec. Model ω∗ Ŷ ηeqY η0Y

III Interacting resonant level, Fig. 3(a); (40) Γren; (41) d̂ 1
2
;(43a) 1

2

(
∆ph
d

)2

; (44a)

d̂ĉ 2;(43b) 1
2

(
∆ph
d − 1

)2

; (44b)

d̂ĉ† 2;(43c) 1
2

(
∆ph
d + 1

)2

; (44c)

IV Pop. switching, no sensor,Fig. 7(a);(51) TK ;(57),(59) ĉLĉ
†
Rd̂
†
Ld̂R 2;(60) 1

2

[
(∆L+1)2 + (−∆R−1)2

]
; (61)

V Pop. switching with sensor, Fig. 10; (64) TSK ; (68) ĉLĉ
†
Rd̂
†
Ld̂R 2;(69) 1

2

[
(∆L+1)2 + (−∆R−1)2 + (∆S)2

]
; (70),(67)

a relevant perturbation.

(4) The scaling exponent can be increased, and AO
strengthened, by coupling the dot(s) to further leads. In
particular, leads that couple to the dot only electrostat-
ically (not via tunnelling) contribute AO exponents of
the form 1

2∆2
µ, and thus enhance AO more strongly than

leads that are tunnel-coupled [cf. point (3)]. In this way,
the scaling dimension of the tunnelling operator can be
increased past 1 [cf. Eq. (67)], and tunnelling rendered ir-
relevant, making the no-hybridization fixed point attrac-
tive. In such a situation, population switching becomes
a quantum phase transition, tuned by gate voltage.

(5) A particularly revealing way of demonstrating the
effect of AO for population switching is to calculate the
exponent ∆AO for a type 1 quench in which the level
position is abruptly changed from lying above to below
the PS point (see Figs. 9 and 13, which are analogous to
Fig. 6(a) for the IRLM).

(6) In the presence of tunnelling terms of the form

(ĉ†d̂ + d̂†ĉ) (assuming these are relevant in the vicin-
ity of the zero-tunnelling fixed point), operators such as

Ŷ † = d̂†, ĉd̂† and ĉ†d̂† do not induce a quench, since they
do not cause a switch between disconnected sectors of
Hilbert space. Thus, when such an operator acts on the
ground state, the resulting state will relax back to the
ground state over long time scales, say t � 1/ω∗, where
ω∗ represents the local charge relaxation rate.

(7) The corresponding equilibrium spectral function
Aeq
Y (ω) thus typically shows trivial Fermi-liquid expo-

nents [e.g. Eq. (43)] in the regime of very small fre-
quencies, δE . ω � ω∗, where the system is governed
by a strong-hybridization fixed point. δE represents

an infrared cutoff such as the level spacing in the lead.
(Throughout this paper we took δE ' 0, since in NRG
calculations δE can be made arbitrarily small by using
sufficiently long Wilson chains.)

(8) In an intermediate frequency regime ω > ω∗, the
system is still in the vicinity of the zero tunnelling fixed
point, and the equilibrium spectral function Aeq

Y (ω) may
contain signatures of anomalous AO exponents, scaling as

ω−1+2η0Y [e.g. Eq. (44)], where η0
Y represents the scaling

dimension of Ŷ calculated in the absence of tunnelling.
Thus, such exponents may be extracted by focussing on
this regime of intermediate frequencies [as done in Figs. 4,
8 and 12]. This is schematically indicated in Fig. 14(a).
Near the lower end of this regime, i.e. for ω & ω∗, devi-
ations from the pure AO form may occur, since the tun-
nelling term is effectively not small. This corresponds to
the loss of validity of the lowest-order RG Eq. (23).

(9) If AO can be made so strong that the scaling di-

mension η0
Y of the operator Ŷ † is larger than 1, the zero-

tunnelling fixed point becomes attractive, the scale ω∗

is pushed below δE (or, in the context of NRG, below
the level of numerical noise). In this case, the regime of

anomalous AO scaling ω−1+2η0Y will extend all the way
down to the smallest frequencies accessible [e.g. 12(c)],
as schematically indicated in Fig. 14(b). In the tran-
sition region (η0

Y ' 1), the leading order term in the
RG Eq. (23) is small and corrections to pure AO be-
haviour will be important up to high frequencies. These
include logarithmic factors typical of the isotropic Kondo
problem.25 While beyond the scope of this work, we be-
lieve the detailed behaviour in this regime deserves fur-
ther study.
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To conclude, we note that cases where AO dominates
in the low frequency limit such that ω∗ ' 0, [as in point
(9)], quantum fluctuations of the charge on the dot(s)
are essentially completely frozen out. At zero tempera-
ture and in the absence of any extraneous decay mech-
anism, the system will remain localized in a particular
local charge configuration. Thus, varying the gate volt-
age in such a situation may lead to hysteretic behaviour.
It would be very interesting to experimentally search for
such signatures of the freezing out of charge fluctuations
by performing linear response measurements at the PS
point.
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Appendix: Fermi-liquid spectral functions

In this appendix we study analytically the low energy
(ω < ω∗) behaviour of the spectral functions of the IRLM
(Sec. III B) and the PS setup (Sections IV B and V B).

Let us start from the non-interacting resonant level
(Eq. (40) with U = 0). In that case an elementary cal-
culation gives for the retarded dot Green function,53

GRd (ω) =
1

ω − εd − Γ
πρG

R,0
c (ω)

=
1

ω − εd + iΓ
, (A.1)

where GR,0c is the retarded c Green function for Γ = 0,
and we assumed the wide band limit (used just to sim-
plify expressions, but actually not essential for any of the
following arguments) GR,0c (ω) = −iπρ = −iπ/2 in units
where D = 1. The imaginary part of the retarded Green
function gives (up to a factor of −1/π) the well-known
Lorentzian spectral function

Aeq
d (ω) =

1

π

Γ

(ω − εd)2 + Γ2
. (A.2)

Thus, at low energies (ω � Γ) Aeq
d (ω) becomes a con-

stant, corresponding to ηeq
d = 1/2 [which reproduces

Eq. (43a)]. This behaviour is easy to understand: In the

absence of tunnelling Aeq,0
c (ω) = ρ is constant, reflecting

the constant local density of states of the lead electrons
near the end of the lead. In the presence of tunnelling,
at low energy the dot level is well-hybridized with the
lead, and assumes the role of the end of the lead, thus
featuring the slowly-varying low-energy spectral function
Aeq
d (ω).
Based on similar arguments, one would expect that,

in the presence of tunnelling, Aeq
c (ω) is still constant at

low-energies, since in that limit the small spatial separa-
tion between the dot and the end of the lead should be
unimportant. However, commensurability at half filling
(particle-hole symmetry) makes things bit more compli-
cated. An explicit calculation gives:

GRc (ω) = GR,0c (ω) + GR,0c (ω)

√
Γ

πρ
GRd (ω)

√
Γ

πρ
GR,0c (ω)

= −iπρ ω − εd
ω − εd + iΓ

. (A.3)

Thus, when εd is non-zero, we indeed get a constant low
energy limit, i.e. ηeq

c = 1/2. However, when εd = 0
(the value used throughout this paper for the IRLM),
GRc (ω) ∼ ω while Aeq

c (ω) ∼ ω2, corresponding to ηeq
c =

3/2. To understand this behaviour, let us examine a
half infinite tight-binding chain with lattice spacing a and

Hamiltonian ĤTB =
∑∞
n=1(Ψ̂†n+1Ψ̂n + h.c.). Taking the

continuum limit in the standard way, we can expand the
fast-varying annihilation operators Ψn in terms of slowly-
varying (on the scale of the Fermi wavelength) right/left
moving fields ψR/L(x), with x = na:

Ψn = eikFnaψR(na) + e−ikFnaψL(na) , (A.4)

where kF is the Fermi wavevector. From the boundary
condition Ψ0 = 0 one gets ψL(0) = −ψR(0), so we can de-
fine the single slowly-varying field ψ(x) by ψ(x) = ψR(x)
if x > 0 and ψ(x) = −ψL(−x) if x < 0. Then:

Ψn = eikFnaψ(na)− e−ikFnaψ(−na) . (A.5)

At half filling, kFa = π/2, we get at the site next to the
boundary

Ψn=2 = −ψ(2a) + ψ(−2a) ∼ −4a∂xψ(0) , (A.6)

The same thing happens at the first site (n = 1) when
we attach a dot, since at low energies the dot behaves
as the new first site. The spatial derivative is equiva-
lent to a time derivative, up to the Fermi velocity vF.
This extra time derivative is responsible for the vanish-
ing of the spectral function Aeq

c (ω) for ω → 0. Since
we have derivative for both ĉ and ĉ† in the Green func-
tion, and each gives an extra factor of ω, we end up with
Aeq
c (ω) ∼ ω2. This behaviour depends on being at half

filling (particle-hole symmetry), hence is modified when
εd is not zero.

Now we can discuss the higher spectral functions,
Aeq
dc†(ω), and Aeq

dc(ω). These are the imaginary parts of
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the corresponding retarded Green functions, up to a fac-
tor of−1/π. The retarded Green functions are in turn the
analytical continuation of the temperature Green func-
tions to the real frequency axis. And the temperature
Green functions can be found in the non-interacting case
using Wick’s theorem.53

Performing these calculations for Aeq
dc†(ω), one gets:

Aeq
dc†(ω) =

ρ

π
=
[
ln
ω − εd + iΓ

−εd + iΓ
(A.7)

− Γ2

ω(ω + 2iΓ)
ln
ε2
d − (ω + iΓ)2

ε2
d + Γ2

]
.

Concentrating on ω � Γ one finds ηeq
dc† = ηeq

c + ηeq
d = 1

for εd 6= 0 and ηeq
dc† = ηeq

c +ηeq
d = 2 for εd = 0 [the data in

Fig. 4(c) corresponds to the latter case, which reproduces
Eq. (43c)]. This simple summation of scaling dimensions
is natural here, since there is only one possible different-
time Wick-pairing, of each single-particle operator with
its conjugate.

For Aeq
dc(ω), however, there are two different-time

Wick-pairings, causing cancellations, and resulting in:

Aeq
dc(ω) =

ρ

π
=
[
ω − 2εd + 2iΓ

ω − 2εd
ln
ω − εd + iΓ

−εd + iΓ

]
. (A.8)

Concentrating again on ω � Γ one finds now that ηeq
dc = 2

for all values of εd [which reproduces Eq. (43c)].41 The
reason is that in the low-energy continuum limit the

product d̂ĉ becomes the product of annihilation opera-
tors at almost the same point. Hence, one should expand

in the distance between d̂ and ĉ (lattice spacing). The
leading term (with no spatial derivatives) vanishes by
Pauli’s principle; the next term involves a spatial deriva-
tive, leading to a factor of ω, similarly to the arguments

above. Another factor of ω comes from the operator ĉ†d̂†

appearing in the definition of Geq
dc(ω). Thus, at low ener-

gies we end up with Aeq
dc(ω) ∼ ω3 even for εd 6= 0.

Although the above calculations were performed for
the non-interacting case, the qualitative arguments ex-
plaining the low-energy behaviour are valid even when
U > 0. Moreover, since the system flows to the same
strong-hybridization fixed point for all values of U > 0,
the low energy power-laws are in any case independent of
U . Our numerical results (Fig. 4) are in agreement with
this picture.

Let us now turn to the low-energy behaviour of the PS
setup in the case where PS is continuous. At low-energy
the system is governed by Kondo physics, Eq. (53),48–51

where the L-R degree of freedom plays the role of a
pseudo-spin. The equivalence to Kondo continues to
hold even in the presence of a charge sensor, as shown

by GBG.17,18 The operator Ŷ = d̂†Rd̂LĉRĉ
†
L (which is

relevant in the continuous-PS phase) is the pseudospin-
flip local exchange term between the dot and the lead.
Similarly, the IRLM is also equivalent to the Kondo
model,13,30,39 with the role of spin replaced by the charg-
ing state of the dot. The pseudo-spin local exchange term

is simply d̂ĉ†. Hence, when the parameters are properly
mapped, the spectral functions Aeq

Y (ω) and Aeq
dc†(ω) are

equivalent when the Kondo description applies (i.e. for
ω � D for the IRLM, and ω � ωhe for the PS setup).
In particular, Aeq

Y (ω) should exhibit an ω3 behaviour at
low energy, similarly to Aeq

dc†(ω) for εd = 0, as the NRG
data shows [dotted line in Fig. 8(a) and Fig. 12(a)].
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