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We present the theory of a three dimensional fractionalized topological insulator in the form of a
U(1) spin liquid with gapped fermionic spinons in the bulk and topologically protected gapless spinon
surface states. Starting from a spin-rotation invariant spin-1/2 model on a pyrochlore lattice with
frustrated antiferromagnetic and ferromagnetic exchange interactions, we show that decomposition
of the latter interactions, within slave-fermion representation of the spins, can naturally give rise
to an emergent spin-orbit coupling for the spinons by spontaneously breaking the spin rotation
symmetry. The time reversal symmetry, however, is preserved. This stabilizes a fractionalized
topological insulator which also has bulk bond spin-nematic order. We describe the low energy
properties of this state.

PACS numbers: 71.27.+a, 75.10.Kt

I. INTRODUCTION

A central question in the recent attempts1 to classify
topological order in gapped quantum states is whether
there exists a sequence of local unitary transformations
connecting a given ground state wave function to a trivial
product wave function, without closing the bulk energy
gap. If such a “path” can be found then the given state
is adiabatically connected to a trivial gapped state, and
hence devoid of any topological order.

For a class of systems, the ground state wave functions
cannot be deformed, through any sequence of such trans-
formations, into a trivial product state, unless the bulk
gap is closed. Gapped quantum spin liquids2 and quan-
tum Hall states3 are particular examples of this kind of
topological order. Such topological order is a signature
of underlying long-range quantum entanglement1. In an-
other class, there are systems where such paths can be
found only if transformations violating certain symme-
tries like time-reversal/particle-hole transformations are
allowed. Once such “symmetry violating” paths are ex-
cluded, this second class of systems is no longer adia-
batically connected to the trivial atomic insulator and
hence exhibits a kind of “symmetry protected topolog-
ical order”1. Examples include strong topological band
insulators and superconductors4–6. In both the above
cases, the systems may or may not posses further dis-
crete/continuous global symmetries like lattice transla-
tion or spin rotation.

In this paper, we introduce a three dimensional frac-
tionalized topological insulator (TI) in the form of a
U(1) spin liquid which also breaks spin rotation sym-
metry spontaneously. Here, we have broadened the
usual definition of a spin liquid (as quantum param-
agnets without any broken symmetry2) to include all
states having deconfined fractionalized spinon excitations

that are minimally coupled to an emergent gauge field.
This definition encompasses both symmetric,2 as well as,
symmetry-broken spin liquids14–16. The state consid-
ered here has gapped fermionic spinons as well-defined
low-energy quasiparticles and gapless “photons” of an
emergent compact U(1) gauge field2. It also exhibits
bond spin-nematic order in the bulk17. Due to this spin-
rotation breaking, there are three Goldstone modes in the
low energy spectrum. However, this spin liquid is differ-
ent from the usual broken symmetry states where the
ground state wave function may be deformed to a trivial
product state. In case of this spin liquid, the presence
of the emergent gauge field, minimally coupled with the
fractionalized excitations (spinons), leads to robust long-
range entanglement among the underlying spins. Side by
side, since the low energy effective Hamiltonian is time
reversal invariant (the spin-nematic order does not break
time reversal symmetry), the spinons have an emergent
topologically non-trivial band structure, i.e. the spinon
“bands” carry a non-zero Z2 index similar to topological
band insulators in non-interacting electronic systems.4,5

In this sense the present state exhibits topological order
of the second kind.

Usually, the notion of topological order is reserved for
systems where all bulk excitations are separated from the
ground state by an energy gap. In the present case, how-
ever, while the spinons are gapped, there are gapless pho-
tons and Goldstone bosons in the bulk. While it is easy to
gap out the Goldstone bosons by explicitly breaking the
spin rotation symmetry of the Hamiltonian (by includ-
ing small spin anisotropy), the photons are rather robust
and cannot be gapped out without actually destroying
the U(1) spin liquid. This is because, the presence of the
photon is a direct consequence of the fractionalization
of the electrons and the stability of the spin liquid itself
guarantees the existence of the photon2. To move out of
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this spin liquid phase, we need to close the spinon gap
and/or confine the spinons (monopole condensation, see
below). Hence, as long as the spinons are present and the
spinon-gap is well defined throughout the Birllouin zone,
we find it plausible to consider the extension of concepts
of symmetry protected topological order along with the
long-range entanglement to the present case. Indeed, the
state under consideration can only be described fruitfully
if we take into account all the three aspects of modern
theory of phases of condensed matter– fractionalization,
broken symmetry and topological order.

In the following, we construct a fractionalized topolog-
ical insulator on the pyrochlore lattice within self con-
sistent slave-particle mean field theory for a SU(2) sym-
metric Heisenberg model. We start with the description
of the spin model on a pyrochlore lattice in Section II
and argue that this model has a chance of stabilizing
a spin liquid ground state. The particular spin liquid
that we consider has a non-trivial topology of the spinon
band structure that emerges as a consequence of many-
body correlations and is not inherited from that of the
underlying electrons. We show that the slave fermion de-
composition of feromagnetic spin-spin interactions in the
triplet sector17 naturally gives rise to an effective “spin-
orbit” (SO) coupling for the spinons (equation (2)). This
explicit construction, as discussed in Section III, of an
emergent SO coupling contrasts with the recent attempts
to obtain such topological Mott insulators7–13. These
works use the parton construction, where the electron
is fragmented into a number of partons and the topo-
logical band structure of the partons are either inherited
from the underlying electrons, or are assumed to exist for
the partons. We discuss the unusually rich low energy
spectrum of the state, its surface states and comment
on beyond mean field effects as well as possible phase
transitions out of it in Section IV. The details of the
calculations are discussed in the appendices.

II. THE SPIN MODEL

It is known that spin systems on geometrically frus-
trated lattices like the pyrochlore is a good place to look
for spin liquids. The nearest-neighbour Heisenberg an-
tiferromagnet on this lattice is highly frustrated, even
at the classical level18. For lower spin values (includ-
ing S = 1/2), where quantum fluctuations are generally
known to suppress magnetic order, a three dimensional
spin liquid ground state is expected (Ref. 20 and ref-
erences therein). Further, the pyrochlore lattice has 4-
sub-lattice structure (see figure 1), i.e., it has four sites
per unit cell. Since, for spin-1/2, there is one spinon
per site, this lattice can, in principle, support a gapped
U(1) spin liquid in the form of a “spinon band insula-
tor”. In the passing, we note that, such a gapped U(1)
spin liquid state, in two spatial dimensions, is unstable
to confinement21.

Consider the extended Heisenberg Model on the py-

FIG. 1: The pyrochlore lattice can be described as a FCC
lattice with a 4 point basis. The 4 sub-lattices are numbered
as a = 1, 2, 3, 4. We have used the notation of Ref. 19.

rochlore lattice (shown in figure 1).

H = J1
∑
〈ij〉

Si · Sj − J2
∑
〈〈ij〉〉

Si · Sj (1)

where Si are spin-1/2 operators at the site i; 〈ij〉 and
〈〈ij〉〉 indicate sum over the first and second nearest-
neighbours respectively (details of the pyrochlore lattice
is discussed in Appendix A) and J1, J2 > 0. This indi-
cates that nearest and second-neighbour interactions are
antiferromagnetic and ferromagnetic respectively. For
the classical model, in the absence of J2, the ground
state is extensively degenerate (see Ref. [18] and ref-
erences therein). On incorporating J2 it shows magnetic
ordering22. However, such a magnetic order is rather
weak when J2/J1 � 1. In such a regime, the correspond-
ing model for the S = 1/2 case may stabilize a spin liquid
ground state.

In this paper, we consider a particular class of spin liq-
uids with non-collinear bond spin-nematic order in the
bulk. Our calculations show that such spin liquids indeed
represent self-consistent saddle point solutions for the
above hamiltonian with reasonably competitive ground
state energies at the mean field level. We, therefore, ar-
gue that such spin liquids are indeed good candidates for
the ground state for the above and related models.

III. MEAN FIELD THEORY FOR THE SPINON
TOPOLOGICAL INSULATOR

In this section, we consider the possible paramagnetic
ground states of the spin model (Eq. 1) within mean field
theory.
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A. The mean field ansatz

In magnetically disordered spin liquids, we have 〈Si〉 =
0. For ferrromagnetic spin exchange, the spinon decou-
pling in the triplet channel is favoured. This is given
by17

−Si · Sj =
3

8

(
|Eij |2 + |Dij |2

)
+ const

−3

8

(
E∗ij,af

†
iασ

a
αβfjβ + h.c.

)
−3

8

(
D∗ij,afiα

[
ıσaσ2

]
αβ
fjβ + h.c.

)
(2)

where, fiα is the fermionic spinon annihilation operator
at site i and spin α and

Eij,a = 〈f†i,ασ
a
αβfjβ〉, (3)

Dij,a = 〈fiα [ıσaσy]αβ fjβ〉 (4)

(a = x, y, z and σa are the Pauli matrices) are mean fields
corresponding to the triplet particle-hole and particle-
particle channels respectively for the spinons. Thus, in
the above spin Hamiltonian (Eq. 1), the second neigh-
bours, which are ferromagnetic, must be decoupled in
this triplet channel.

This is in addition to the usual decoupling of the an-
tiferromagnetic exchanges along the singlet channel (for
nearest-neighbours)23,

Si · Sj =
3

8

(
|χij |2 + |∆ij |2

)
+ constant

−3

8

(
χ∗ijf

†
iαfjα + h.c.

)
−3

8

(
∆∗ijfiα

[
iσ2
]
αβ
fjβ + h.c.

)
(5)

where,

χij = 〈f†iαfjα〉 (6)

∆ij = 〈fiα [iσy]αβ fjβ〉. (7)

In the present case, we choose spin liquid ansätz that
only considers the particle-hole channel and all particle-
particle pairing channels are set to zero. This is equiva-
lent to setting ∆ij ,Dij = 0 identically. Presence of the
particle-particle channels would reduce the gauge group
(see below and also Ref. 2) from U(1) to Z2. With such
pairings one may be able to stabilize a gapped Z2 spin
liquid with topological spinon band structure. However,
we did not find a simple and stable Z2 spin liquid ansatz
for the present model. Therefore, for the rest of this pa-
per we shall concentrate on U(1) spin liquids.

The spinon spectrum then depends on the structure
of Eij and χij . The above ansatz is invariant under
the U(1) gauge transformation of the spinons: fiσ →
eiφifiσ. Therefore within the projective classification of
spin liquids2, this class of ansätze describe U(1) spin liq-
uids. Preservation of time reversal symmetry suggests

that there is at least one gauge in which χij is real and
Eij is imaginary for all bonds on which they are non-zero.

We choose:

χij = χ(> 0) ∀i, j ∈ nearest neighbours

= 0 otherwise. (8)

For Eij , there are several choices. We note that, second
nearest-neighbours on a pyrochlore lattice belong to two
different sub-lattices (see figure 1) which may be thought
to be connected through an intermediate atom belonging
to a third type of sub-lattice. Here we discuss two possi-
ble ansatz for Eij having the form:

Eij = iEαβ = iE n̂αγβ (9)

where α, β, γ = 1, 2, 3, 4 refer to the sub-lattices (see
figure (1)) and n̂αγβ is an unit vector for the path
connecting sub-lattices α and β through the sub-lattice
γ with α 6= β 6= γ. The direction of the unit vector is
chosen to preserve various symmetries of the lattice. We
find that there are 4 independent unit vectors n̂ and
the rest are constrained by symmetry (see Appendix B).
These two ansätze are chosen because they break the
least number of symmetries of the Hamiltonian. For the
first ansatz we take:

Ansatz-I :

n̂132 = n̂213 = −n̂123 = x̂, n̂142 = n̂214 = −n̂124 = ẑ,

n̂143 = n̂314 = −n̂134 = ẑ, n̂243 = n̂324 = −n̂234 = ẑ.
(10)

Here x̂, ẑ refers to the unit vectors along x and z axes
respectively. Though translationally invariant, this
ansatz breaks some of the point group symmetries of the
lattice. An ansatz that preserves all the symmetries is a
variant of the Kane-Mele construction24 is

Ansatz-II :

n̂123 = −n̂132 = −n̂213 = Â, n̂124 = −n̂142 = −n̂214 = B̂,

n̂134 = −n̂143 = −n̂314 = Ĉ, n̂234 = −n̂243 = −n̂342 = D̂.
(11)

where, Â = 1√
3

[1, 1,−1] , B̂ = 1√
3

[−1, 1,−1] , Ĉ =
1√
3

[−1, 1, 1] , and D̂ = 1√
3

[1, 1, 1] refer to the four C3

axes of the tetrahedra forming the pyrochlore lattice (see
Appendix B).

B. Emergent Spin-Orbit coupling and Mean field
spinon Hamiltonian

It is important to note that the above ansätze give rise
to an emergent SO couplings for the spinons even when
such interactions are absent for the underlying electrons
(Eq. 1 is spin rotation invariant). In fact, both the above
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FIG. 2: The spinon band structure is shown along the high symmetry directions (J2/J1 = 0.05) for (a) Ansatz-I and (b)
Ansatz-II. The values of the mean field parameters are given in Table I. Each band is doubly degenerate due to inversion
symmetry.

forms of triplet decoupling spontaneously break the spin
SU(2) completely (without breaking time reversal sym-
metry), which is essential to generate a strong TI in three
spatial dimensions.

More specifically, the quadratic part of the mean field
spinon Hamiltonian becomes (details given in the Ap-
pendix C)

HMF =− 3J1χ

8

∑
〈iα,jβ〉

∑
τ

[
f†i,α,τfj,β,τ + h.c.

]
(12)

− i3J2
8

∑
〈〈iα,jβ〉〉

∑
ττ ′

[(
Eαβa f†i,α,τσ

a
ττ ′fj,β,τ ′ − h.c

)]
where, as before α, β indicate the four sub-lattices, i, j
the unit cell, τ, τ ′ the spins and a = x, y, z axes.

Eq. 13 can be diagonalized in the Fourier space and
this leads to the spinon Bloch Hamiltonian. The detailed
form of the spinon Bloch Hamiltonian and the self consis-
tency of the mean field parameters are given in Appendix
C. Hence, we get the spinon band structure as a function
of E and χ which is shown in figure 2 (for self-consistent
parameters). The pyrochlore lattice is described by a
FCC lattice with a four point unit cell. So, there are
four bands each of which are doubly degenerate due to
inversion symmetry (see below). When χ 6= 0 and E = 0,
we have two flat bands lying above two dispersing bands.
The flat bands touch the dispersing bands at the cen-
tre of the Brillouin zone (BZ). With one spinon per site,
the two dispersing bands are filled and the spinon Fermi
surface reduces to a point at the BZ centre. On introduc-
ing E, an energy gap opens up at the BZ centre. Once
again the lower two bands are filled and the upper two
are empty. This gives us the “spinon band insulator”.
For J2/J1 = 0.05, the minimum of the mean field energy
and the corresponding values of the parameters as well as
the energy per site, E, are given in Table I. In the Table,
a constant −3J1/16 per site has been subtracted. The

origin of this constant can be traced to the shift in the
energy due to the spinon decoupling. Here, we make an
estimate of the constant shift by calculating the energy
of the nearest-neighbour dimerized state which is −3J1/8
per site27. Evaluation of such a constant is useful to com-
pare the energy of this spin liquid state with that of a
magnetically ordered state. Both of our ansätze appear
to have similar energies at the mean field level.

At this point we briefly note that, when J2 = 0, the
two top bands are flat and touch a dispersing band at
the Γ point. The flat band, near the Γ point, may be
looked upon as a quadratically dispersing band in the
limit of infinite band mass. Indeed, if we add a small 3rd
neighbour antiferromagnetic coupling, there is quadratic
band touching at the Γ point. A tree level scaling anal-
ysis shows that the scaling dimensions of the fermionic
spinon fields at this free fixed point is 3/2 (with dynam-
ical critical exponent, z = 2). The next nearest neigh-
bour interactions, when written in terms of spinons, is
a short ranged four-fermion interaction with a coupling
that has tree-level scaling dimension of −1. This tree-
level scaling argument shows that at the free fixed point
the short ranged four-fermion term is irrelevant in the
RG sense. This is in conformity with the irrelevance of
short range four fermion interactions at the free fixed
point with quadratic band touching points in three spa-
tial dimensions. This means that we need to tune in
finite J2 to get a phase transition to a spinon topolog-
ical insulator. Notice, however, that our self consistent
mean-field theory, which is quite similar to Hartree-Fock
decoupling, shows that the critical value of J2 beyond
which it stabilizes the spinon TI is quite small. We also
note that in spin rotation invariant Hamiltonian, the 3-
fold degeneracy at the Γ point (of two flat bands and one
quadratically dispersing band when J2 = 0) is protected
by point group symmetry of the pyrochlore lattice (trans-
form as the basis vectors of the so called T2 irreducible
representation). On decoupling the four-fermion term
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coming from the NNN in the spin triplet channel, the
spin rotation symmetry is broken and correct irreducible
representations are now obtained from the direct product
of the point group and the spinor representation of the
magnetic group. The three fold degeneracy is no longer
protected and only a two fold degeneracy remains (re-
lated to the 2-dimensional irreducible representation of
the combined symmetry group). This is seen in Ansatz-
II where the point group symmetry is intact while the
spin-rotation symmetry is broken (Note that each band
has a further 2-fold degeneracy coming from preservation
of inversion symmetry). Thus a band gap is allowed to
open up to give a spinon TI.

It is useful to compare the above mean field energy
with that of the magnetically ordered ground state that
has been proposed for this system22. The classical ground
state has incommensurate magnetic order with wave vec-
tor Q = 2π(h, h, 0), where h ≈ 0.741 for J2/J1 = 0.0528.
The actual arrangement of the spins is not known. The
classical ground state energy, within spherical approxi-
mation (that is consistent with Monte-Carlo results28),
is Emag ≈ −0.28 J1 per site for J2/J1 = 0.05. While
the above estimates coming from mean field calculations
must be taken in a qualitative sense, it shows that the
present spin liquid saddle points are energetically com-
petitive with the magnetically ordered ground state. On
further comparison with other spin liquid states proposed
on the pyrochlore lattice20, we find the present state fares
quite well within the mean field approximation. This
raises the possibility of stabilizing a spinon TI state in
the present as well as related models (e.g., including fur-
ther neighbours such as J3). However these microscopic
details can only be clarified through careful numerical
calculations in future.

TABLE I: The table for the various parameters : Var-
ious parameters at the minimum of the mean field energy, E
for J2/J1 = 0.05.

Ansatz χ E E

I 0.32 0.52 −0.33 J1
II 0.32 −0.6 −0.34 J1

C. The Z2 topological indices

The spinon band structure allows us to calculate the
Z2 topological invariants characterizing it. Such Z2 in-
variants fully characterize the topological properties of
the spinon bands in presence of time-reversal symmetry
(see Ref. 4 and references therein). The time reversal
symmetry is given by:

Θ = (I4 ⊗ iσy)K (13)

where I4 is the four dimensional identity matrix operat-
ing in the sub-lattice space and σy is the Pauli matrix

operation in the spin space. K is the complex conju-
gation operator. It is easy to show that the mean field
Hamiltonian is time reversal invariant.

In addition to this, neither of the spin liquid ansätze
break lattice parity. The pyrochlore lattice has inversion
symmetry about a site. Taking sub-lattice 1 as the origin
of the unit cell (figure 1), we see that the the momentum
space representation of the inversion operator is24:

P(q) = (p(q)⊗ I2) (14)

where,

p(q) =


1 0 0 0
0 e−iq·a1 0 0
0 0 e−iq·a2 0
0 0 0 e−iq·a3

 (15)

and p(q) operates in the sub-lattice space and I2 is the
two-dimensional identity that operates in the spin space.
a1,a2 and a3 are the vectors defining the position of the
three sub-lattices with respect to sub-lattice 1 (see Ap-
pendix A). Again it can be shown that the mean field
Hamiltonian is invariant under inversion.

We, therefore, wish to calculate the topological invari-
ants for the band structure. For 3D TIs, one strong
(ν0) and three weak (ν1ν2ν3) Z2 invariants are present.
The eight inequivalent time reversal invariant momenta
(TRIM) within the first Brillouin zone of the FCC lattice
are denoted as: Γ (one), X (three), and L (four) points.
Since the system has inversion symmetry we can use the
simplified methods of Fu et al.4, i.e., we can calculate the
Z2 invariants from the parity eigenvalues at the TRIMs
for the filled bands. We note that each band is doubly
degenerate. At each TRIM (i), a product of the parity
eigenvalues is defined as:

δi =

N∏
m=1

ξ2m(Γi) (16)

where, 2N is the total number of occupied bands and
ξ2m(Γi) denotes the parity at TRIM for one of the degen-
erate Krammer’s pairs. We find that, for J2/J1 = 0.05,
at the saddle point for both the ansätze considered in
this paper, δi = −1 at all TRIMs except at Γ where it is
+1.

Once δis are obtained, the strong topological invariant
is given by4:

(−1)ν0 =

8∏
i=1

δi (17)

The three weak invariants are given by:

(−1)νk =
∏

nk=1;nj 6=k=0,1

δi=(n1n2n3) (18)

Here we have:

ν0 = 1; ν1 = ν2 = ν3 = 0 (19)
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This gives a strong topological insulator of the class

(ν0; ν1ν2ν3) = (1; 000). (20)

An immediate fallout, as noted before, is the presence
of robust gapless spinons on all the surfaces. Consider
a boundary between the above spin liquid and an “ordi-
nary” U(1) spin liquid with gapped spinons. Such a sur-
face must have robust gapless spinon surface states. In
this sense, this “symmetry protected topological order”
can be regarded as a tool to discover a finer classification
(or richer structures) scheme for various kinds of spin liq-
uids. Since the spinons are charge-neutral objects under
the external electromagnetic field, they do not carry a
charge current. However, such gapless states can carry
heat current and hence contribute to the thermal conduc-
tivity. Such robust “metallic” surface thermal conductiv-
ity is one of the signatures of this state. We wish to point
out that what happens at the boundary of the above spin
liquid with vacuum is a subtle question. Recent calcu-
lations on simpler two dimensional models29 show that
it may depend on the nature of the boundary and hence
involve classification of boundary conditions. Extension
of these ideas to the present case will require much more
sophisticated calculations which is beyond the scope of
this paper.

D. Bond Nematic Order

The presence of non-zero Eij (and/or Dij) leads to
bond spin-nematic order characterizing the broken spin
rotation symmetry. In particular, Shindou et al.17

showed that, the bond spin-nematic operator,

Qabij =
1

2

(
Sai S

b
j + SbjS

a
i

)
− δab

3
Si · Sj (21)

gains a non-zero expectation value17,i.e,

〈Qabij 〉 = −1

2

[
Eij,aE

∗
ij,b −

δab
3
|Eij |2

]
6= 0, (22)

where, we have put Dij = 0 and ij are second neighbours.
In addition, on incorporating the single spinon per site
constraint exactly, we get17:

Jij = 〈Si × Sj〉 =
i

2

[
E∗ijχikχkj −Eijχjkχki

]
6= 0, (23)

where, ij are second neighbours and k is the intermediate
site connecting i and j; we have again used Dij = 0.

Both Qabij and Jij are even under time reversal and are
usually referred as the n-nematic and the p-nematic order
parameters respectively17,25. However, the present phase
is different from the conventional bond spin-nematic state
since it supports deconfined spinons14–16 (In principle,
there can be a different spin liquid phase with spin ne-

matic order where Eij = 0, but, Qαβij 6= 0 and/or Jij 6= 0.
A discussion of such phases are beyond the scope of the

present mean field scheme). The order parameter for this
spin-nematic, described by the non-collinear vector field
Eij and uniform singlet field χ, lives in an SO(3) man-
ifold. Under π-rotation around the diagonal axis of the
hexagonal loops generated by neighbouring tetrahedra in
a pyrochlore lattice (figure 3),

Eij → −Eij (24)

for both the ansätze. While Q
αβ
ij is even, Jij is odd under

this transformation. The two states described by sets of
{Eij} and {−Eij} are energetically degenerate. Such a
degeneracy will be lifted by small Dzyaloskinshi-Moriya
interactions. Further, since Jij is the local spin current,
it couples to the local electric field, E (this is the phys-
ical electric field and not the emergent electric field dis-
cussed elsewhere in the paper) through Aharonov-Casher
effect26:

εabcJai,i+bE
c. (25)

Then, a nonzero value of the order parameter, Ja, will
generate a local electric field and causes a small, but, fi-
nite lattice distortion that can be, in principle, detected.
An important question is about the textures of this order
parameter and the quantum numbers they carry. Specifi-
cally, do they carry electric charge of the emergent gauge
field? or, what are their statistics? Details of such issues
form interesting future directions.

IV. ELEMENTARY EXCITATIONS, BEYOND
MEAN FIELD THEORY AND OUTLOOK

In this last section we discuss the elementary excita-
tions in the spinon TI state and possible effects beyond
mean field theory as well as phase transitions out of this
state.

The spectrum of low energy excitations in the spinon
TI state is quite rich. The Goldstone modes arising from
the spin-nematic order, discussed above, are related to
the transverse amplitude fluctuations of Eij , whereas
the photon is related to the phase fluctuation of Eij
and χij about their saddle points. There is an indirect
coupling between the two that can be obtained by inte-
grating out the gapped spinons in the bulk. However,
such couplinground state are inversely proportional to
the spinon gap. Also, since the Eij does not carry any
gauge charge, such couplinground state, at most, have
a dipolar form. The above considerations suggest that
such couplinground state are unimportant in the bulk.
At the surface, where the spinons become gapless, the
effect of the gauge photon and the Goldstone mode is
much more subtle and requires careful consideration. All
gapless bosonic modes are expected to contribute a bulk
specific heat that scales as ∼ T 3 at low temperatures.
It can be shown that the Goldstone boson couples to
the “spinon-spin current”. Recent calculations10 indi-
cate that since the bosonic fields live in one dimension
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higher than the spinon fields, they only have a marginal
effect on the spinon self energy.

In addition to the above excitations, the emergent com-
pact U(1) gauge field also allows a magnetic monopole
excitation. Such magnetic monopoles are gapped in the
spin liquid and hence unimportant at low energy. On the
other hand, when the gapped spinons in the bulk are inte-
grated out, it generates a θ-term, (θ/2π) e·b, where e and
b are the emergent “electric” and “magnetic” fields and
θ = π for topological insulators30–34. It is known that in
the presence of such a θ-term, the magnetic monopoles
acquire “electric” charges and become dyons35,36. It is
interesting to think about phase transitions out of the
present nematic spin liquids by condensing these dyons.
Such a transition serves as a potential example of oblique
confinement37. Since the dyons carry both electric and
magnetic charges, their condensation may lead to the
Meissner effect for both the e and b fields. The e and
b fields are odd under parity and time reversal, respec-
tively. In the case of bosonic spinons coupled to compact
U(1) gauge field (and the θ-term absent), the theory of
the “electric” confinement in the presence of background
“electric” charges (spinons) is well understood38–40. In
that case, the “electric” confinement due to monopole
condensation leads to the breaking of lattice parity and
the resultant state has valence bond solid ordering. In
the light of these known results, it is tempting to spec-
ulate the fate of the state obtained by condensing the
dyons in the present case. It is easy to show that in the
presence of the θ-term, a finite expectation value of e
implies the same for b. Both 〈e〉, 〈b〉 6= 0 implies a state
that breaks both time reversal and parity. A possible
candidate is one where both valence bond ordering and
magnetic orders are present. More exotic possibilities
include states with a non-zero spin chirality coexisting
with valence bond order. A transition to such a state
from the nematic spin liquid, considered in this paper, if
continuous, is forbidden within the conventional Landau-
Ginzburg-Wilson paradigm, and would represent a new
universality class of quantum phase transitions.
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Appendix A: The Pyrochlore Lattice

To describe the pyrochlore lattice, we take the conven-
tional cubic unit cell and measure distances in units of
its sides19. The pyrochlore lattice is then described by a
FCC lattice with 4-point basis (one tetrahedron at each
site of the FCC lattice, see figure 1). The basis vectors
are:

a1 =
1

2
(ẑ + ŷ) , a2 =

1

2
(ẑ + x̂) , a3 =

1

2
(x̂ + ŷ) .

(A1)

The reciprocal lattice vectors are then given by:

b1 = 2π (ŷ + ẑ− x̂) , b2 = 2π (ẑ + x̂− ŷ) ,

b3 = 2π (x̂ + ŷ − ẑ) . (A2)

The 4-point basis may be taken as:

Cµ =
{

0,
a1
2
,
a2
2
,
a3
2

}
(A3)

where µ = 1, 2, 3, 4 denotes the 4 sub-lattices. The 6
bond vectors are now defined as.

dµν = Cµ −Cν (A4)

Appendix B: Constraints on the spin liquid ansätze

As pointed out in the main text, the second neighbour
connections may be usefully thought as being mediated
through an intermediate atom. On a pyrochlore lattice
all these three belong to different sub-lattices, e.g., sites
belonging to sub-lattices 1 and 2 are connected through
atoms belonging to sub-lattices 3 and 4 and so forth. We
denote such paths as:

α→ γ → β). (B1)

Now, in a pyrochlore lattice, the tetrahedra form hexago-
nal loops. Each such hexagon has sites belonging to any
three kinds of sub-lattices. Thus there are four kinds
of hexagon containing the following participating sub-
lattices:

(1, 2, 3); (1, 2, 4); (1, 3, 4); (2, 3, 4). (B2)

There is a π-rotational symmetry about an axis joining
two similar (same sub-lattice) atoms belonging to each
hexagon. An example is shown in figure 3. This means
that there are only four different allowed Eij vectors.
These may be denoted by

A,B,C,D. (B3)

Once we choose four vectors, the others are completely
specified as shown below. If we choose (say):

(1→ 2→ 3) : A

(1→ 2→ 4) : B

(1→ 3→ 4) : C

(2→ 3→ 4) : D, (B4)
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then, we must have (due to the π-rotation symmetry)

(1→ 3→ 2) : −A; (2→ 1→ 3) : −A,
(1→ 4→ 2) : −B; (2→ 1→ 4) : −B,
(1→ 4→ 3) : −C (3→ 1→ 4) : −C,
(2→ 4→ 3) : −D; (3→ 2→ 4) : −D. (B5)

The other paths are set by Hermitian conjugation. We
can show that this choice is translationally invariant un-
der the translation of the FCC lattice.

We now find further constraints on these four vectors,
as set by the different transformations of the point group
Td. To this end we list the different elements of the point
group. They are:

Td : E(1), {c3, c23}(8), {s4, s34}(6), s2(3), σd(6) (B6)

These are the 24 elements which can be divided in 5
classes. As a consequence there are five irreducible rep-
resentations: 2 one-dimensional, 1 two-dimensional and
2 three-dimensional. It is enough to see the transforma-
tion of the four above vectors under the four c3 rotations.
These represent three fold rotations about the vertices of
the tetrahedron. The transformations are given by:

1. Under c3 through sub-lattice 1.

1→ 1, 2→ 3, 3→ 4, 4→ 2

⇒ A→ C, B→ −A, C→ −B, D→ D (B7)

2. Under c3 through axis 2 we have:

2→ 2, 1→ 4, 3→ 1, 4→ 3

⇒ A→ −B, B→ D, D→ −A, C→ C (B8)

3. Under c3 through axis 3 we have:

3→ 3, 1→ 2, 2→ 4, 4→ 1

⇒ A→ −D, C→ A, D→ −C, B→ B (B9)

4. Under c3 through axis 4 we have:

4→ 4, 1→ 3, 2→ 1, 3→ 2

⇒ B→ −C, C→ −D, D→ B, A→ A (B10)

Similarly, we can consider the other transformations.
However it is easy to see from the above transformations
that a characteristic feature of the four vectors is one
of them remain invariant under the three-fold rotation.
This suggests that we can choose (up to a sign) the four
vectors as the axis of rotation for the four three-fold rota-
tion axes. These then satisfy all the point group symme-
tries as well as the translation symmetry. This is exactly
the form for ansatz II. On the other hand, it is now easy
to see why ansatz I violates the point group symmetries.

FIG. 3: A π-rotation axis about the hexagon (formed by
the neighbouring tetrahedra in green and red) is shown by
a dashed line.

Appendix C: The mean field Spin liquid state

In this subsection, for our convenience, we split the
Hamiltonian in Eq. 1 as

H = H1 +H2 (C1)

where, H1 and H2 refers to the nearest and second neigh-
bour parts respectively. We consider a U(1) spin liquid
by setting the pairing terms (both singlet and triplet in
Eqs. 2, 5) to zero. We shall also drop the constant terms.
However we note that such constants will be important
when we want to compare the energies of the spin liquid
and the magnetically ordered state.

a. Nearest Neighbour AFM exchange

For the AFM decoupling we decouple in the singlet
channel and have:

H1 = −3J1
8

∑
〈ij〉

[
|χij |2 −

(
χ∗ijf

†
iαfjα + h.c.

)]
. (C2)

In our spin liquid ansatz, we consider uniform χij = χ
and noting that each spin has 6 neighbours, we get (N is
the total number of spins):

H1

J1N
=

9χ2

8
− 3χ

8N

∑
〈ij〉

[
f†iσfjσ + h.c.

]
. (C3)
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Now we introduce the 4 sub-lattice FCC lattice and use
the fourier transform:

fi,µ,σ =
1√

NFCC

∑
q∈BZ

fq,µ,σr
iq·(ri+Cµ) (NFCC = N/4)

(C4)

where q ∈ BZ denotes the summation over the Brillouin
zone of the FCC lattice. This gives:

H1

J1N
=

9χ2

8
− 3χ

32NFCC

∑
q∈BZ

ΨqH
(1)(q)Ψq (C5)

where Ψq = [fq1↑, fq2↑, fq3↑, fq4↑, fq1↓, fq2↓, fq3↓, fq4↓]
T

and H
(1)
q equals to

H(1)(q) =

[
H(1)(q) 0

0 H(1)(q)

]
(C6)

where H(1)(q) is given by

2


0 cos

[
qy+qz

4

]
cos
[
qx+qz

4

]
cos
[
qx+qy

4

]
cos
[
qy+qz

4

]
0 cos

[
qx−qy

4

]
cos
[
qx−qz

4

]
cos
[
qx+qz

4

]
cos
[
qx−qz

4

]
0 cos

[
qy−qz

4

]
cos
[
qx+qy

4

]
cos
[
qx−qz

4

]
cos
[
qy−qz

4

]
0


(C7)

b. Second Neighbour FM exchange

By using the already chosen ansatz Eij(noting that
there are 12 second neighbours), we get,

H2

J1N
=

(
J2
J1

)9E2

4
− 3E

8

1

N

∑
q∈BZ

Ψ†qH
(2)(q)Ψq


=

(
J2
J1

)9E2

4
− 3E

32

1

NFCC

∑
q∈BZ

Ψ†qH
(2)(q)Ψq


(C8)

where,

H(2)(q) =

[
A(q) B(q)
B†(q) −A(q)

]
(C9)

A(q) and B(q) are 4 × 4 matrices whose form differ for
ansätze I and II.
1. The band structure and self-consistency of the

mean field parameters

Within our ansatz, the mean field hamiltonian is

H

J1N
=

[
9χ2

8
+

(
J2
J1

)
9E2

4

]
− 1

4NFCC

∑
q∈BZ

Ψ†q

(
3χ

8
H(1)(q) +

[
J2
J1

)
3E

8
H(2)(q)

]
Ψq

=

[
9χ2

8
+

(
J2
J1

)
9E2

4

]
+

1

4NFCC

 ∑
q∈BZ

Ψ†qH(q)Ψq


(C10)

where, in the last expression we have used

H(q) = −
[

3χ

8
H(1)(q) +

(
J2
J1

)
3E

8
H(2)(q)

]
. (C11)

These are 8 × 8 matrices. Their eigenvalues form four
doubly degenerate bands. With one spinon per site, the
two lowest bands are filled. Let the dispersion of the two
low lying bands be λ1(q) and λ2(q). Therefore the mean
field ground state energy of the spin liquid is given by:

E

J1N
=

[
9χ2

8
+

(
J2
J1

)
9E2

4

]
+

1

4NFCC

∑
q∈BZ

(2λ1(q) + 2λ2(q)) (C12)

The factor 2 multiplying the bands come from the fact
that each band is doubly degenerate. The minimum of
the mean field energy and the corresponding values of χ
and E are given in Table I.
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