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Scanning SQUID susceptometry images the local magnetization and susceptibility of a sample.
By accurately modeling the SQUID signal we can determine physical properties such as the pen-
etration depth and permeability of superconducting samples. We calculate the scanning SQUID
susceptometry signal for a superconducting slab of arbitrary thickness with isotropic London pen-
etration depth A, on a non-superconducting substrate, where both slab and substrate can have a
paramagnetic response that is linear in the applied field. We derive analytical approximations to
our general expression in a number of limits. Using our results, we fit experimental susceptibil-
ity data as a function of the sample-sensor spacing for three samples: 1) d-doped SrTiOs, which
has a predominantly diamagnetic response, 2) a thin film of LaNiOs, which has a predominantly
paramagnetic response, and 3) the two-dimensional electron layer (2-DEL) at a SrTiO3/LaAlOs
interface, which exhibits both types of response. These formulas will allow the determination of
the concentrations of paramagnetic spins and superconducting carriers from fits to scanning SQUID

susceptibility measurements.

PACS numbers: 74.72.Cj 85.25.Dq 74.25.Ha

I. INTRODUCTION

Scanning SQUID microscopy’? allows the simultane-
ous imaging of the local magnetization and the magnetic
response (susceptibility)® of the surface of a sample on
a micron length scale. The sign and magnitude of the
susceptibility signal yields information about electrons
in the material. For a superconductor, the diamagnetic
susceptibility is a measure of the local London pene-
tration depth.* 7 In most superconductors, the diamag-
netic susceptibility is much stronger than other possible
sources of magnetic response, such as nuclear suscepti-
bility or the paramagnetism of impurities, other regions
of the sample, or non-superconducting carriers. How-
ever, in superconductors with unusually strong compet-
ing paramagnetic susceptibility and/or a low superfluid
density, it may be necessary to consider both types of
contributions. For example, a paramagnetic response
has been observed in scanning susceptometry measure-
ments of non-superconducting samples® and supercon-
ducting samples above their critical temperatures.’

The temperature dependence of the London penetra-
tion depth, which is related to the susceptibility, has
played an important role in determining the symmetry of
the superconducting order parameter in unconventional
superconductors.'® However, for superconductors with
low superfluid densities, the diamagnetic contributions
from Cooper pairs and the paramagnetic contributions
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from spin or other sources can have similar magnitudes
but different temperature dependences, making it diffi-
cult to determine the temperature dependence of the su-
perfluid density.'' It is therefore important to be able
to separate the paramagnetic from the superconducting
components in scanning SQUID susceptometry measure-
ments.

Clem and Coffey!? considered the dynamics of inter-
acting vortices in a type-II superconductor responding
to currents parallel to a superconducting film. Kogan'3
presented a model for the diamagnetic response of a su-
perconductor to arbitrary local field sources. One source
Kogan considered was a circular ring of current appro-
priate for scanning SQUID susceptometry. Here we ex-
tend his model to include both diamagnetic and para-
magnetic effects, for a paramagnetic superconductor of
arbitrary thickness on a paramagnetic substrate. Our
final expression reduces to that of Kogan'3 for a super-
conductor with the permeability of vacuum in the bulk
and thin film limits, and to that of Bluhm et al.® for a
thin film paramagnetic response. We present in Table
I analytical approximations to our full expression for a)
a bulk non-superconducting paramagnet, b) a thin non-
superconducting paramagnet, c¢) a bulk superconductor
without paramagnetism with penetration depth short rel-
ative to the other lengths in the problem, d) a bulk su-
perconductor without paramagnetism with penetration
depth long relative to other lengths in the problem, and
e) a thin superconductor without paramagnetism. These
analytical approximations, along with the full expression
Eq. 7, represent the main results of this paper.

Although in this paper we concentrate on the scan-
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FIG. 1: Model geometry. a) The layout of the field

coil/pickup loop region of the SQUID susceptometers used
in this paper. b) Approximations to this layout considered in
Appendices 1 a and 1 b. ¢) For this paper we consider a slab of
thickness ¢ with magnetic permeability 2 and superconduct-
ing penetration depth A on a non-superconducting substrate
with magnetic permeability ps. We define z = 0 at the sam-
ple surface, with a pickup loop (radius b) and concentric field
coil (radius a) located at a height z = 2 in a plane parallel
to the sample surface.

ning SQUID susceptometer geometry, with the field coil
co-planar and co-axial with the pickup loop , the same
basic formalism could be applied to penetration depth
measurements using other two-coil mutual inductance
geometries, 214716 for example, with the two coils at dif-
ferent heights, or on opposite sides of a thin film sample.

As examples of applications of these expressions we
fit scanning susceptometry data on a §-doped sample of
SrTiOg, a thin film of LaNiOgs, and the two-dimensional
electron layer (2-DEL) at the interface between SrTiOg
and LaAlO3.'7 For the case of 6-doped SrTiOs, which has
a predominantly diamagnetic response, there is a strong
correlation between the best penetration depth and sen-
sor height parameters in fitting susceptibility approach
curves: an uncertainty in the sensor height of 1.5um re-
sults in an uncertainty in the Pearl penetration depth
A = 2)\2/t of 60%. A susceptibility approach curve for
the LAO/STO interface at a position which is predom-
inantly paramagnetic is well fit by our expression for a
thin film paramagnet with reasonable values for the fit-
ting parameters. However, at a position which is weakly
diamagnetic the best fits for the height and permeability
parameters take on unphysical (negative) values, even for
a model which includes both superconducting and para-
magnetic contributions. We speculate that this last may
be due to sample inhomogeneity and/or an interaction
between the SQUID and the sample superfluid.

II. MODEL
A. Full expression

We consider the geometry of Figure 1. The SQUID
susceptometers used in this paper have the layout shown
in Fig. 1a.'® Traditionally such a layout has been approx-
imated by that of Fig. 1b: the field coil is represented by
a circular wire, while the pickup loop is represented by a
circular wire plus an additional pickup area due to flux
redirection from the leads.'® In this paper we assume the
geometry of Fig. lc: the susceptometer is represented
by two co-planar concentric circular loops. The field coil
has radius a, and the pickup loop has radius b . Both
are infinitely thin wires. We evaluate in Appendices1a
and 1 b the systematic errors in the SQUID susceptibility
associated with our approximations to the field coil and
pickup loop shapes. The loops are oriented parallel to,
and a height 2y above, a slab of material with thickness ¢,
permeability uo and isotropic London penetration depth
A on a semi-infinite non-superconducting substrate with
permeability ps.

One can divide space into 3 regions of interest: 1: zg >
z>0,2.0>2z>—t, and 3: —t > z. The half-space
—t > z has permeability us and is non superconducting.
The space zgp > z > 0 has pu; = pg and is also not
superconducting.

Following Kogan,'? V x H, =0in region 1 since there
are no currents. This identity is assured by writing the
field H, as the gradient of a scalar potential ¢: H, =
V1. Then V2p; = 0 since V- By = V- (ugHy) = 0. In
region 3 there is again no transport current, so V x H 3 =
0. Since we consider only the case where p is spatially
homogeneous, V - ﬁ3 =0, and therefore V23 = 0.

Inside the superconductor the total current, propor-
tional to the curl of the magnetic flux density B , consists
of the supercurrent plus the current due to the inhomo-
geneity of the magnetization M:

Qg
2m A2

VxB= (V@—F%)—FMOVXJ\Z/, (1)
where the London penetration depth A is assumed
isotropic and homogeneous, 6 is the quantum mechanical
phase, A is the magnetic vector potential, and &g = h/2e
is the superconducting flux quantum. Taking the curl,
the magnetic flux density B satisfies??

VXV xB+B/\ =V xVxM. (2)

We here neglect a term which represents a sum of delta
function vortices. If we consider the case where there
is a small susceptibility such that M = yH, and write
fia = po/to = 14 x2, with x2 << 1, we then recover the
familiar London’s equation

NV2B - B =0, (3)



with a modified penetration depth A = A /jiz. 21723 For
all the experiments reported here |fia — 1| << 1: the
fit values for yot (see, e.g. Fig. 13a) are less than
6x10~%um. Even if the layer responsible for the para-
magnetism is only 10nm thick, this would correspond to
X2 = ﬂg -1 < 006

The fields in the 3 spatial regions of interest can then
be expanded in Fourier series as
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where ¢, is the source potential due to currents in the
susceptometer field coil, and ¢,.1, ¢r3, H* and H-
are response potentials and fields, &k = |E|, and ¢ =
(k2 + 5\*2)1/2. Applying the boundary conditions of con-
tinuity of the normal component of B and the tangential
component of H at the interfaces z = 0 and z = —t, as

well as the requirement that V - B=0in region 2, leads
to the solution

Simplified versions of this expression are given in Table
Iin five limiting cases: a) is a bulk, non-superconducting
paramagnet, b) is a thin, non-superconducting paramag-
net, ¢) is a bulk superconductor without paramagnetism,
with penetration depth short relative to the sensor field
coil radius and height, d) is a bulk superconductor with-
out paramagnetism, with penetration depth long relative
to the field coil radius and height, and e) is a thin super-
conductor without paramagnetism. It is of interest to
note that in three of the cases: bulk paramagnetic (a),
thin paramagnetic (b), and bulk weak diamagnetic (d),
the material property of interest, either the permeability
o or the penetration depth A, is separable from a ge-
ometrical factor, independent of the form of the source
potential. This means that the temperature dependence
of the material property can be determined, aside from
a multiplicative constant, without curve fitting, in these
cases. For example, in the bulk weak diamagnetic case
(Table 1d), the SQUID susceptibility is proportional to

J
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A~2, with a constant of proportionality that depends only
on geometry, independent of the form of the source term,
which should be independent of temperature. This is
also true in the thin diamagnetic case (Table Ie) for suf-
ficiently large Pearl lengths A. X and the geometrical fac-
tors are not separable in the limiting case of bulk strong
diamagnetism (Table Ic). In this case, to a good approx-
imation (see Appendix1c) it is the sum X 4 2o that is
determined by SQUID susceptibility measurements.'3

The source field for a circular field coil of radius a is
given by'3

pulk) = T (ka) (©

The z-component of the response field in region 1 is given
by h,(k,z) = —kp,.1e7%%. Taking the limit b << a, the
height dependence of the SQUID susceptibility ¢(z) is
given by

6(2)/ s = / " dwwe > gy ()

where

1 do
= —— 8
6= 37 (5)
® is the flux through the pickup loop in response to
the current I, the self inductance between the field coil
and the pickup loop

s = Aﬂ0/2®0a7 (9)

f2) ()
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[
A is the effective area of the pickup loop, z = z/a, t =
t/a, and § = /22 + 1/)2, with A = \/a.

B. Analytical expressions in various limits

In general the integral in Eq. 7 must be done numer-
ically, but analytical expressions can be derived in the
limits given in Table I and plotted in Figure 2:



Description | Thickness|Penetration depth| Permeability |pr1(k)/ps(k) o(2)/bs
a| Bulk para |[t>>1,% A>>1,2 p2 > 1 fgzﬁ (‘;2—;1) m
b| Thin para t<<1,z A>>1,2 fo>1 3 =1 7kt(§t§;1> ﬁ%’;l (1+jz{§)5/2
c|Bulk strong dia| ¢t >>1 A<< 1,z o = W fm
d| Bulk weak dia |t >> 1,2 A>>1,2 Az =1 NI -z (V422 +1-2z)
e|  Thin dia t<<1,z A>>1 =j3=1 AT f%(l—\/%>

TABLE I: Response scalar potential o, 1(k) divided by the source potential (k) in momentum space (Eq. 5) and scanning
SQUID susceptibility ¢(z) divided by the SQUID self-susceptibility ¢s in real space (Eq. 7), in various limits.
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FIG. 2: Theoretical height dependence of the scanning
SQUID susceptibility, divided by the maximum of the ab-
solute value of the susceptibility, of a paramagnetic supercon-
ductor in various limits. The letters correspond to the entries
in Table I.

It is to be noted that in the bulk limit (f >> 1) the
strong superconducting susceptibility (A << 1, fiz = 1)
and the paramagnetic susceptibility (A >> 1, fiz > 1)
have the same height dependence aside from a scaling
factor —(fio — 1)/(fie + 1). However, when the thickness
of the paramagnetic superconductor becomes compara-
ble to the field coil radius, the height dependences of the
paramagnetic and superconducting contributions become
different, and it is possible in principle to determine the
relative contributions of each to the total susceptibility
by fitting approach curves. It is also possible in princi-
ple to determine the z-dependence of the response car-
rier density (either paramagnetic or diamagnetic) from
approach curves. However, in practice the differences
between the spacing dependences of the various contri-
butions are subtle, and it is difficult to separate out the
paramagnetic from the diamagnetic components without
extra information. Such information could be supplied,
for example, by raising the temperature above the super-
conducting transition temperature, leaving only the para-
magnetic contribution, or studying the low temperature
dependence of the susceptibility, where the temperature

dependence of the superconducting component could sat-
urate, while that of the paramagnetic component could
become larger. Finally, one or both components could be
spatially dependent (see e.g. Fig. 4), which could help
to separate them. The regions in parameter space of va-
lidity and errors associated with using the approximate
expressions in Table I are explored in Appendix1c.

III. COMPARISON WITH EXPERIMENTS

There have been a number of works in which SQUID
susceptibility measurements have been used to infer
the London penetration depth of superconductors.?”
We examine scanning SQUID data from several sam-
ples. The low temperature measurements were per-
formed in a home-built SQUID microscope in a dilution
refrigerator.?* The 5K measurements were performed in a
home built variable sample temperature scanning SQUID
microscope.” The SQUID susceptometers used in both
microscopes were described in Ref. 18.

Figure 3 shows experimental data for samples with pre-
dominantly diamagnetic response (Fig. 3a,b) and para-
magnetic response (Fig. 3c¢,d). Fig. 3 (a) and (b)
show SQUID susceptometry of a Nb §-doped sample of
SrTiO3(STO).? This sample was grown in an atmosphere
of 10 Torr oxygen at 1200°C. Nb dopants were con-
fined to a 5.9nm layer, with 100 nm cap and buffer lay-
ers of STO grown above and below the doped region.
The sample was annealed @n situ under an oxygen par-
tial pressure of 10~ 2Torr at 900°C for 30 minutes.?® For
the data sets of Fig. 3 (b) and (d), the susceptibility
was recorded while the SQUID was driven towards the
sample by increasing the z-piezo voltage V, from a large
negative value. In these plots AV, = 0 corresponds to
contact between the SQUID substrate and the sample
surface. At contact the SQUID pickup loop is a height
zp above the sample surface because of the finite angle
(typically a few degrees) between the sample surface and
the SQUID substrate surface. The circles in Fig. 3(b)
show such a susceptometry approach curve at the posi-
tion indicated by the gray circle in Fig. 3(a). The solid
line is a fit of this data to the thin diamagnetic limit of
Table I with 5 fitting parameters: a vertical shift d¢, a
linear slope @inear = @z, the Pearl length A, zg, and the
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FIG. 3: a) Susceptometry image of a d-doped SrTiOs sam-
ple. b) Susceptibility as a function of AV, the change in
z-piezo voltage from contact between the SQUID substrate
and the sample surface, at the position of the gray circle in
a). The circles are data, the solid line is a fit using the thin
diamagnetic limit expression in Table I(e) with a linear slope
added, resulting in a best fit A=954um. The dashed line is
the same fit without an added linear slope, resulting in a best
fit A=829um. c) Scanning susceptibility image of a patterned
non-superconducting thin film of LaNiOs. d) Susceptibility
approach curve for the LaNiOs film at the position of the
square symbol in (¢). The dots are data, the line is a fit us-
ing the thin paramagnetic limit expression (Table I(b)), with
X2t = 1.3 x 10" °um.

change in z with piezo voltage dz/dV,. We do not know
the source of the linear background. In the present case
it was small, @ ~ —3.7 x 1076 1/mA-pm.

The two fixed parameters in this analysis were the ef-
fective field coil radius a=8.4pm, and pickup loop radius
b=2.Tum. The effective field coil radius was taken from
the numerical calculations of Brandt and Clem,?% using
(see Fig. 1a) a field coil inside radius of 6.5um, outside
radius of 12um, thickness 0.3um, and penetration depth
0.09um. The effective pickup loop radius was chosen to
result in the measured self inductance of ¢, = 800 1/A
using Eq. 9. This results in an effective pickup loop area
of 22um?, larger than the 17um? obtained from the sum
of the geometric mean of the pickup loop itself, with in-
side radius r;,=0.88um, and outside radius r,,:=2.4pm,
added to the Ketchen’s 1/3 rule area (w?/3)[19] for the
shield over the pickup loop leads, which has w=4.5um.
Part of this discrepancy may be due to the fact that the
pickup loop shield focusses flux from the field coil into
the pickup loop area.

The paramagnetic susceptibility of samples is typically
much smaller than the diamagnetic susceptibility of su-
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FIG. 4: Scanning SQUID susceptometry image of a patterned
LAO/STO interface at 0.087K. The labels indicate where the
data in Fig. 5 was taken.
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FIG. 5: Scanning SQUID susceptibility as a function
of sensor-sample spacing at 2 positions on the patterned
LAO/STO sample of Fig. 4: P1, in a region showing pre-
dominantly diamagnetic shielding; and P2, in a region show-
ing predominantly paramagnetic response. The symbols are
data and the lines are fits as described in the text.

perconductors. An example is shown in Fig. 3(c) and
(d). Fig. 3(c) shows a scanning susceptometry image of
a patterned 20nm thick film of LaNiOs, imaged at 5K
with a SQUID susceptometer with the same geometry
as in Fig. 3(a). For this sample thermally evaporated
La and Ni were co-deposited on to a LaAlOg substrate
kept at a temperature of 600C, in a background oxy-
gen pressure of 7x 10~ Torr. An RF source operated at
200 W provided atomic oxygen to the film during growth,
and in situ structural characterization was obtained using
RHEED. Patterning of the film was achieved by creating



a mask on the film surface using photolithography, and
then etching the film in a HCI solution (4:1 H20:HCI)
to remove uncovered areas. The dots in Fig. 3d are
the data, the line is a fit to the thin paramagnetic limit
expression of Table I(b), with 4 fitting parameters: ¢,
X2t = 1.3 x 10~°um, 2o=1.9um, and dz/dV,=2.Tum/V,
where yo = pa/po — 1 and ¢ is the thickness of the film.

As an example of a sample that shows both paramag-
netic and diamagnetic behavior we present data on the
2-DEL at the interface between the perovskite insulators
SrTiO3 (STO) and LaAlOg (LAO). The sample and mea-
surement techniques for the data used in this study were
described in Ref. 9. Briefly, the sample was prepared by
growing 10 unit cells of LaAlO3 on a commercial TiO4
-terminated 001 STO substrate, with an aluminum ox-
ide hard mask patterned on to the STO substrate prior
to LAO growth. A crystalline LAO/STO interface only
grew in the gaps of the patterned mask. The LaAlO3 was
deposited at 800° C with an oxygen partial pressure of
10~° mbar, after a pre-anneal at 950° C with an oxygen
partial pressure of 5 x 107% mbar for 30 min. The sam-
ple was cooled to 600° C and annealed in a high-pressure
oxygen environment (0.4 bar) for one hour. Figure 5
displays SQUID susceptibility data as a function of spac-
ing between the sensor and the sample surface for the
LAQO/STO sample imaged in Fig. 4 at the positions la-
belled. Both positions are in a gap of the aluminum oxide
mask, but P2, close to the edge of the two-dimensional
electron layer, shows paramagnetic response, while P1
shows diamagnetic behavior. These approach curve data
were taken at T=0.02K with a field coil current of ImA.

The fact that P2 shows a maximum below AV, =
0 implies that the paramagnetism results from a thin
film, rather than from the substrate (compare the thin
and bulk paramagnetic limit curves in Fig. 2). Fit-
ting this data to the pure thin paramagnetic expression
of Table I, with xsot, 29, @ and §¢ as variables, with
a=8.4pm, b=2.7Tum and dz/dV = 2.9um/V, results in
X2t=4.940.8-0.7x10"*pum and zg = 1.5 4+ 0.7 — 0.3um.
This fit is displayed as the solid line in Fig. 5. Us-
ing the same assumptions as for the LaNiO3 case in Ap-
pendix 1d, (including a £20% uncertainty in a), we find
a spin density of 1.2540.5x10'41/cm?.

We attempted to fit curve P1 in Figure 5 to the pure
thin film diamagnetic expression of Table I(e), with A, zg,
a, and d¢ as variables, and dz/dV = 2.9um/V as a fixed
parameter. The best fits were obtained for unphysical
negative values for zg. If we constrain zy to vary between
the values of 1 and 2.5um, the best fit (dashed line in Fig.
5) occurs for zp = 2.5um and A = 16.4um. However,
the fit quality was not good (the best fit =2 is about
25 times worse for P1 than for P2). Using the same
assumptions as for J-STO in Appendix1d, but with an
effective mass m* = 1.46m,2?", the allowed values for
A (15 mm < A < 34mm) correspond to a Cooper pair
density of 2x10*em™2 < N, < 6.6 x 101tem=2.

The calculated spin density of 1.2540.5x10'#1/cm?
and Cooper pair density of 2x10em™2 < N, < 6.6 x

10"em ™2 are to be compared with a predicted electron
density from the polar catastrophe!” of 3.2 x 1041 /em?
and Hall effect measurements of the mobile electron car-
rier density of 1 —4 x 10131/cm?2.2729

It seems reasonable to assume that the susceptibility
at position P1 in Fig. 4 has both superconducting and
paramagnetic contributions, and therefore could be fit
using the full expression Eq. 7. However, the fitting
parameters Yat, zo and A are strongly correlated, result-
ing in large uncertainties in their values. Further, fits to
this data result in unphysical negative best fit values for
x2t and zy. We speculate that these unphysical values
might result from the inhomogeneous superfluid density
in this sample or from interaction between the sensor
SQUID and the superfluid at these low densities. There-
fore, as mentioned in the introduction, additional infor-
mation, such as different temperature or spatial depen-
dences, will be required to separate the superconducting
from the paramagnetic components in scanning SQUID
susceptibility measurements.

IV. CONCLUSIONS

We have presented a full expression and analytical ap-
proximations in various limits for the susceptibility in
a scanning SQUID geometry of a paramagnetic super-
conductor of arbitrary thickness on a paramagnetic sub-
strate. These expressions can be used to measure the spin
concentration and the Cooper pair density in a paramag-
netic superconductor. A comparison of =2 analysis with
bootstrap statistical analyses (see e.g. Appendix 1d, Fig.
12) indicate that the accuracy of these measurements can
be improved with a precise knowledge of the sensor height
zo and the piezo constant dz/dV in scanning SQUID sus-
ceptometry measurements.
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Appendix: Sources of error
1. Systematic
a. Approzimating field coil by circular wire

The actual susceptometer layout used in the experi-
ments described in this paper is shown in Figure la. A



full calculation of the fields generated by the field coil
would require a three-dimensional solution of coupled
London’s and Maxwell’s equations in this geometry. To
estimate the errors associated with approximating the
actual field coil geometry by an infinitely thin circular
wire, we consider the idealized geometry of Fig. 1b: the
field coil is assumed to be an incomplete, infinitely nar-
row circle of radius a, which connects with infinitely long,
infinitely narrow leads with spacing s, and which carries
a current I. For these calculations, we take a=8.4um

J

and s = 7.3um. s was taken as the geometric mean of
the outside 13um and inside 1.2um widths of the leads
in the susceptometer layout.
Using Biot-Savart:
= [L()I Cfl X T
= —— A1l

4 |73 (A1)
the contribution B, . to the z-component of the field from
the incomplete loop is given by

— aysinf — ax cos

T 27—01
Bz.c = Ko / df ' 7
T A Jy, ((x —acos)? + (y — asin )2 + 22)3/2

(A.2)

where 61 = cos™!(s/2a). The contribution B, ; from the leads is

ol 2(s — 2y)(2(x — o) + /(s — 2)? + 4((w — 0)? + 22))

B., =
z,l o

where x¢g = acosf;. Figure 6 plots the z-components
of the fields from a circular loop (61 = 0), from an in-
complete circle, from the leads, and the sum of the in-
complete circle and leads, using the parameters above,
and assuming z=0: the field coil and the pickup loop in
the same plane. The field from the circular coil model
is 7.5% higher than that from the incomplete circle plus
leads model at z = 0. At a height of z = 3um, more
appropriate for calculating a susceptibility, the error is
6.8%.

To calculate the SQUID susceptibility using the
present formalism requires calculating the magnetic
scalar source potential ¢4(7,0) for the above geometry.
Converting Eq. 36 of Reference 13 to SI units:

=0y = [ d2r’
@5 (T, )*E - e 2\3/2
((F=1")%+ 23)

(A4)

This is difficult to integrate over an arbitrary geometry
analytically. Instead we did the integrations and Fourier
transforms numerically. Figure 7 shows the results for
©s(7,0)/I (which is dimensionless) for a = 8.4um, s =
7.3wm and zp = 1.5um.

The source field is given by Hy = Vi, (7, z). Figure 8
compares the results obtained using Biot-Savart with the
gradient of the scalar potential of Fig. 7.

The Fourier transform of the response field at z = zg
is given by

hz,r(];;a ZO) = 7k(pr,1(k‘)eikzo (A5)

where ¢, 1(k) is given by Eq. 5. Figure 9 shows the
results for the response field using a=8.4um, s = 7.4um
and zg = 1.5um, a sample thickness of t = 10um, A\ =
0.1pum, po/po = 1, us/pe = 1: the strong diamagnetic

((s = 29)2 + 422)\/(s — 29)? + 4((2 — 20)? + 22)

(A.3)

(

shielding, bulk, non-paramagnetic limit of Eq. 5. Table
IT shows some selected comparisons of calculations using
the circular wire model with the incomplete circle plus
leads model for the field coil.

The first 5 columns of Table II are the field coil radius
a, the height of the susceptometer above the sample sur-
face zg, the spacing between the leads s, the thickness
of the paramagnetic superconductor ¢ , and the London
penetration depth A. H,(0)/I is the field at the center of
the coil divided by the current through the coil. This is
approximated in the circular wire model for the field coil
by 1/2a. H.,.(zo)/I is the response field at the center of
the field coil (and pickup loop), divided by the current
through the field coil. Finally H,,.(z9)/H.(0) is equiv-
alent to ¢(z)/¢s, the ratio of the sample susceptibility
to the self-inductance in the limit where the pickup loop
radius b << a. In all cases o = pug = po in Table II.

In the thin diamagnetic limit (first 3 rows of the ta-
ble) ¢(2)/¢ps — —(a/A)(1 — 2(z/a)/\/1+4(z/a)?). In
the bulk diamagnetic limit ¢(z)/¢s — —1/(1 + 4(z +
\)2/a?)3/2. These values are entered in the last column
of the table. A comparison of the last 2 columns of the ta-
ble shows that if one normalizes by the self-susceptibility,
the analytic limits derived above for the circular field coil
model agree with the full incomplete circle with leads
model to within 10%, independent of whether the cur-
rent is localized at the very inside of the field coil or at
the outside of the field coil, and presumably for any cur-
rent distribution in between.

A more rigorous solution of the problem would solve
London’s equations for the current distribution in the
field coil following, e.g. Brandt and Clem,2® then use
those results to find the scalar potentials for a set of equi-
current-density paths, and add them up with suitable



a(pm) | zo(um) | s(um) | t(um) | A(um) | 22 (um =) | (um =) | Z22E0 (um 1) | D220l Analytic limit
8.4 1.5 73 | 0.1 10 527 x 1072 [5.95 x 1072| 1.44 x 107 |2.74 x 1073| 2.70 x 1073
12 1.5 13 | 0.1 10 3.71 x 1072 [4.17x 1072 1.50x 107* |4.05 x 1073| 4.45 x 1073
6 1.5 1.2 | 0.1 10 741 x 1072 [8.33x 1072| 1.26x 107% |1.69 x 1073| 1.59 x 1073
8.4 1.5 7.3 10 0.1 | 527 %1072 [5.95 x 1072| 4.42x 1073 0.836 0.816
12 1.5 13 10 0.1 | 371 %1072 |4.17x1072| 327 x 1072 0.882 0.902
6 1.5 1.2 10 0.1 | 7.41x1072 (833 x1072| 5.50x 1072 0.742 0.687

TABLE II: Some results from the evaluation of Eq.’s A.4, A.5, and 5 for various parameters. The first 3 rows are in the thin
film diamagnetic limit, and the last 3 are in the strong bulk diamagnetic limit.
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FIG. 6: Calculated z-component of the field B, divided by
the current I for the model of Fig. 1b, for a circular loop
of the same radius (dot-dashed curve), the contribution from
the incomplete circular loop (dotted curve), the contribution
from the leads (dashed curve) and the sum of the previous
two (solid line). The z-axis is oriented along the leads, with
the leads coming in along the positive z-direction. This cal-
culation assumes the pickup loop and the field coil are in the
same plane. The field at the center is 7.5% larger for the
circular loop model than for the incomplete circle plus leads
model.

weightings. However, the results of Table II indicate that
the results of such a complex calculation would not differ
from the infinitely narrow, circular field coil model by
more than 10 percent.

b. Approximating flux in pickup loop by field at center of
field coil times an effective area

A simplification used in this paper is to approximate
the flux through the pickup loop by the field at the center
of the field coil times an effective area. More traditional'®
is to model the pickup loop area as composed of a circle
of radius b, co-planar and concentric with the field coil.
An additional pickup area from the leads is approximated
by a square of width and length w, offset from the center
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FIG. 7: Calculated magnetic scalar potential ¢, (7, 0), divided
by the current through the loop, for the model of Fig. 1b with
a=8.4um, s = 7.4um and zo = 1.5um.
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FIG. 8: z-component of the source field, divided by the cur-
rent, with a=8.4um, s = 7.4um and zo = 1.5um, calculated
using Biot-Savart vs taking the gradient of the scalar poten-
tial. Also shown for comparison is a cross-section through the
response field image of Fig. 9.
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FIG. 9: z-component of the response field, divided by the
current, with a=8.4um, s = 7.4um and zo = 1.5um, t=10um,
and A = 0.1pm.

of the pickup loop circle by a length Aw. The square
area contributes one third of the flux passing through
it to the total pickup loop flux. For these calculations,
we take a=8.4um, s = dum, b=1.8um, w=4.5pum and
Aw=1.5pm.

Numerical integration of the field from the field
coil gives an integrated flux through the pickup loop
(69093/A) that is 11% larger than the flux B,(0)A
(612®(/A), where B,(0) is the field at the center of the
field coil, and A = wb? + w?/3 is the effective area of
the pickup loop in the circular field coil model (see Ap-
pendix 1a), and 16% larger (693®¢/A vs. 583®Py/A) in
the incomplete circle plus leads model, assuming z =
0. This would be appropriate for calculating the self-
inductance of the susceptometer, and could help to ex-
plain why it is necessary to use a somewhat larger effec-
tive area for the pickup loop (22um? rather than 17um?)
than the Ketchen model'® gives. More appropriate for
estimating uncertainties in susceptibility measurements
would be taking the pickup loop spaced 2z from the field
coil. Taking 2z = 3um gives 523®y/A vs 51194/A for
the circular loop model, and 504®y/A vs 489P,/A for
the incomplete circular loop plus leads model: This ap-
proximation leads to about a 7% contribution to the total
error in the mutual inductance.

c. Analytical approximations

Table I displays analytical approximations to the full
expression Eq. 7 in various limits. These analytical ap-
proximations can be evaluated much faster than the full
expression, and in some limits the temperature depen-
dence of the penetration depth A or the permeabilty o
can be inferred from the data without curve fitting, aside
from a multiplicative constant, but care must be taken.
Figures 10 and 11 show contour plots of the fractional er-
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FIG. 10: (a) Fractional error |pexact — @analytical |/ Pexact asso-
ciated with using the thin paramagnetic (Table Ib) analytical
expression instead of the exact expression Eq. 7, assuming
A — oo and pu3 = po. (b) Fractional error for the thin diamag-
netic (Table Ie) analytical expression, assuming ps = s = po
and zo/a = 0.2.

TOI |Pexact — Panalytical|/ Pexact associated with using each
of the 5 analytical expressions in Table I.

For the §-doped STO data of Fig. 3a the best fit value
for A/a = 113, and t/a ~ 7x 1074, so the error associated
with using the analytical expression (Table Ie, Fig. 10b)
is approximately 1%. For the LaNiOs data of Fig. 3b
t/a = 2.4x 1073, and the error associated with using Ta-
ble Ib, Fig. 10b is approximately 0.2%. The systematic
errors associated with using the analytical expressions for
the 2-DEL data of Fig. 5 are also negligible.

d. Uncertainties in parameter values

The largest systematic errors in determining material
parameters such as the penetration depth A and the
permeability p of a permeable superconductor are un-
certainties in the parameters such as the height of the
SQUID susceptometer zy above the sample surface, and
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FIG. 11: (a) Fractional error |@exact — QPanalytical|/Pexact asso-
ciated with using the bulk paramagnetic analytic expression
(Table Ia), assuming us = po and A — oo. (b) Fractional
error for the bulk strong diamagnetic expression (Table Ic),
assuming t — oo and p2 = psz = po. (c) Fractional error
for the the bulk strong diamagnetic expression (Table 1d),
assuming zo/a = 0.2, and p2 = uz = po-

the change in sensor height with applied voltage dz/dV .
Figure 12 shows estimates for the uncertainties in the pa-
rameters A, zg, and dz/dV from fits to the é-doped STO
data of Fig. 3a. The gray-scale images in this figure dis-
play the error square sum =% = Y~ (¢(n) — ¢ae(n))? for a
three dimensional volume in parameter space, projected
onto the three 2-dimensional planes A — zg, 29 — dz/dV,

and A —dz/dV by taking the minimum value of Z2 along

10

each projection axis. The other two parameters, a ver-
tical shift d¢ and a linear slope ¢lnear = @z, were op-
timized for each pixel in the 3-dimensional parameter
space. One way to estimate the uncertainty in the pa-
rameters is to determine the region in parameter space
where 22 is less than twice its minimum value. The
global minimum value for dz/dV (2.9um/V) is consis-
tent with our knowledge of the physical properties of
our z-bender at low temperatures. Fig. 12 shows that
the best fit value for A depends sensitively on z5. We
estimate from our knowledge of the tip-sample geome-
try that the sensor height 1um < 2y < 2.5um, which
implies that 700um < A < 1100pum. As can be seen
from Table Ie, the SQUID susceptibility in the thin dia-
magnetic limit is proportional to a/A, and therefore a
systematic error in a will result in a proportional er-
ror in A. We consider it unlikely that our estimate of
a is incorrect by more than +£20%, and therefore assign
a further systematic error of +20% to uncertainties in
the effective sizes of the field coil and pickup loop. The
Pearl length can be related to the density of supercon-
ducting carriers through ngs = 2m*/uge?A, where e is
the elementary charge. Using m*=1.25m,2° results in
ns = 7.4+5.0—2.2x 10?1 /cm?. This is to be compared
with Hall measurements, which indicate a total carrier
density of 4.7x10'31/cm? for this type of sample.?’.
Fig. 13 displays the error square sum =2 for a three
dimensional volume (xat, 29, and dz/dV) in parame-
ter space, projected onto the three 2-dimensional planes
Xat — 20, 20 — dz/dV, and xaot — dz/dV for fits to the
LaNiOj data of Fig. 3b. If we assume that the suscepti-
bility in LaNiOg arises from isolated paramagnetic spins,
we can estimate the 2D substrate spin density N, by us-
ing xaot = poNs(gup)?J(J +1)/3kpT.® The systematic
uncertainty in xst should again be proportional to our
uncertainty in a. Assuming a +20% uncertainty in a,
g=2and J =1/2 leads to Ny ~ 6.4+ 5.1 — 2.3 x 10*
cm~2: The diamagnetic signal in 6-doped STO is 4000
times bigger than the paramagnetic signal in LaNiOg,
but the calculated superconducting carrier density is 70
times smaller than the calculated spin density. Our cal-
culated spin density for the LaNiOg films is about 10
times larger than reported for gold and aluminum films.®

2. Statistical errors

The solid symbols and lines overlaid on the gray scale
images in Fig. 12 and 13 represent the best fit values
and 95% confidence intervals for the parameters using a
statistical bootstrap analysis.?° Briefly, in this analysis a
random sampling of the data was generated, with sub-
stitutions, to produce the same number of points as the
original set. This set was fit to the model allowing all
5 parameters to vary, best fit parameters were recorded,
and the procedure was repeated 5000 times. A histogram
of the best fit parameters was generated, and confidence
interval limits were set at the 2.5% and 97.5% levels.
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FIG. 12: Plot of the sum of the errors squared, divided by the
global minimum (22/22 ), for the §-doped SrTiOz sample
data of Figure 3b, fit to the thin diamagnetic expression (Ta-
ble I(e)), projecting the minimum value in the A, zo, dz/dV
parameter space, taken along the third axis, onto the A — 2o
plane (a), the A — dz/dV plane (b), and the zo — dz/dV
plane (c), taking fixed values a=8.4um and b=2.7um. The
global best fit values are A = 954um, zo = 1.7um, and
dz/dV = 2.8um/V. The solid symbols and lines are the
best fit and 95% confidence limits for the parameters from
a statistical bootstrap analysis.

In the case of the d-doped STO data of Fig.’s 3a
and 12 it appears that the statistical uncertainties are
smaller than the uncertainties associated with our im-
precise knowledge of the sensor height zy. For the case of
LaNiOj of Fig.’s 3b and 13 the bootstrap statistical anal-
ysis indicates that the statistical uncertainties dominate,
as might be expected from the noise in the data.
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FIG. 13: Plot of the sum of squares error, divided by the
global minimum (22/=22 ), for fits of the LaNiOs data of
Figure 3d to the thin paramagnetic limit expression (Table
I(b)), projecting the minimum value in the x2t, 2o, dz/dV
parameter space, taken along the third axis, onto the 2t — zo
plane (a), the x2t — dz/dV plane (b), and the zo — dz/dV
plane (c), taking fixed values a=8.4um and b=2.7um. The
global best fit values are yot = 1.3 x 107 %um, zo = 1.9um,
and dz/dV = 2.6pum/V. The solid symbols and lines are most
probable values and 95% confidence limits for the parameters
from a statistical bootstrap analysis.
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