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Fingerprints of the electron-pocket in cuprates have been obtained only in numerous magneto-transport mea-
surements, but its absence in spectroscopic observations poses a long-standing mystery. We develop a theoreti-
cal tool to provide ways to detect electron-pockets via spectroscopies including scanning tunneling microscopy
(STM) spectra, inelastic neutron scattering (INS), and angle-resolved photoemission spectroscopy (ARPES).
We show that the quasiparticle-interference (QPI) pattern, measured by STM, shows additional 7q vectors as-
sociated with the scattering on the electron-pocket, than that on the hole-pocket. Furthermore, the Bogolyubov
quasiparticle scatterings of the electron pocket lead to a second magnetic resonance mode in the INS spectra
at a higher resonance energy. Finally, we reanalyze some STM, INS, and ARPES experimental data of several
cuprates which dictates the direct fingerprints of electronpockets in these systems.

PACS numbers: 71.18.+y,78.70.Nx,74.55.+v,79.60.-i

INTRODUCTION

Copper-oxide high-temperature superconductors evolve
from a Mott insulator to the superconducting state through
an unknown ‘pseudogap’ phase. Many competing order
origins of the ‘pseudogap’ have been proposed, some of
which lead to a Fermi surface (FS) reconstruction into hole-
pocket and electron-pockets.[1–5] Hole-pockets are detected
in many experiments. On the other hand the existence of elec-
tron pockets has been overlooked for the past twenty years
and only recently has been proposed by Hall-effect, quan-
tum oscillation at high magnetic field, Nernst and Seebeck
measurements.[4, 6–8] In particular, Hall-effect measure-
ments have revealed a negative sign in the low-temperature
Hall coefficients which is taken as a signature of electron-
like quasiparticles on the FS.[6] The Hall-coefficient in fact
changes sign from negative to positive with increasing temper-
ature but belowT ∗, suggesting the coexistence of both elec-
tron and hole-pockets on the FS. Shubnikov-de-Haas (SdH)
experiments in YBa2Cu3O6.5 and YBa2Cu4O8 (YBCO) also
argue for the presence of closed FS pockets, with slope sug-
gestive of electron-pockets.[7, 8] This observation received
further supports from the Nernst and Seebeck measurements
which have been shown theoretically to be consistent with the
coexistence of electron and hole-pockets.[4, 5] The question
arises,if an electron pocket is present on the FS, are there
spectroscopic fingerprints that can detect it directly?For ex-
ample, ARPES which directly measures the single-particle
spectral weight, has so far been unable to convincingly sep-
arate out the presence of an electron-pocket from a full para-
magnetic FS.

Many theoretical proposals have been put forward to ex-
plain the FS topology in cuprates,[1–3, 9–11] however, a con-
sistent picture to describe both the bulk measurements and the
spectroscopies has yet not been achieved. Within a strong cou-
pling scenario, the holes, doped into the parent Mott insulator,
create in-gap states at the Fermi level without a well defined

quasiparticle dispersion.[12] Again in the pre-formed SC pair-
ing theory of the ‘pseudogap’, one would predict that a single
large hole-like FS persists at all dopings, with SC fluctuations
suppressing spectral weight in the antinodal regions, leaving
a Fermi arc.[13] Such a model would predict a hole-like sign
of the Hall coefficient at all temperatures,[14] incompatible
with the observed sign changing Hall-effect[7, 8] and Nernst
and Seebeck measurements.[4] An alternative approach using
a density wave picture of the pseudogap has been successful
in explaining many aspects like the behavior of quantum os-
cillations, Hall, Nernst and Seebeck effects,[1, 2, 5, 15] and
ARPES, STM and neutron scattering.[16–18] Some charge-
ordering is observed with applied magnetic field,[19] however
the associatedQ vector and its stake on the origin of electron
pocket is yet unknown.

To find signatures of electron pockets, we model the
pseudogap as a spin-density wave (SDW) state which
leads to the FS reconstruction into hole and electron
pockets.[16]. The signature of magnetic order has been
recently obtained in the pseudogap region in YBCO via
spin-polarized neutron diffraction[20, 21] and muon spin-
relaxation measurements.[22] Using this model, we find that
(i) the QPI pattern seen in STM exhibits 7 newq−vectors
which evolve in a qualitatively different way than the ones
expected for a hole-pocket; (ii) similarly, the INS measure-
ments also display an additional resonance peak in the spin-
excitation spectrum in the SC state coming from the electron-
pocket; (iii) furthermore, in some doping regions ARPES FS
spectral weight data reveal two peaks at the nodal and antin-
odal points with a dip between them which suggests recon-
struction of the FS into hole and electron pockets, respec-
tively; (iv) we also demonstrate several key properties of these
three spectroscopies which quantitatively and unambiguously
can establish the presence of an electron-pocket on the FS.

The development of electron pocket in hole doped cuprates
is doping (and material) dependent. In fact, in YBCO there are
other band-structure properties such as CuO chain state that
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can serve as electron-like FS.[23] In the overdoped region,the
FS consists of a large hole-like FS centered atM = (π, π).
At strong underdoping, a pseudogap opens in the region of
momentum space neark = (π, 0) and(0, π), leaving a hole-
pocket or ‘Fermi arc’ at the nodal pointk = (π, π). These
hole pockets are observed directly by ARPES and are consis-
tent with STM and many other experiments. With increasing
doping, as the pseudogap correlation weakens but remains fi-
nite, the bottom of the conduction band atk = (π, 0) and
(0, π) drops down below the Fermi level producing an elec-
tron pocket at some critical doping, even without the appli-
cation of any external magnetic field (see Appendix for the
details of the evolution of the FS). A small gap persists in
the regions where the bare FS crosses the magnetic Brillouin
zone [marked by a dashed line in Fig. 1(a)]. As the electron-
pockets are expected to form in the doping range where the
FS crosses over from small pocket to large FS, spectroscopies
need guidance to distinguish a pocket from a full hole-like FS.
Therefore, we provide a careful analysis of the spectroscopic
details to illustrate how to observe the electron-pocket.

In the superconducting state, thed−wave pairing re-
stricts the coherent Bogoliubov quasiparticles to move on the
k−space of the electron and hole pockets, see Fig. 1(a). The
scattering process of these particle-hole excitations leads to
many observable features, like the elastic scatterings of the
Cooper pairs seen as a QPI pattern in STM.[24] Similarly, in-
elastic scattering between particle and hole Bogoliubov quasi-
particles leads to a scattering profile as revealed by INS.[25]
The QPI and INS patterns generated by the hole-pocket are
well studied in cuprates.[26, 27] Here we study how these pat-
terns evolve naturally to include contributions of the electron
pocket.

The rest of the paper is designed as follows. In Sec. II, we
give the results of the QPI pattern in the electron pocket re-
gion and contract them with that of the hole pocket region.
The corresponding INS result and the development of a sec-
ond resonance mode is given in Sec. III. Finally, we re-analyze
some of the ARPES data to point out the experimental evi-
dence of electron pocket in this measurement. Appendix A is
devoted to the SDW model and the calculation details of QPI
and INS spectra. In Appendix B, we present more results of
QPI pattern for the paramagnetic case (overdoping), and for
hope pocket only (underdoping) and electron plus hole pocket
(optimal doping).

SCANNING TUNNELING MICROSCOPY

Figures. 1(b) and 1(c) contrast the QPI patterns at two rep-
resentative quasiparticle energies at which the Cooper pair re-
sides on the hole-pocket (lower energy) and electron pocket
(higher energy), respectively. There is a qualitative difference
in the overall QPI pattern at these two energy scales. First,
since scattering is purely elastic, appearance of an electron
pocket leads to new features in QPI that correspond to 7 ad-
ditional electron-electron scatteringqe vectors in addition to
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FIG. 1. (Color online) Schematic QPI pattern for electron pock-
ets. (a) Sketch of hole-pockets (red lines) and electron-pockets (blue
lines). The front sides of the two pockets (main bands) are drawn
here, where the induced shadow bands are not shown. Opening of a
d−wave SC gap on these pockets is shown in color shadings in one
quadrant of the FS. The seven QPI vectors connecting eight elastic
bright spots on a constant energy surface on the electron pocket are
shown by arrows of various colors. The contrast between the QPI
vectors associated with the hole-pocket and the electron-pocket is il-
lustrated for one vectorqh,e

7
only, while the same for other vectors

follows similarly. (b) A view of a constant energy QPI map of hole
pocket origin is contrasted with the same from an electron pocket
origin in (c). Arrows of same color point to the direction of the mo-
tion of eachq−vector with increasing energy. (d)-(e) The dispersive
behavior of the QPI vectors in theq − ω phase space is schemati-
cally shown along the high-symmetry lines of (100)-direction in (d)
and along the diagonal direction in (e). The red and blue background
shadings differentiate the hole pocket and electron pocketregions.
All the QPI vectors show kinks in going from the hole pocket tothe
electron pocket energy which is an indicator of the presenceof the
electron pocket on the FS.

hole-hole scatteringqh vectors. No elastic scattering features
connect electron and hole pockets as they have different quasi-
particle energies. The definitive distinction between the two
pockets can be marked by the values of two high symmetry
vectorsqh,e

3 andqh,e
5 . qh

3 connects equivalent energy points
on two hole-pockets along the diagonal direction. As the hole-
pocket terminates at the magnetic zone boundary at which
qh
3 = (π, π), therefore, ifqh

3 continues to grow above(π, π),
it must come from the electron pocket. Similarly,qh

5 [along
the (100)-direction] will attain its maximum value equal tothe
reciprocal lattice vector of(2π, 0) and(0, 2π) at the highest
energy of the QPI pattern.

In addition, one requires to pay attention to the energy de-
pendence of the QPI vectors as well as their associated in-
tensities. Due to the van-Hove singularity at the antinodal
point as well as the discontinuous jump from the hole-pocket
to the electron-pocket FS, one expects a ‘kink’ in the energy
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dependence of each QPI vector, see Figs. 1(d) and 1(e). As
the qh vectors reach the top of the hole-pocket [i.e. when
q3 = (π, π)], the Bogoluybov scattering of these vectors van-
ishes and they become merely FS nesting. Therefore, allqh

vectors shoot almost vertically upward but with diminishing
intensity. Nearly at the same energy, the Bogolyubov scatter-
ing on the electron pocket turns on andqe vectors appear on
the QPI pattern. Unlikeqhs,qes disperse slowly with energy
but the associated intensity begins to rise again. Therefore,
not only the magnitude of theqe vectors as discussed above,
but also the expected ‘kink’ in their dispersion and their as-
sociated intensity will serve as quantitative and unambiguous
marks for the presence of electron-pockets.

To demonstrate how the electron-pocket leads to a differ-
ent set of QPI patterns, we calculate the QPI spectra in a
coexisting uniform phase of SDW induced pseudogap and
d−wave superconductivity.[16] We concentrate on YBCO6.6

where the band dispersion is obtained by the tight-binding fit-
ting to the first-principle calculations. Based on this ground
state, the self-energy correction due to spin and charge fluc-
tuations is computed within a self-consistentGW -model [see
Appendix ].[17] The lifetime broadening due to the imaginary
part of the self-energy helps create ‘bright-spots’ on the con-
stant energy single-particle spectra. At any energy in the SC
state, we have 8 ‘bright spots’ due tod−wave symmetry as
shown in Figs. 2(f1), 2(f2), 2(g1), 2(g2) at four representative
energy cuts below the Fermi level. AtE = 0, the ‘bright-
spots’ are concentrated at the nodal points (not shown) and
with increasing energy, they move towards the antinodal di-
rection. The locus of the ‘bright-spot’ is always restricted
to move on the normal state FS and takes the form of well-
known ‘banana-shape’ in the low-energy region (on the ‘hole-
pocket’); see Figs. 2(f1) and 2(f2). As the ‘bright-spots’ hit
the magnetic zone boundary [green dashed line], they move
to the electron-pocket region, see Figs. 2(g1) and 2(g2).

We calculate the QPI pattern asB(q, ω) ∼
∑

k Im
[

G(k, ω)G(k + q, ω)
]

, where G is the 4 × 4
Green’s function in the SDW-SC state. AtE = 0, qh

1 andqh
5

are the same vector connecting the nodal points. As shown in
Fig. 2(a), with increasing|E|, qh

1 gradually shrinks whereas
qh
5 grows−both very much linearly with energy, coming

from the linear dispersion of the nodal quasiparticles. A
similar linear dispersion is evident in the behavior ofqh

3 , q
h
7

in Fig. 2(b): qh
7 starts fromq=0 atE=0 and increases to a

maximum value less than(π, π) in all underdoped cuprates
while q3 starts at a finite vector slightly below(π, π) and
reaches(π, π) at the edge of the HP. The resulting QPI
pattern at this energy is shown in Figs. 2(d1-d2), and agrees
qualitatively with the experimental results of Bi2212.[28]
Above this energy, allqh vectors become normal-state FS
nesting, and bend backward with much less dispersion while
the associated intensity gradually diminishes. Therefore,
in the absence of an EP, one can expect the QPI pattern to
remain very much same as a function of energy but with much
broadened peaks due to the lack of Bogolyubov coherence
peaks. The other weak-intensities apart from the leading 7

q-vectors are associated with the shadow bands, which are
not relevant for the present study.

The most interesting feature of the QPI happens above the
pseudogap energy scale which separates the electron pocket
from the hole pocket. Newq−vectors develop due to the Bo-
goluibov scattering of the electron pocket. Theseqe vectors
are practically the continuation of theqhs above the magnetic
zone boundary but with different slope and intensity which are
related to the curvature of the electron pocket and the associ-
ated van-Hove singularity. The resulting constant energy QPI
maps are shown in Figs. 2(e1)-2(e2) with very distinct inter-
ference patterns compared to the hole pocket [compare with
Figs. 2(d1) and 2(d2), respectively]. In the electron pocket re-
gions, onlyqe

1 disperses towardq = 0, whereas the others dis-
perse away from the magnetic zone boundary to the reciprocal
unit cell boundary.qe

3, q
e
7, q

e
2, q

e
6 approach each other forming

a squarish profile centered atq = (π, π) which is present at all
energies. Also,qe

2, q
e
5 approachq = (2π, 0) and its equivalent

k-points. We emphasize that the most robust features signal-
ing the presence of the electron pocket will be the values of
qe
3, qe

2, q
e
5 in that qe

3 > (π, π) at the beginning of electron
pocket whereasqe

2, q
e
5 reach the zone boundary (2π, 0) [and

its equivalent points] at the top of the electron-pocket.
The intensity of eachqh andqe vector follows closely to the

density of states (DOSs) as shown in Fig. 2(c). Both the DOS
and the QPI intensity grow linearly with|E|, demonstrating
d-wave pairing symmetry and the particle-hole symmetry in
the Bogoliubov quasiparticles even in the pseudogap state and
also under the influence of many-body effects. Above the tip
of the hole-pocket, the intensity drops in the pseudogap en-
ergy region and then it rises again sharply up to the tip of
the electron pocket. Experimentally the first peak in intensity
is well documented for underdoped samples while some evi-
dence of the second peak is seen in overdoped Bi2212 [see for
example Ref. 29].

We summarize three robust signatures that help unambigu-
ously differentiate the presence of the electron pocket from
the hole pocket or paramagnetic full FS (see appendix for
details). (1) In the dispersion relation of the QPI vectors as
shown in Figs. 2(a) and 2(b), all theq vectors stop dispersing
at the tip of the hole-pocket. Only for the case of an electron
pocket, new QPI vectors appear which extend toq = (2π, 0)
and its equivalent points along the (100)-direction or above
q = (π, π) along the diagonal direction. Furthermore, to dif-
ferentiate an electron pocket from a paramagnetic full FS, one
needs to pay attention to the break in the slope of the QPI
vectors going from the hole-pocket to the electron pocket. (2)
For constant energy scans, the QPI profile becomes essentially
energy independent above the tip of the hole-pocket; for ex-
ample, whenqh

3 = (π, π) stops dispersing. In contrast, in
the present case of an electron-pocket, the new QPI pattern
forms with two distinguishing marks thatqe

3 > (π, π) and
qe
5 = (2π, 0) at the tip of the electron-pocket. (3) The in-

tensity of the QPI vectors as a function of energy shows two
distinct peaks in the case when both electron and hole pocket
are present on the FS. Lower energy peak occurs at the tip of
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FIG. 2. (Color online) Computed QPI pattern due to the electron-pocket. (a)-(b) The momentum-energy dispersion relation of the QPI pattern
is drawn along (100)-direction and the diagonal one, respectively. In these two high-symmetry directions only four QPIq vectors appear as
highlighted by dashed lines. The dots are the experimental data of Bi2212 in an overdoped sampleTc = 75K for the sameq vectors generated
from the hole-pocket, plotted only in one direction for clarity.[28] These experimental data are shifted along theq-directions by∆q = 0.08(2π)
to reconcile the fact the FS areas for Bi2212 and YBCO (theory) are different and the energy axis is scaled by∆Y BCO/∆Bi2212 = 2.23,
where∆ is the SC gap. At the termination of the hole-pocket both the experiment and theory consistently reproduce the non-dispersive nature
of the hole-pocket QPI vectors. The QPI vectors from the electron pocket appear in this energy region. (c) Theoretical DOS, black line, and
the intensities of various QPI vectors (see legend) exhibita one-to-one correspondence with each other. All the spectra exhibit linear-in-energy
dependence coming from thed−wave nature of the SC gap and have two characteristic peaks atthe tip of the hole-pocket (low-energy peak)
and at the tip of the electron-pocket. Computed QPI patternsin the two-dimensional momentum space at four energy values; (d1) and (d2)
correspond to the hole-pocket while (e1) and (e2) are obtained in the electron-pocket region. (f1)-(f2) and (g1)-(g2) The single-particle maps
of ‘bright-spots’ in thek−space of the Bogolyubov quasiparticle are plotted at the same energy values at which the QPI maps are calculated
in the corresponding upper panel.

the hole pocket at an energy|E| < |∆| while the second peak
happens at the tip of the electron pocket exactly at|E| = |∆|.
In the absence of an electron pocket, only the first peak will
be present whereas in a paramagnetic ground state only the
second peak will show up.

INELASTIC NEUTRON SCATTERING SPECTROSCOPY

We turn next to the low-energy INS spectra in Fig. 3,
mainly in the region belowω ≤ 2∆ where Bogoli-

ubov quasiparticle scattering dominates in the spin-excitation
dispersion.[25–27] INS measures the imaginary part of the
susceptibility whose non-interacting part isχ′′

0 (q, ωp) =
∑

k,n Im
[

G(k, iωn)G(k+q, iωn+ωp)
]

, wheren is the Mat-
subara frequency index, see Ref. 18. In the SC state,χ′′

0 arises
from the inelastic scattering of the Cooper pairs (many body
effects which are incorporated in the random-phase approxi-
mation shift the energy scale of the spectra to a slightly lower
energy; nevertheless the overall shape of the spectrum is not
greatly changed). Therefore, the spectrum is dominated by
scattering by bright spots, similar to QPI but connecting fea-
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FIG. 3. Magnetic resonance behavior in the electron-pocket. (a) Schematic representation of the inelastic scatteringprocess of Bogolyubov
quasiparticles on the electron pockets. The out-of-plane red and blue shadings along the energy axis gives the superconducting gaps with
d−wave symmetry. The solid arrows of same colors as in Figure 1 represent the same scattering vectors but here in the particle-hole channel.
The dashed lines of same color are the same scattering channels but from the electron pocket to the hole-pocket and vice versa. (b) The
scattering pattern expected at an energy corresponding to the electron-pocket. (c), The computed INS spectrum in the hole-pocket region
is shown below the first resonance in (c1) and at the resonancein (c2). (d) The spectra at three energy cuts above the first resonance in
the electron-pocket region. (e) The INS data of YBCOy along (100)-direction at the same dopingy = 6.6 at which quantum oscillation
measurements predict electron pockets. The magenta and gold arrows point to the two resonances coming from the hole-pocket and electron
pocket, respectively. (f), Computed magnetic resonance spectra along (100)-direction and diagonal direction in momentum space, respectively.
Solid and dashed lines of different colors are guides to the eye for different scattering branches, coming from scattering between electron-
electron pocket and electron-hole pocket respectively. The dots are the experimental data, extracted by tracing the peak positions in the
constant energy cuts of Neutron spectra shown in (f1). (g) The momentum integrated resonance intensities are shown for integration along
(100)-direction (cyan), along the diagonal (gold), and thetotal (black). The computed results agree well with the experimental data for the
same sample.

tures above and below the Fermi level. Among 7qh,e vectors
in the QPI pattern discussed above only four vectors partici-
pate in the INS spectra, see Fig. 3(a). Furthermore, owing to
the selection rule associated with elastic scatterings in STM,
qh andqe are always energy resolved. But in the INS spec-
tra the separation between the two energy scales becomes ob-
scured due to the turning on of inter pocket inelastic scatter-
ing. We denote the corresponding electron to hole pocket scat-
tering channel byqeh as shown by dashed lines of the same
color in Fig. 3(a). The resulting constant energy INS profile
in the SC region is sketched in Fig. 3(b).

In addition to the energy and momentum conservation prin-
ciples associated with the inelastic Bogoliubov quasiparticle

scattering, the coherence factors of both the superconducting
state and SDW state play a major role here.[18, 25] The sign
change of the superconducting order at the ‘hot-spot’q, i.e.
∆k = −∆k+q , is a crucial for finding non-vanishing contri-
butions to the INS spectra. SDW order with a modulation vec-
torQ = (π, π) provides an additional coherence factor which
leads to a gradual increase of intensity of the INS spectra asq

approachesQ.

In the hole pocket region, our calculation correctly repro-
duces the magnetic resonance peak at(ωh

res, Q) (magenta ar-
rows in Figs. 3(e), 3(f) and 3(g) and both the downward and
upward dispersions of the ‘hour-glass’ pattern.[18, 25–27] Be-
low the resonance, the magnetic scattering of the Cooper pairs
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also yields the maximum intensity in the bond direction, see
Fig. 3(c1). In the absence of the electron-pocket, the INS in-
tensity maxima rotate by 45o towards the diagonal direction
above the resonance energy, again consistent with the hour-
glass phenomenology.

In the presence of the electron pocket, the INS pattern ex-
hibits several distinguishing characteristics which can be sep-
arated from the usual hourglass pattern of the hole-pocket:(1)
The intensity profile in the constant energy surface hosts peaks
both along the bond direction as well as along the diagonal di-
rection above the(π, π)-resonance, see Figs. 3(d1), 3(d2) and
3(d3). (2) An additional resonance energyωe

res > ωh
res is

observed along the bond direction in Fig. 3(f1), and in the in-
tegrated INS intensity in Fig. 3(g). The presence of two reso-
nances is also theoretically calculated for iron-pnictidesuper-
conductors, although the the differences in the FS topology
and the pairing symmetry between these two classes of super-
conductors make the details of the resonance spectra look very
different.[30] (3) More resonance branches appear in the INS
spectra although weak in intensity, in Figs. 3(f1), 3(f2).

The experimental results of YBCO6.6 shows clear evidence
for the second peak as shown in Figs. 3(e) and 3(g). The en-
ergy scale of both the resonances are set by the SC gap am-
plitude asωres = 2|∆0gk| wheregk = [cos kxa− cos kya]/2
is the structure factor of thedx2−y2−wave pairing. We have
used the ARPES value of SC gap magnitude∆0 = 30 meV
from Refs. [29, 31]. The two energy scales are determined by
the position of the corresponding ‘hot-spot’ momentum value
on the FS. The first resonance occurs atQ where theq3 vec-
tor connects the ‘bright-spots’ at the tip of the hole pocket
which givesωh = 40meV. The second resonance occurs
whenq2 touches the Brillouin zone boundary which yields
ωe
res = 55meV. Note that in our calculation, the two spin res-

onance energies have a direct relation to the peaks in the QPI,
shown in Fig. 2(c), where the spin resonance peak occurs at
twice the energy of the peak in the QPI intensity.

ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY

The same information on the presence of the electron
pocket can be directly obtained from ARPES. ARPES
measures the single particle spectral weightA(k, ω) =
−ImG(k, ω)/π. In Fig. 4, we provide some evidence for the
presence of the electron pockets in the ARPES data.

In the strongly underdoped cuprates where the pseudogap
is large, it gaps out the whole antinodal region above the
magnetic zone boundary. Thus electron pockets disappear
from the FS and only the hole-pocket is present, as shown
in Fig. 4(a). It is interesting to notice that even in the theoreti-
cal spectra, there is a finite incoherent spectral weight present
away from the hole-pocket which traces the underlying un-
gapped FS. This is the effect of the imaginary part of the self-
energy correction which is calculated to be quasi-linear inthe
low-energy region. As a result the residual spectral weight
gradually decreases from the nodal to the antinodal regions
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FIG. 4. ARPES observation of electron pocket. (a)-(b) Computed
single particle spectral weight in the normal state at the Fermi level
which gives the impression of a FS. In (a), only a hole-pocketis
present at the nodal point while both the electron and hole-pocket
are present in (b). All the calculations in the present manuscript are
performed for the FS in (b). We extract the FS information from
the experimental data of STM and INS presented in Figures 2 and 3,
respectively which are plotted as open circles on top of the theory.
(c)-(f) The experimental data of Fermi surface as a functionof hole-
dopings and material. The presence of the electron-pocket in (d)-(f),
at the antinodal point can be identified by comparing the samewith
(c) which hosts only a hole-pocket. The data in (c)-(d) is obtained
from LSCO,[32] while (e) is taken from Na-LSCO[33] and (f) isfor
an overdoped TBCO sample[34].

as the pseudogap grows along the same direction but spreads
over a larger energy and momentum region. This result is
consistent with experiment in a deeply underdoped sample of
LSCO as shown in Fig. 4(c).

Therefore, in order to identify the electron pocket at the
antinodal point, one needs to pay attention to the spectral
weight. In the near-optimal region close to the quantum criti-
cal point, the electron pocket appears at the Fermi level, lead-
ing to coherent spectral weight at the antinodal point as shown
in Fig. 4(b). Looking at the experimental data for dopings
x = 0.07− 0.125 of LSCO in Figs. 4(d)-4(e) and in an over-
doped sample of TBCO in Fig. 4(f), we see that both the hole
and the electron pockets are present in this doping range. Es-
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pecially, the spectral weight maps of the FS in Figs. 4(d) and
4(f) have peaks of comparable magnitude at both nodal point
and antinodal point while it is suppressed in between these
two points. In the case of an ungapped full FS, the spectral
weight is expected to be coherent and similar at each Fermi
momentum, whereas as discussed above, when only a hole
pocket is present the spectral weight gradually decreases from
the nodal point to the antinodal point. Therefore, the exper-
imental results in Figs. 4(d)-4(f) convincingly establishthe
presence of the electron pocket in the vicinity of optimal dop-
ing for these two materials.

The procedure of inverting the QPI data to reconstruct the
single-particle FS is well known[18] and following the con-
ventional procedure, we find that the FS constructed from the
experimental data of QPI maps used in Fig. 2 lies reasonably
on top of the theoretical data. Note that the existing experi-
mental data has not yet been analyzed with the notion to iden-
tify the electron pocket. Similarly, we extract the FS from
the INS data of YBCO shown in Fig. 3 and the result agrees
well with the picture of coexisting hole and electron pockets
as shown in Fig. 4(b).

Finally we comment on the difficulties of ARPES to ob-
serve the electron pocket. As mentioned earlier, electron-
pockets are expected near the quantum critical point of the
pseudogap at which the SC gap still survives. In this dop-
ing region, a typical phase diagram shows that the pseudogap
transition temperatureT ∗ . Tc for most of the cuprates.[31]
Furthermore, in the SC state, the electron pockets, being posi-
tioned at the antinodal point are fully gapped byd−wave su-
perconductivity and therefore, ARPES can not detect it. When
temperature is increased aboveTc to close the SC gap, the
small pseudogaps are also nearly closed, so the hole pocket
and electron pocket disappears, and a full metallic FS forms.
On the other hand, quantum oscillations are performed in high
magnetic fields at which superconductivity is suppressed, and
the electron pocket becomes exposed. Additional complica-
tions can arise since ARPES and STM are sensitive to the
surface states as well as to so-called ‘matrix-element’ effects,
which could also explain failure to see certain portions of the
FS at particular experimental conditions.

CONCLUSION

In conclusion, we present the detailed spectroscopic analy-
sis of the EP that will allow both single particle (ARPES) and
two particle spectroscopies (STM and INS) to detect EPs that
are posited to be present near optimal doping. These simple
qualitative features provide a sharp contrast to a simple HP
models and hence offer a direct test of their presence. The
simplest model that has EPs is the SDW state with coexisting
HP order. Even with this simplified model we find significant
spectroscopic features that allow qualitative and quantitative
determination of the EPs in cuprates.

Spin-density wave model for electron and hole pocket formation

We use the tight-binding parametrization of our first-
principles band structure of the antibonding band created by
hybridization between Cudx2−y2 and Op orbitals as our start-
ing point. The FS reconstruction is modelled due to SDW
which coexists with thedx2−y2−wave superconductivity.[16]
While we choose a(π, π)−modulation of the SDW, the re-
sults are general and are reproduced by charge density wave,
d-density wave, or flux phase as long as the modulation vector
Q is same, as demonstrated earlier in Ref. 16. Furthermore,
a two-dimensional stripe model with incommensurate mod-
ulation along the diagonal direction also predicts the coexis-
tence of electron and hole-pockets in addition to other open
FSs.[2, 5, 15] Our obtained results of the QPI, Neutron and
ARPES spectra are equivalent and reproducible as long as an
electron pocket is present at(π, 0)/(0, π)−points irrespective
of its microscopic origin.

The Hubbard-BCS Hamiltonian in momentum space is[16]

H =
∑

k,σ

ξkc
†
k,σck,σ + U

∑

k,k′

c†k+q,↑ck,↑c
†
k′−q,↓ck′,↓

+
∑

k

∆kc
†
k,↑c

†
−k,↓. (1)

wherec†k,σ(ck,σ) is the electronic creation (destruction) op-
erator with momentumk and spinσ = ±. ξk is the
free particle dispersion.U is the Hubbard onsite interac-
tion term chosen to be 0.86eV. The value ofU is much re-
duced from its value at half-filling due to screening as calcu-
lated earlier in Ref. [16, 17] The SDW order parameterS =
〈
∑

k,σ σc
†
k+q,σck,σ〉 = 0.08 is treated within self-consistent

mean-field approximation. The BCS superconducting gap is
∆k = ∆0[cos (kxa)−cos (kya)]/2., where∆0=30meV is the
experimental gap parameter for YBCO6.6 taken from ARPES
data.[29, 31]

The corresponding single particle4 × 4 Green’s func-
tion is constructed from Eq. 1 which includes Umklapp part
from spin density wave and anomalous term coming from
the SC gap.[16] The QPI maps and non-interacting suscep-
tibility are calculated as convolutions of the Green’s function
B(q, ω) =

∑

k Im
[

G(k, ω)G(k + q, ω)
]

11
andχ(q, ωp) =

∑

k G(k, iωn)G(k + q, iωn + ωp).
We calculate the self-energy due to all components of fluc-

tuations along the spin and charge degrees of freedom within
self-consistent GW-approach[17]

Σ(k, σ, iωn) =
∑

q,σ′

∫ ∞

0

dωp

2π
G(k + q, σ′, iωn + ωp)

×Γ(k, q, ω, ωp)W (q, ωp). (2)

W is the fluctuation potential obtained within random-phase
approximation (RPA) as1/2ηUχ′′

RPA, whereχ′′
RPA is the

imaginary part of the RPA susceptibility of transverse spin
(η = 2), longitudinal spin (η = 1) and charge (η = 1) correla-
tions functions. Finally, the vertex correction is approximated
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FIG. 5. Schematic evolution of hole pocket to electron+holepocket.
(a) Schematic phase diagram of hole doped cuprates. The detail of
the relative doping dependence of the pseudogap and the supercon-
ducting gap is material specific. (b) SDW induced dispersionat half-
filling. (b)-(c) The dispersions at finite dopings which leadto Fermi
surfaces given in (e), (f) respectively. (b) Hole pocket Fermi surface
in underdoped cuprates. (c) Hole+electron pockets which constitute
the Fermi surface near optimal doping.

within Ward’s identity asΓ = (1 − ∂Σ′/∂ω)0. The calcu-
lation is performed in real frequency space using analytical
continuationiωn → ω + iδ.

Fig. 5 schematically demonstrates the evolution of the elec-
tron pocket as a function of doping in hole doped cuprates.
At half-filling, strong SDW order opens up an insulating gap
as shown in Fig. 5(b). Doping reduces the strength of the
pseudgap interaction, see Fig. 5(a). With hole doping, the
doped holes accumulate at the top of the lower SDW band
[red line in Fig. 5(c)], which give rise to a hole pocket at
the nodel point as shown in Fig. 5(e). Near optimal dop-
ing where the pseudogap is very small, the bottom of the
upper SDW band drops below the Fermi level aroundk =
(±π/a, 0)/(0,±π/a) in Fig. 5(d). Thus an electron pocket
appears as shown in Fig. 5(f). In this doping range the pseu-
dogap opening shifts its location to the ‘hot-spot’ region be-
tween the hole pocket and electron pocket. It should be noted
that the magnitude of the pseudogap can be so small in this
region that it may be overlooked due to the large supercon-
ducting gap for materials like Bi2212 or YBCO. With suffi-
ciently large magnetic field when the superconducting gap is
suppressed, the electron pocket becomes visible in quantum
oscillation or Hall effect probes.

QPI calculation

STM measures local density of states which is Fourier
transformed into momentum space to obtain QPI maps. The
local density of states in response to a local scalar scattering
potential is defined as

ρ(r, r, ω) =
∑

r1

Im
[

G(r, r1, ω)V (r1)G(r1, r, ω)
]

(3)

=
∑

k,k′

Im
[

G(k, ω)G(k′, ω)

×
∑

r1

eik.(r−r1)V (r1)e
ik′.(r1−r)

]

=
∑

k,q

Im
[

G(k, ω)G(k + q, ω)eiq·rV (q)
]

.

=
∑

k,q

V (q)
[

Im
[

G(k, ω)G(k + q, ω)
]

cos (q.r)

+ Re
[

G(k, ω)G(k + q, ω)
]

sin (q · r)
]

.

(4)

Hereq = k−k′. In the case of an onsite potential,V (q) = V .
Finally, we take the Fourier transformation of the local density
of states to obtain

B(q, ω) =
∑

r

eiq·rρ(r, ω) (5)

= V
∑

r

(cos (q · r) + i sin (q · r))

×
∑

k,q′

[

Im
[

G(k, ω)G(k + q′, ω)
]

cos (q′ · r)

+ Re
[

G(k, ω)G(k + q′, ω)
]

sin (q′ · r)
]

(6)

≈ V
∑

k

[

Im
[

G(k, ω)G(k + q, ω)
]

+ iRe
[

G(k, ω)G(k + q, ω)
]

]

. (7)

In the above equation, we have incorporated the local field
approximation which implies

∑

r,q′ cos (q · r) cos (q′.r) =
δq,q′ and

∑

r,q′ cos (q.r) sin (q′.r) = 0. The summation
is carried out over the entire reciprocal space but relaxing
the Umklapp scattering condition to mimic the experimental
procedure.[35]

Comparing QPI maps for paramagnetic state with the only-hole
pocket and hole+electron pocket states

In Fig. 6, we compare the evolution of the QPI patterns
in the case of a paramagnetic ground state, hole-pocket, and
coexisting electron+hole pockets. As mentioned in the main
text, there are several distinguishing features to unambigu-
ously identify the electron pocket that will show up collec-
tively in the dispersion, intensity, and constant energy profile
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FIG. 6. Comparison between the QPI patterns of paramagneticfull FS, hole-pocket FS, and coexisting electron and hole pocket FSs. Three
horizontal panels separated by boxes of different colors give the evolution of QPI patterns at the same energy and momentum cuts but for three
different FS topologies. (a1), (b1), and (c1) are plotted along the (100) directions of the QPI profile whereas (a1), (b2)and (c2) are the same
but along the diagonal directions. The QPI patterns and the corresponding constant energy ‘bright-spot’ profiles are plotted at two different
energy cuts in the third and fourth columns. The energy values E1 = 25meV andE2 = 55meV are kept same for all three cases for ease
in comparison.E1 corresponds to the FS below the magnetic zone boundary (dashed green line in the last column) which is the hole pocket
in the pseudogap state.E2 corresponds to an energy at which the ‘bright-spots’ resideabove the magnetic zone boundary for paramagnetic
FS and electron pocket case and at the tip of the hole pocket for the middle panel. In all three cases, the superconducting parameters are kept
constant while only the pseudogap strength is varied artificially to produce different FS topologies at the same doping.

of the QPI pattern. (1) In a paramagnetic state, all QPI vectors
show continuous energy dependence with no ’kink’ or non-
dispersive pattern. For the case of a hole pocket without any
electron pocket on the FS, all the dispersion features stop at
the energy where the ‘bright-spots’ reach to the top of the dis-
persion. No new QPI vector appears above this energy and
along the(100)-direction, the QPI vectors do not extend to
(2π, 0) while along the diagonal it does not cross the(π, π)-
boundary. On the other hand, in the case of coexisting elec-
tron and hole pockets both these features should be present.
(2) The associated intensity of all QPI vectors also reflects
the presence of an electron pocket. In a hole-pocket, a peak
in the intensity occurs at the tip of the hole-pocket which is

less than the SC gap amplitude. The peak extends to the SC
gap amplitude in the case of a paramagnetic ground state. For
the electron and hole pocket, both peaks will be present and
can be used to identify the presence of an electron-pocket.
(3) Finally, the constant energy cuts of the QPI pattern can
help distinguish the electron pocket from a hole-pocket, but
the former can not be separated from a paramagnetic ground
state. As discussed in point (1) above, ifq3 > (π, π) as well
asq5 = (2π, π) at some energy, that will be an unambiguous
signature of the presence of an antinodal FS.
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