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Spin and charge-current dynamics after ultrafast spin-polarized excitation in a normal metal
are studied theoretically using macroscopic wave-diffusion equations for spin resolved carrier and
current densities. It is shown analytically how this set of equations yields a unified description of
ballistic and diffusive properties of spin and charge transport, including the intermediate regime
between these two limits. In the framework of the wave-diffusion approach, ultrafast excitation of
spin polarized carriers in thin gold films is modeled assuming slightly spin-dependent momentum
relaxation times along with standard parameters (Fermi velocity, spin and momentum relaxation-
times). The unified treatment of diffusive and ballistic transport yields robust signatures in the
spin and charge dynamics that are in qualitative agreement with recent experimental results [Phys.
Rev. Lett. 107, 076601 (2011)]. The influence of boundary effects on the temporal signatures of spin
transport is also studied.
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I. INTRODUCTION

Recent experimental research on spin dynamics in semiconductors, normal and ferromagnetic metals as well as half-
metallic ferromagnets generally uses either “electronic” or optical excitation. In electronic setups, a spin current, a
spin accumulation, or a precessing magnetization is driven by dc currents or microwave frequencies. Although optical
techniques may be employed for the detection of spin-dependent phenomena, these techniques are used to measure
transport characteristics at the frequencies associated with the excitation.1,2 Purely optical techniques nowadays have
the capability to excite and probe spin-dependent dynamics on timescales of several ten femtoseconds, and have
shown how ultrafast spin-dependent dynamics take place. In particular, spin relaxation in semiconductors has been
investigated,3,4 lifetimes in metals have been measured,5 and ultrafast changes of magnetic order by optical pulses
have been discovered.6,7

Very recently there has been rapidly growing interest in studies that combine ultrafast optical excitation and detec-
tion with spin transport phenomena. The ultrashort timescales involved in these studies entail combined dynamics of
spin relaxation/scattering and transport. For instance, Oppeneer and coworkers have argued8 that a superdiffusive
transport process has an important influence on the measured magnetization dynamics in ferromagnets and electronic
dynamics in metals, because transport processes already act on the ultrafast timescales on which the excited electrons
are in non-equilibrium, or at least “hot”. To obtain quantitative results on the influence of transport on “hot elec-
trons”, a recent experiment9 excited spin polarized carriers in an iron slab using an ultrashort laserpulse and probed
the time-resolved spin and charge dynamics of the opposite side of an adjacent thin gold film using second-harmonic
generation. This experimental setup made it possible to monitor charge and spin transport on length scales of about
100 nm and timescales of several ten femtoseconds after excitation with 35 fs pulses. Ref. 9 provided a theoretical
explanation of the spin-dependent transport dynamics based on the Fermi velocities of different carrier species (elec-
trons and holes, spin-up and spin-down) that can be generated in the gold films. Depending on their mean-free paths
(compared to the film thickness), it was argued that the different carrier species give rise to either predominantly
ballistic or predominantly diffusive transport.
It is not easy to disentangle the effects of non-equilibrium relaxation and transport processes experimentally, because

signatures of diffusive or ballistic transport already indicate the presence of scattering, or lack thereof. The present
paper aims at a a theoretical analysis of spin and charge transport after optical excitation in a macroscopic wave-
diffusion model that can be derived from the Boltzmann transport equation. Importantly, this approach describes
ballistic and diffusive transport regimes including the intermediate regime between the two “extreme” cases using a
single set of equations for spin and charge transport. We thus do not need to make a distinction between predomi-
nantly ballistic or diffusive carriers as was done in Ref. 9. Because our approach is rooted in a close-to-equilibrium
approximation it does not include superdiffusive transport processes, which result from an approximate treatment
of pronounced non-equilibrium electronic dynamics.8 Our approach compensates for this drawback by its numerical
simplicity and robustness: it uses only three established parameters, i.e., Fermi velocity as well as momentum and spin
relaxation-times, which can be determined from transport measurements independently of the optical experiment.
In this paper, we use our approach to demonstrate the signatures of close-to-equilibrium transport on ultrashort

timescales, in particular in the region where neither a purely ballistic nor diffusive picture applies. In addition to
the numerical results obtained from the macroscopic spin and charge transport equations, we provide an analytical
discussion how both ballistic and diffusive transport are contained in these equations as special cases in the short-time
and long-time limits. Since our theoretical approach contains ballistic and diffusive dynamics as special cases, it is
well suited for a study of the behavior at the transition between ballistic and diffusive transport.
The paper is organized as follows. The time-dependent equation system, which forms the basis of our discussion

is presented in Sec. II. Since this model was introduced in earlier papers,15,16 we provide only a brief explanation of
the macroscopic dynamical equations. In Sec. III we show analytically how the wave character of these equations is
related to ballistic transport. In Sec. IVB we present numerical results for the spin and charge dynamics in a gold
film after spin-polarized optical excitation and compare our results to recent experiments. We summarize our results
in Sec. V.

II. TIME-DEPENDENT EQUATION SYSTEM

For a macroscopic description of spin currents and the accompanying spin accumulation at the boundaries of
multilayer systems, one often applies macroscopic spin-diffusion theory.4,10–14 The infinite propagation velocity for spin
(and charge) signals inherent in this approach becomes troublesome at high frequencies and/or switching speeds, and
can be circumvented by using the macroscopic spin wave-diffusion equations, which form the basis of the theoretical
analysis in this paper. Their derivation together with applications to collinear and non-collinear spin transport has
been discussed in Refs. 15 and 16. These papers also contain relevant citations for the derivations of the equations.
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The basic quantities in this approach are the macroscopic spin-current density Js(z, t) and spin density ns(z, t) of
conduction electrons in parabolic bands with spin projection quantum number s = ±1/2. The densities obey the
dynamical equations

∂Js(z, t)

∂z
+

∂ns(z, t)

∂t
= −ns(z, t)− n−s(z, t)

τsf
, (1)

Js(z, t)

τs
= −c2sig

∂ns(z, t)

∂z
− ∂Js(z, t)

∂t
. (2)

While the continuity equation (1) is the same as in macroscopic spin-diffusion theory,4,10 Eq. (2) is a time-dependent
generalization of Fick’s law, where the time derivative ∂Js/∂t describes relaxation processes in addition to the “dif-
fusive” space derivative ∂ns/∂z. For the description of multilayers it is assumed that the same bands with spin label
s exist in each part of the heterostructure. Further, τsf and τs are the spin-flip and the (spin-dependent) momentum
relaxation times, which result from quasi-equilibrium averages over electronic distributions.
In ferromagnets, the momentum relaxation times τs are different for majority and minority electrons, but in non-

magnetic metals they are spin-independent close to equilibrium, i.e., τs = τ−s. Non-equilibrium spin-dependent
excitation in normal metals on short timescales does lead. to spin-dependent lifetimes. We therefore assume different
momentum relaxation-times τs 6= τ−s for normal metals after spin-dependent excitation in this paper. Regardless of
the excitation conditions, spin dependent momentum relaxation-times may also arise in an experiment, such as the
one in Ref. 9, if an external field for the measurement of magneto-optical signals is applied.
To make this paper more self-contained, we collect some results from Ref. 15: There it was shown that an important

consequence of the macroscopic wave-diffusion equations is the occurrence of the spin-signal-propagation velocity,

csig =
vF√
3
, (3)

where vF is the Fermi velocity. Eqs. (1) and (2) can be combined to yield a wave-diffusion equation15 for the total
spin density nm = n+ − n−,

∂2nm

dt2
+

(

1

τ
+

1

T1

)

∂nm

dt
+

nm

τT1
= c2sig

∂2nm

dz2
, (4)

where T1 = τsf/2 is the spin relaxation time and τ the “average” momentum relaxation time. The equation above
contains a second-order time derivative, which is absent in the spin diffusion equation.4 This additional term shows
that it takes a finite time for the spin current to adjust to the gradient of the spin accumulation.18,19 The second-order
time and space derivatives lead to a wave character of the dynamical spin and charge transport in addition to its
diffusive character and that time-dependent macroscopic spin transport shows wave-like and diffusive properties. From
this viewpoint, the time-dependent spin diffusion equation can be regarded as an approximation of the wave-diffusion
behavior in the long-time/low frequency limit.

III. BALLISTIC AND DIFFUSIVE TRANSPORT FROM THE WAVE-DIFFUSION EQUATION

In this section we connect the wave-diffusion equation (4) with diffusive and ballistic behavior of spin transport. To
this end, we analyze the spatio-temporal behavior of a spin polarized carrier distribution that is initially concentrated
at z = 0, i.e., the initial condition

nm(z, 0) = Nmδ(z), (5)

To this end, we calculate the mean-square displacement20

∆2
z(t) =

1

Nm

∫ ∞

−∞

z2nm(z, t) dz (6)

with Nm =
∫∞

−∞
dz nm(z, 0). We will interpret ∆2

z(t) − ∆2
z(0) ∝ t2 as ballistic and ∆2

z(t) − ∆2
z(0) ∝ t as diffusive

transport in accordance with electronic wave packet dynamics. Note that we have ∆2
z(t = 0) = 0.

We now construct a solution of the wave-diffusion equation with the initial condition (5) using damped dispersive
solutions of the form

nm ∝ ei(kz−ωt) (7)
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FIG. 1. Mean-square displacement ∆z(t) of the spin density vs. time: transition from ballistic to diffusive spin transport.

as done by Weiss21 for transport equations resulting from persistent random walk models.
To determine the temporal damping characteristics of nm, we let ω(k) become a complex function of the wave

vector. This should be contrasted with Ref. 15 where k(ω) = kR(ω) + ikI(ω) was chosen as a complex quantity to
obtain the damping length as a function of frequency. Substituting Eq. (7) into Eq. (4), we get the dispersion relation

−ω2 − iαω + ξ = −c2sigk
2, (8)

where α = 1
τ + 1

T1
and ξ = 1

τT1
. We obtain two purely imaginary solutions ω± = −iγ± with

γ± (k) =
1

2

(

1

τ
+

1

T1

)

± 1

2

√

(

1

τ
+

1

T1

)2

− 4

(

1

τT1
+ c2sigk

2

)

, (9)

which describe an exponential decay of nm(z, t) and Jm(z, t) in time. The initial condition (5) can now be satisfied
by the Fourier integral

nm(z, t) = Nm

∫ ∞

−∞

dk

2π
eikz

[

e−iω+(k)t + e−iω
−
(k)t

]

, (10)

from which one reads off the Fourier transformed density

ñm(k, t) = Nm

∫ ∞

−∞

dze−ikznm (z, t)

= Nm

(

e−γ+(k)t + e−γ
−
(k)t

)

.

(11)

The mean-square displacement can be expressed with the help of the second derivative of the Fourier transformation
and explicitly evaluated as follows

∆2
z(t) =− 1

Nm

∂2ñm(k, t)

∂k2

∣

∣

∣

∣

k=0

=
2c2sigt

(

1
τ − 1

T1

)

[

e−t/T1 − e−t/τ
]

,
(12)

where we assumed τ < T1. Eq. (12) describes the behavior of ∆2
z(t) for all times.

In Fig. 1 we plot the time-dependence of the mean-square displacement for the parameters (τ, T1, csig) of gold (see
Sec. IVA). On time scales for which the spin relaxation is not important, i.e., t < T1, Eq. (12) simplifies to

∆2
z(t) ≃ 2c2sigtτ

[

1− e−t/τ
]

. (13)
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FIG. 2. Same as Fig. 1 on a longer time scale.

FIG. 3. Schematic setup of the optical pump-probe experiment on a Fe/Au heterostructure.

For short times, t ≪ τ , we have ∆2
z(t) ∝ c2sigt

2. The characteristic ballistic behavior of ∆2
z is consistent with the

limit t ≪ τ , which describes a time scale shorter than typical (momentum) relaxation processes. For times on the
order of the momentum relaxation time τ , momentum scattering processes come into play, and the ballistic behavior is
gradually lost. More precisely, for τ < t < T1, the behavior of the second moment is ∆2

z(t) ∝ c2sigτ t with corrections of

the order exp(−t/τ). By virtue of c2sigτ = D and disregarding exponentially small corrections, this means ∆2
z(t) ∝ Dt,

which is a signature of diffusive transport with diffusion constant D. Finally, for times on the order of (and longer
than) the spin relaxation time T1 we have an exponential decay of nm(z, t) and also an exponential decay of ∆2

z(t).
This result is simply a consequence of the relaxation of the spin polarization due to spin-flip processes. These
considerations clarify how the macroscopic wave-diffusion equations (1) and (2) are capable of describing both the
ballistic and diffusive properties of spin transport, as well as the transition between the two limits. We will use these
concepts in the discussion of the numerical results for spin transport after ultrashort optical excitation in the following
section.

IV. NUMERICAL RESULTS

A. Model and computational setup

In this section, the time-dependent equation system presented in Sec. II is applied to a model setup that aims at
analyzing the spin and charge transport as it occurs in the experiment of Melnikov et al.9 as shown in Fig. 3. In the
experiment, spin polarized carriers are excited optically by a 35 fs pump pulse in a Fe/Au slab structure. The excited
carriers propagate from the iron into the adjacent nonmagnetic gold slab, and the charge and spin dynamics at the
right gold surface are extracted from the time-dependent magneto-optical response at the gold surface.
The excitation of nonequilibrium carriers by ultrashort pulses across interfaces and junctions poses challenging

problems for microscopic theories, see, e.g., Refs. 22–25. For the Fe/Au interface, Ref. 9 analyzed in some detail the
band lineup of Fe and Au, and used energy and momentum conservation to determine the type of carriers that can be
generated in the Au film by excitation in the Fe layer. For the purpose of the present paper, namely the determination
of the space- and time-resolved spin and charge dynamics in the gold layer, we use a simplified view of the excitation
process across the Fe/Au interface: Photoexcited carriers in the Fe generate a spin-polarized current that is carried
by the same type of charge carriers, usually assumed to be s-electrons, through the whole multilayer structure. This
assumption also underlies the derivation of the macroscopic diffusion and wave-diffusion equations.10,15 Technically, we
introduce the following simplifications. First, we assume that the spin signal excited in the iron layer can be modeled
as a boundary value for the spin and charge densities in the adjacent gold slab. Second, we neglect the spin and charge
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transport of holes. We then use the macroscopic equations for the electron densities, ns(z, t), and current densities,
Js(z, t), in the spin-up and spin-down bands, respectively, of a ferromagnet-metal heterostructure. These dynamical
macroscopic equations can be derived from the Boltzmann transport equation for the microscopic carrier distributions
under the assumption that the deviations from an equilibrium distribution around the Fermi surface are small.15 We
therefore use the following simplified view of the complicated injection and relaxation process: Spin-polarized carriers
are created in the iron layer and move into the spin-degenerate gold bands where this is allowed in the band structure.
We assume a very fast initial electronic energy equilibration, so that we have quasi-equilibrium distributions in the
spin degenerate bands in gold, but with different densities. The momentum relaxation times of the quasi-equilibrium
electrons of different spin, τ+ and τ−, which arise microscopically from averages over the energy dependence of the
electronic distributions, should then also be different. We therefore treat the difference of the relaxation times, τ+ and
τ−, as a parameter that needs to be specified. In addition, we could also treat the spin polarization of the injected
electrons as a parameter, but we choose not to do so to avoid the introduction of fit parameters. Since it turns out that
the dependence of our results on the difference of momentum relaxation times is extremely weak, the only important
parameters of our macroscopic equations have values that are well established from electrical transport measurements:
the Fermi velocity vF, the momentum relaxation time τs and the spin relaxation time T1. Using our approach thus
yields the dynamics due to quasi-equilibrium transport, and can be compared to more involved treatments of the
relaxation processes away from the Fermi energy. For instance, these relaxation processes may lead to super-diffusive
transport.8

In order to solve Eqs. (1) and (2) numerically for electronic transport in the gold layer, we need the boundary
condition at the interface to the ferromagnet, i.e. the left boundary of our computational domain, which we take
to be z = 0. For simplicity, we assume that the spin-current density as a function of time is known at the Fe/Au
interface. This approximation neglects the spin current flowing back to the iron layer due to the spin accumulation
in the gold layer. At the Fe/Au interface, z = 0, the spin-current density is assumed to be a Gaussian

Js(z = 0, t) = J0e−t2/t20 , (14)

where t0 = tFWHM/(2 log 2), and J0 is the maximum current density. Note that we assume the same initial condition
for the currents in the minority and majority channel. We choose tFWHM = 35 fs as full-width at half maximum of the
current pulse, which is the duration of the exciting laser pulse in the experiment, and J0 = 10−4 nm−2fs−1. For the
Au layer, we choose a momentum relaxation time of τp = 30 fs (from Ref. 26) and csig = 0.808 nm/fs (vF = 1.4 nm/fs,
see Ref. 17). The spin relaxation-time T1 = 515 fs is determined from the spin-diffusion length27 lsf = 100nm via the
identity10,15 lsf = csig

√

τpT1. The resulting electron mean-free path is λ = vFτp = 42nm.
In the following, we take the literature value of the momentum relaxation-time for one spin channel, i.e., τ+ = τp,

but τ− 6= τ+ to mimic the effect of different microscopic distribution for majority and minority electrons that propagate
into the gold layer. Some justification for our approximation is provided by the weak dependence of the numerical
results on the actual value chosen for τ−.
We study two simplified variations of the setup depicted in Fig. 3. In the first case, we assume an “infinitely thick”

gold layer to avoid the influence of the reflected spin signal. In this case we assume that the thickness L of the gold
slab is so large that spin and charge signals have not propagated to the right boundary during the time interval of
interest, i.e., L ≫ lsf . In this time frame, the choice of the boundary condition at the right of the gold layer does
not influence the results. For computational convenience, we require both spin-(charge-) current density and spin
(charge) density be zero. We also study the case of a finite thickness L of the gold layer. Here, we require the spin and
charge current densities to vanish at the right boundary of the gold layer. Although it may seem that this boundary
condition applies to the experiment best, it leads to multiple reflections that do not show up in the experiment, as is
discussed in more detail below.
The numerical solution of Eqs. (1) and (2) employs the method of characteristics as detailed in Ref. 15.

B. Spin and charge dynamics

We first discuss results for the time evolution of the spin and charge density in an “infinitely thick” layer. Fig. 4(a)
shows the spin density n+(z = z0, t) for majority electrons at different positions z = z0, ranging from z0 = 25nm
to z0 = 150nm. As mentioned above, the results at position z = z0 mimic the dynamics at the surface for a slab
thickness L. We find a delayed sharp rise and a peak in the carrier density. We first discuss the curve for z0 = 25nm in
Fig. 4(a), which is in the regime where ballistic transport properties are dominant, as shown by Fig. 1. The pronounced
peak occurs at time tpeak = z0/c = 34 fs, and therefore is related to wave-like propagation dynamics, which corresponds
to ballistic transport as shown in Sec. III. Further, the wave-like dynamics of the carrier distribution preserves to
some extent of the Gaussian shape of the driving current pulse Js(z = 0, t), which is created by the drive current at
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FIG. 4. Time evolution of the density n+(z0, t) of majority electrons (a) and the total spin density nm(z0, t) (b) at positions
z0 = 25 nm (solid), 50 nm (dashed), 100 nm (dotted), and 150 nm (dash-dotted) of an infinitely thick layer. The excitation
current pulse Js is also shown in arbitrary units (thin red line).

the left boundary. The difference between the full and the purely ballistic result is, of course, due to momentum and
spin-flip scattering. These contributions lead to an asymmetric peak and the slow decay, but not to a broadening
of the peak. This can be seen by comparing with the result for an infinitely thin layer (not shown), in which the
dynamics are completely ballistic. For peaks at larger distances (and longer times) the peak-like signature is gradually
lost as one reaches the regime where the diffusive behavior becomes dominant and the ballistic (wave-like) component
is essentially only seen in the delayed onset of the signal.

We therefore interpret the dynamics in Fig. 4(a) as ballistic for short times, as more or less diffusive for “interme-
diate” times, and eventually as an exponential decay for long times. From the ballistic motion of electrons traveling
with vF in a straight line towards the opposite surface one may naively expect the arrival of a signal with the Fermi
velocity instead of csig = vF/

√
3. This is only true for carriers “going straight” to the opposite surface, and these

carriers are responsible for the onset of the signal. The occurrence of the peak with the smaller velocity of c as well
as the finite width of the peak shows that there is a spread in the time the carriers need to traverse a fixed distance
in z direction.

The curve for minority electrons n−(z0, t) (not shown) is almost indistinguishable from the one shown for n+(z0, t)
on the scale of Fig. 4(a) if we choose the same excitation, i.e., boundary condition, and change the momentum
relaxation time for “−” electrons by 5% to τ− = 31.5 fs. However, as Fig. 4(b) shows, the total spin density nm(z0, t) =
n+(z0, t)−n−(z0, t) is influenced quite drastically by this change. Qualitatively, this can be understood by considering
the following picture of the dynamics of individual electrons, even though the calculation deals with distribution
functions and the momentum relaxation times are for ensemble averages only: The longer momentum relaxation time
results in the minority electrons arriving earlier than the majority ones, which causes a characteristic shape of the
spin dynamics with a negative spike in the spin density. When the majority electrons arrive, the signal of the minority
carriers already falls off. Therefore the spin density nm changes sign and only afterwards shows a long positive tail.
Importantly, the difference between the momentum relaxation times can be changed from 1% to 100% leading to
changes in the numerical values of the spin density, but not in the qualitative behavior. Thus, as long as there is a
difference between τ+ and τ−, the resulting shape of the spin dynamics with the characteristic short negative dip and
a long positive decay is extremely robust.

We now discuss the results for the case in which the finite thickness L of the metal layer is modeled by a boundary
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FIG. 5. Time evolution of the spin density of majority electrons n+(z = L, t) (a) and the total spin density nm(z = L, t) (b)
for Au layer thicknesses of L = 25 nm (solid), 50 nm (dashed), and 100 nm (dotted).

FIG. 6. Snapshots of the spin-current density J+(z, t) (a) and of the spin density n+(z, t) (b) as a function of z at times t = 0 fs,
50 fs, 100 fs, and 150 fs for a 100 nm gold slab.
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FIG. 7. Time evolution of the charge density n(z, t) for layer thicknesses of L = 25 nm (solid line), 50 nm (dashed), 100 nm
(dotted), and 150 nm (dash-dotted).

condition for ns(z, t) at z = L. Figure 5(a) shows the spin density n+(z = L, t) for majority electrons at the right
boundary of the gold slab as a function of time for slab thicknesses L = 25nm, 50 nm, and 100 nm, respectively.28

Several oscillations are visible for the 25 nm slab. For the 50 nm slab, only a second peak occurs before the signal
decays. This happens because, unlike the case in Fig. 4(a), the electrons are reflected at the right metal surface and
continue to propagate/diffuse through the slab. Depending on the thickness of the layer, they may be reflected also at
the left boundary, i.e., the Fe/Au interface in the experiment, and propagate again to the right metal boundary. This
behavior continues as long as there is a ballistic component to the dynamics and vanishes when the dynamics become
diffusive. Eventually, the signal decays on the time scale of the spin relaxation time. In the 100nm thick layer, in
particular, the ballistic character is further reduced, so that no additional peaks develop at all. The additional peaks,
if present in the density dynamics n+ of one spin channel, are also visible in the total spin-density dynamics, nm,
as shown in Fig. 5(b). Depending on the thickness of the layer, the spin-signal can change sign more than once for
the same reason as without reflection because the propagation and reflection dynamics occurs for both spins with a
slightly different relaxation time, so that the maxima and minima of n− are slightly shifted with respect to those
of n+.
Figure 6 shows the space dependence of the current and density distributions for “+” electrons for a slab of thickness

L = 100nm at different times. The snapshots of the current density, Fig. 6(a) show how the initial current pulse
propagates through the gold slab, is attenuated, and changes sign after it reaches the right slab boundary. The
sign change indicates that the propagation direction of the carriers is reversed, i.e., carriers moving ballistically are
reflected when they reach the boundary. This is another indicator that even in the case of the 100 nm gold slab, the
ballistic character of the transport is still recognizable at the surface. The spin density n+(z, t), shown in Fig. 6(b),
exhibits a wave front at first and a subsequent “smoothing” out due to the diffusive character of the dynamics, which
becomes dominant after a few hundred femtoseconds.
Finally, Fig. 7 shows the time evolution of the charge density n(z = L, t) at the right boundary of the gold slab

for slab thicknesses L = 25nm, 50 nm, 100nm and 150nm, respectively. Dependent on the thickness there are
additional peaks due to multiple reflections on the boundaries and charge accumulation in the gold layer. The charge
accumulates and reaches a steady state because we neglect a possible flowing back of the charge-current into the iron
layer. In an infinitely thick gold layer, the Gaussian current pulse, which mimics the excitation, propagates through
the nonmagnetic gold while its maximum decays. Thus, the space-resolved results for the spin and charge dynamics
show that there is no spin and charge accumulation in an infinitely thick gold layer.

C. Relation to experiment

We have already described the idea of the experiment by Melnikov et al., and our calculation applies to the basic
setup of that experiment, as shown in Fig. 3. Although we do not calculate the electric fields generated by second-
harmonic effects at the back surface as measured in the experiment, we follow the interpretation of the experimental
results by Melnikov et al., and compare the “charge” signal with the charge density n and the “magnetic” signal with
nm. An important experimental finding is a fast rise and a subsequent slow decay of the charge signal accompanied
by a magnetic signal that shows a characteristic sign change. Comparing the spin density nm at the right boundary
for slab thicknesses 50 nm and 100nm, see Fig. 4(b), with the magnetic SHG signal shown in Figs. 2(c) and (d) of
Ref. 9 one finds a qualitative agreement. In particular, the time at which the sign change of the signal occurs and the
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FIG. 8. Scaled dynamics of the density n+(z, t) of majority electrons at points z = 50 nm (dashed), 100 nm (dotted), 150 nm
(dash-dotted), and 300 nm (solid) of an infinitely thick layer.

decay at longer times are quite well described by the calculated result. Melnikov et al. observe that their magnetic
signal goes to zero at about 1 ps, and use this as an estimate of the spin-relaxation time (denoted as τAu

s there). This
value differs from the established spin relaxation-time T1 = 515 fs in gold as determined from transport measurements
in the diffusive regime. In the calculated results, the T1 value of 515 fs enters as a parameter via τsf = 2T1, and yields
a spin density that goes to zero at the same time as in the experiment. The calculation therefore provides a link
between the ultrafast, optically excited/detected spin dynamics, and diffusive transport studies. Regarding the degree
of agreement, we would like to add two remarks. First, the relative height of the extrema in the calculated spin-density
dynamics can be influenced by making the excitation spin dependent, i.e., by having J0

+ 6= J0
−. This is likely the case

in the experiment but including a spin dependent excitation would introduce a fit parameter, without qualitatively
changing the results obtained from the macroscopic equations (1) and (2). Second, the calculation seems to lead
to sharper extrema and smaller signals at longer times. Very likely, this is due to our neglect of energy relaxation
processes because the energy dependence of the distributions underlying the macroscopic equations is assumed to be
essentially fixed and concentrated around the Fermi surface.15 The last point is also important when comparing the
charge dynamics in our Fig. 4(a) and Figs. 2(a) and (b) of Melnikov et al. The area under the calculated curves in
Fig. 4(a) decreases strongly for larger values of L, whereas in the measurement it increases. In the calculation, this is a
consequence of the spatial redistribution of the injected carrier density, as can be seen in Fig. 6(b). In the experiment
it is probably a result of the energy dependence of the nonlinear process that gives rise to the measured signal, and an
energy-redistribution of carriers during the dynamics. It is hard to say which is more important because a microscopic
description of the SHG is quite involved.29 To have a better comparison of the qualitative behavior of charge dynamics
for the different slab thicknesses, we normalize the computed charge dynamics in Fig. 8. The normalization not only
removes the difference in the peak heights, but also leads to a behavior at long times for both slab thicknesses that
is very similar to the experimental result.

The spin and charge dynamics of our model based on a transition between ballistic and diffusive transport for one
species of carriers is in agreement with Ref. 9 in that it emphasizes the importance of both ballistic and diffusive
transport for the spin and charge dynamics. In contrast to our calculation, however, Ref. 9 stresses the energy
dependence of the lifetimes of excited carriers and classifies different species of carriers, i.e. minority and majority
electrons and holes, as contributing mainly to either ballistic or diffusive transport. From our results it seems that
the qualitative signatures of the observed dynamics are likely quite generic for transport in thin metal slabs on
ultrashort time scales, regardless of the microscopic details, i.e., the energy dependence, of the excitation process and
the subsequent relaxation dynamics.

Finally, we compare the general trends seen in Fig. 8 with an earlier measurement17 of heat transport in thin gold
films excited by a femtosecond laser pulse. This stretches the limits of the applicability of our calculation because in
that experiment intraband excitation was likely dominant, leading only to a heating of the conduction electrons and
not to an injection of carriers. However, the macroscopic equations for heat transport have the same mathematical
properties as the ones used by us,18,19 so that one can try to find indications of a qualitative agreement. In this case,
we have to compare the normalized dynamics as shown in Fig. 8 because their Fig. 2 also shows normalized reflectivity
changes. Indeed, the overall shape of the reflectivity changes observed by Brorson et al. match up well with our results.
In particular, in Ref. 17 it is found “that the rise time of the signal increases slightly with increasing thickness.” This
trend is clearly observed in our calculated results and is explained by a change of dominantly ballistic dynamics in
thinner samples to dominantly diffusive dynamics in thicker samples, here 300 nm. Importantly, this transition comes
out of the calculation by a combination of ballistic and diffusive aspects: Even in thicker samples where the diffusive
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dynamics dominates the rise time of the signal, there is still an important component of the result that can only be
explained by ballistic dynamics, namely the delayed onset of the reflectivity response. As it was already noticed by
Brorson et al., it is therefore hard to explain the observed rise times in terms of exclusively ballistic or exclusively
diffusive transport. An analysis in terms of wave-diffusion dynamics removes the apparent contradiction between
diffusive and ballistic properties of transport.

V. CONCLUSIONS

This paper presented an analysis of the wave-diffusion equations for spin and charge transport, with special attention
to the transition between ballistic and diffusive transport after ultrafast excitation. We showed that the wave character
in Eqs. (1) and (2) is related to ballistic transport by analyzing the behavior of an analytical solution to these equations
in one dimension. The simple, macroscopic equations works not only in the purely ballistic and diffusive limits, but
can also be applied on time and length scales where spin and charge transport are neither completely ballistic nor
diffusive.
Using the wave-diffusion equations, we modeled the conditions realized in a recent experiment, in which spin-

polarized electrons were excited in a gold film by optical pumping of an adjacent ferromagnetic layer and probed
optically on the other side of the gold film. Under the assumption of slightly different relaxation times for spin-
up and spin-down electrons, the simple macroscopic model qualitatively reproduced important signatures seen in
the experiment, thus underscoring the importance of the transition between ballistic and diffusive transport for the
observed dynamics. Because the model uses established macroscopic transport parameters and because the dependence
of our results on one additional parameter, namely the difference of the relaxation times, is extremely weak, our results
are quite robust. This is an indication that the behavior observed in the experiment and shown by the calculated
results is quite generic for ultrafast transport dynamics in thin metal films.
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