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The present paper theoretically investigates magnetoresistance curves in quasiperiodic magnetic
multilayers for two different growth directions, namely [110] and [100]. We considered identical
ferromagnetic layers separated by non-magnetic layers with two different thicknesses chosen based
on the Fibonacci sequence. Using parameters for Fe/Cr multilayers, four terms were included in our
description of the magnetic energy: Zeeman, cubic anisotropy, bilinear and biquadratic couplings.
The minimum energy was determined by the gradient method and the equilibrium magnetization
directions found were used to calculate magnetoresistance curves. By choosing spacers with a
thickness such that biquadratic coupling is stronger than bilinear coupling, unusual behaviors for
the magnetoresistance were observed: (i) for the [110] case there is a different behavior for structures
based on even and odd Fibonacci generations; and more interesting, (ii) for the [100] case we found
magnetic field ranges for which the magnetoresistance increases with magnetic field.
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I. INTRODUCTION

The study of magnetic multilayers has been the fo-
cus of much attention since the discovery of antiferro-
magnetic bilinear coupling between magnetic Fe layers
separated by nonmagnetic Cr layers1. The subsequent
discovery of giant magnetoresistance (GMR)2, which al-
lowed the electrical resistance in these systems to be
controlled through external magnetic fields, led to sev-
eral applications, particularly in the field of information
storage. In 1990 Parkin et al.

3 showed that, depending
on spacer thickness, bilinear coupling between magnetic
films oscillated between being ferromagnetic and antifer-
romagnetic. One year later, Rührig et al.

4 discovered a
novel form of coupling (later called biquadratic coupling)
in which, for certain spacer thickness, non-collinear cou-
pling existed between the magnetic films, resulting in a
90◦ angle between magnetization of adjacent films.

Around the same time, other important breakthroughs
were being made in what was then an unrelated field.
The discovery of quasicrystals by Shechtman et al.

5 in
1984 confirmed the existence of an intermediate phase
between ordered crystals and disordered solids. A
year later, Merlin et al.

6 reported performing the first
quasiperiodic superlattice following the Fibonacci se-
quence. More recently, first quasiperiodic Fe/Cr mag-
netic multilayers with biquadratic coupling were grown
experimentally7, illustrating the development of crystal
growth techniques, which allow substantial thickness con-
trol for each layer.

The magnetic properties of multilayers can depend sig-

nificantly on the stacking pattern of their layers, which
can now be tailored in unusual stacking arrangements.
For instance, a quasiperiodic stacking pattern in Fe/Cr
magnetic multilayers induces new magnetic phases which
would not be observed in a periodic arrangement. The
consequences of these new phases are observed in the
static8 and dynamic properties9 of these magnetic struc-
tures. As previously mentioned, the spacer thickness
greatly influences the property of these multilayers; a rel-
evant question that naturally arises is: what are the con-
sequences of a quasiperiodic stacking pattern of the non-
magnetic spacers? This paper investigates a new stacking
pattern with varying spacer thickness. In our model the
spacer can have one out of three different thicknesses,
which results in variations of the relative strength of bi-
linear and biquadratic couplings. The non-magnetic lay-
ers are arranged in a Fibonacci quasiperiodic sequence,
and interesting properties emerge for specific combina-
tions of spacers. Furthermore, results were obtained for
two different growth directions - [100] and [110].

This paper is organized as follows. In Sec. II we dis-
cuss the theoretical model, with emphasis on the de-
scription of the quasiperiodic sequences and the crystal-
lographic orientations considered here. The numerical
method, used to obtain the equilibrium configurations, is
described in Sec. II, as well. The numerical results are
described in Sec. III and our findings are summarized in
Sec. IV.
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II. THEORY

A quasiperiodic multilayer can be built by juxtapos-
ing two building blocks (A,B) following a quasiperiodic
sequence. The Fibonacci sequence is widely used, with
building blocks transforming according to the following
rule: A → AB, B → A. The first Fibonacci sequence is
S1 = A, the second is S2 = AB, the third is S3 = ABA
and so on. A more detailed description of quasiperiodic
sequences can be found in the Ref. [10].
In the present study, non-magnetic Cr layers, be-

tween ferromagnetic Fe layers, were chosen with thick-
nesses following the Fibonacci sequence. A is a
Cr layer with thickness t1 and B is a Cr layer
with thickness t2. For instance, the multilayer
Fe/Cr(t1)/Fe/Cr(t2)/Fe/Cr(t1)/Fe, corresponds to
Fe/A/Fe/B/Fe/A/Fe. Illustrations of multilayers with
non-magnetic layers following sequences S1, S2, S3 and
S4, are shown in Fig. 1.
In order to describe the magnetic behavior of these

multilayer systems, we considered four terms in the mag-
netic energy: the Zeeman term (owing to interaction be-
tween the magnetization of the ferromagnetic films and
the applied external magnetic field), the cubic anisotropy
term (due to interaction between the crystalline struc-
ture and electronic spins) and the two aforementioned
terms that couple the magnetization of Fe layers sepa-
rated by Cr layers, namely bilinear and biquadratic cou-
plings. Considering these terms, the total magnetic en-
ergy can be written as11,

ET

dMS

=
n
∑

i=1

[

−H0 cos(θi − θH) +
Hac

8
sin2(2θi)

]

+
n−1
∑

i=1

[

−Hbli cos(θi − θi+1) +Hbqi cos
2(θi − θi+1)

]

(1)

for the [100] direction, and

ET

dMS

=
n
∑

i=1

[

−H0 cos(θi − θH) +
Hac

8

(

cos4 θi + sin2 2θi
)

]

+
n−1
∑

i=1

[

−Hbli cos(θi − θi+1) +Hbqi cos
2(θi − θi+1)

]

(2)

for the [110] direction. A comparison of the two equa-
tions shows that the cubic anisotropy terms depends on
the growth direction. A thorough description of how
this term is calculated for both growth directions can
be found in Ref. [11]. In these equations d represents
the thickness of the Fe layers (which in our model is con-
stant), MS is the saturation magnetization, n is the total
number of ferromagnetic films, H0 is the external mag-
netic field that we consider to be maintained within the
plane of the films (in our case the x-z plane, see Fig. 1),

θH is the angle between the external magnetic field and
the z axis, Hbl is the bilinear coupling term that gives
rise to parallel (anti-parallel) magnetization alignment of
adjacent Fe films if positive (negative), and Hbq is the
biquadratic coupling term aligning the magnetization of
adjacent Fe films in a perpendicular manner. Hca mea-
sures the strength of the cubic anisotropy field and, for
the [100] case, tends to align magnetization of the films
parallel to the crystalline axis (either x or z), whereas
in the [110] case the magnetization tends to be aligned
parallel to the x direction (although there is a local min-
imum along the z direction, and a maximum at θ ≈ 35◦).
In accordance with the values given by Refs. [12,13], we
used the numerical value of Hca = 0.5 kOe and selected
θH = 0 for both cases (this means the field is applied in
the easy axis for the [100] case and the intermediate axis
in the [110] case).
Another important aspect of these equations is that

the bilinear and biquadratic fields change from one pair
of layers to the next. This is due to the varying spacer
thicknesses since, as previously mentioned, the values of
these coupling terms strongly depend on this thickness.
We performed calculations for three different values of
spacer thickness:

1. t = 1.0 nm for which Hbq = 0.1|Hbl| with Hbl =
−1.0 kOe;

2. t = 1.5 nm for which Hbq = 0.3|Hbl| with Hbl =
−0.15 kOe;

3. t = 3.0 nm for which Hbq = |Hbl| with Hbl =
−0.035 kOe.

These values are the same as those found in Refs. [12,13].
In general, if we choose the second set for Cr layers that
correspond to A and the third set for Cr layers that cor-
respond to B, we obtain different results from those we
would have obtained if we had chosen the third set for A
and the second set for B. This means there is a total of
six sets of parameters. We found more interesting results
for the case where the biquadratic is relatively strong.
In order to calculate magnetoresistance for these mul-

tilayer systems, we need the set {θi} of equilibrium angles
that minimize equation 1 (or 2). As the number of fer-
romagnetic films rises, the computational cost of numer-
ically minimizing these equations increases, requiring an
efficient method of calculating this minimum. As such,
we applied the gradient method, which takes into account
the gradient of ET in relation to the set {θi},

~∇ET =
n
∑

i=1

∂ET

∂θi
θ̂i. (3)

A brief description of this algorithm is:

(i) An initial set of angles was randomly chosen, {θi}0.
These were used to calculate an initial energy E0;
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(ii) The gradient of the magnetic energy was calcu-

lated, ~∇ET , and the set {θi}0 was employed to find

its numerical value ~∇ET ({θi}0);

(iii) We applied the calculated energy and gradient to
find the next set of angles {θi}1, using {θi}1 =

{θi}0 − α~∇iET ({θi}0) for each ferromagnetic film;

(iv) The energy E1 was then calculated based on this
new set of angles. If E1 < E0 this energy and the
new set of angles were stored, otherwise we halved
the value of α and repeated step (iii);

(v) This process was repeated until α was smaller than
a given tolerance.

A complete discussion of this method can be found in
Ref. [10].
Theoretically, it is well known that spin-dependent

scattering is responsible for the magnetoresistance (MR)
effect in these multilayers15. It was also shown that MR

varies linearly with cos(∆θ) when electrons form a free-
electron gas, i.e., there are no barriers between adjacent
films16. Here, cos(∆θ) is the angular difference between
adjacent film magnetizations. In metallic systems such
as Fe/Cr this angular dependence is valid and once the
set {θi} of equilibrium angles is determined, we obtain
normalized values for magnetoresistance8, i.e.,

MR(H0) = R(H0)/R(0) =

n−1
∑

i=1

[1− cos(θi − θi+1)]

2(n− 1)
, (4)

where R(0) is the electric resistance at zero field.

III. NUMERICAL RESULTS

Although calculations were performed with several dif-
ferent sets of parameters, the remainder of this paper fo-
cuses on only one of these, since we determined this is
sufficient to illustrate our system’s most relevant proper-
ties. We selected the second set of parameters for Cr films
associated with A letters of the quasiperiodic sequence
and the third set of parameters for Cr films associated
with B letters of the quasiperiodic sequence. From now
on, we label them as Cr(A) and Cr(B), respectively.

A. [110] cubic anisotropy

Let us discuss our numerical results for the magne-
toresistance in the case of the [110] growth direction.
These results are illustrated in Figs. 2 and 3. In Fig.
2 we present the magnetoresistance considering the Cr
layers following the fourth and sixth Fibonacci genera-
tions, which means 6 and 14 Fe films, respectively. As

we can see, all transitions are first-order type, char-
acterized by discontinuous jumps in the magnetoresis-
tance. For the fourth generation of the Fibonacci se-
quence (S4 = ABAAB), which is illustrated in Fig. 2(a),
in the small field region, the magnetoresistance value
is 1 because all magnetizations are antiparallel to each
other at zero field. As the external magnetic field in-
creases (∼ 80 Oe), a transition takes place to a magnetic
phase in which the magnetization of the bottom layer is
aligned with the field. We can observe that, increasing
the magnetic field, more transitions take place and the
saturated phase emerges when H0 ≥ 570 Oe. A similar
behavior is observed for the sixth generation of the Fi-
bonacci sequence (S6 = ABAABABAABAAB) which is
shown in Fig. 2(b). As in the fourth generation case, in
the low field region the magnetizations are in the anti-
ferromagnetic configuration. As the field increases, ten
different transitions are observed, from the antiferromag-
netic configuration (H0 < 90 Oe) to the saturated regime
(H0 ≥ 570 Oe). It is easy to note the self-similar pattern,
which is the basic signature of a quasiperiodic system,
present in Fig. 2, i.e., the magnetoresistance profile of the
fourth generation is reproduced in the magnetoresistance
profile of the sixth generation. Let us now take a look
at the results for the magnetoresistance considering the
Cr layers following the fifth (S5 = ABAABABA) and
seventh (S7 = ABAABABAABAABABAABABA) Fi-
bonacci generations, which means 9 and 22 Fe films, re-
spectively. These results are illustrated in Fig. 3. Once
again, there is a clear self-similar pattern which is shown
Fig. 3, i.e., the magnetoresistance profile of the fifth gen-
eration is reproduced in the magnetoresistance profile of
the seventh generation. One can observe that in the low
field region the central magnetoresistance step is much
larger than the case of even generations. This is because
the even generations of the Fibonacci sequence are ter-
minated by B. This letter is associated with the third
set of parameters (lower values of Hbl and Hbq). As a
consequence, the Fe film at the bottom of the multi-
layer is weakly coupled to its only adjacent Fe film, and
a lower magnetic field is enough to induce a transition.
Therefore, if we compare Figs. 2 and 3, we can see that
structures built using even and odd Fibonacci genera-
tions present different profiles for the magnetoresistance.
Moreover, we can also remark that there are two self-
similar patterns: one for the even generations and an-
other for the odd generations. As explained above, this
is also a consequence of the subtle difference between even
and odd Fibonacci generations. Such behavior had been
observed previously in the specific heat of quasiperiodic
magnetic superlattices17.

B. [100] cubic anisotropy

Fig. 4 depicts the (a) fourth and (b) fifth Fibonacci
generations obtained for growth direction [100]. It il-
lustrates a number of interesting properties. As in the
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[110] case, there are various first-order phase transitions,
which are proportional to the number of ferromagnetic
layers. Much more interesting, however, is the behav-
ior of the magnetoresistance in the low magnetic field
region. Fig. 4 shows, for both fourth and fifth genera-
tions, a region where one can see a positive change of
the magnetoresistance, i.e., a region where an increase in
the magnetic field leads to a rise in magnetoresistance,
that is, ∆MR/∆H > 0. In order to understand these
positive changes in magnetoresistance, it is necessary to
analyze the magnetization behavior of the various films.
Fig. 5 shows a diagram of the fourth Fibonacci gener-
ation, illustrating the magnetization direction of each
ferromagnetic layer. The numbered arrows indicate the
magnetization direction of different layers. For exam-
ple, number 1 represents the first layer, on the top, and
number 6 represents the last layer, on the bottom, of
the multilayer. Once the cubic anisotropy is dominant,
all magnetizations remain close to a crystalline axis, as
observed in the diagram. For low magnetic field, the Zee-
man term is not important and it can be ignored. As a
consequence the film magnetizations tend to form a con-
figuration that minimizes the bilinear and biquadratic
energies. For Cr(A), the sum of the two terms is mini-
mized when θi−θi+1 = 180◦, whereas for Cr(B), the sum
of the two terms is minimized when θi − θi+1 = 90◦. In
Fig. 5 one can observe that in the low field region the film
magnetizations are not in the anti-parallel configuration
because of two Cr(B) spacers in the multilayer. As the
magnetic field increases, the Zeeman energy plays a more
important role. A transition takes place for H ∼ 46 Oe.
For this configuration, all magnetizations, except for the
bottom film magnetization, are in the anti-parallel config-
uration. Thus, the magnetoresistance increases, resulting
in a transition with ∆MR/∆H > 0. When the magnetic
field reaches 90 Oe, a second transition takes place. In
this configuration only the fourth Fe film changes its mag-
netization anti-parallel to the magnetic field. Therefore,
the magnetoresistance drops to ∼ 0.64. With further
increase of the magnetic field, it becomes energetically
too costly for the film magnetizations to be opposite to
the external field. This implies that the next transition,
which takes place for H ∼ 130 Oe, leads to a configura-
tion for which there is no film magnetization anti-parallel
to the external magnetic field. However, most of magne-
tizations are orthogonal to each other. As a consequence,
according to Eq. 4, the magnetoresistance of this config-
uration is higher than the previous one. Once again, we
observe a transition with ∆MR/∆H > 0. As the mag-
netic field increases, the film magnetizations gradually
become aligned with the field, and the magnetoresistance
monotonically decreases with the magnetic field. Satura-
tion is reached for HS ∼ 450 Oe. An analogous analysis
applies to the fifth generation of the Fibonacci sequence
depicted in Fig. 4b.

IV. CONCLUSION

In summary, we studied quasiperiodic magnetic mul-
tilayers, composed by ferromagnetic Fe layers separated

by non-magnetic Cr layers. The non-magnetic Cr layers
were arranged according to the Fibonacci quasiperiodic
sequence, such that the letters A and B in the sequence
correspond to Cr layers with thicknesses t1 and t2, re-
spectively. The Fe layers are between Cr layers as well as
on the top and bottom of the multilayer structure. The
calculation is based on a phenomenological model which
includes the following contributions to the magnetic en-
ergy: Zeeman, cubic anisotropy, bilinear and biquadratic
exchanges. The magnetic energy was minimized using
the gradient method and the resulting equilibrium an-
gles were used to calculate magnetoresistance curves for
the system. We selected a particular set of parameters
such that the thickness of Cr(A) layer corresponds to
Hbq = 0.3|Hbl| and the thickness of Cr(B) layer cor-
responds to Hbq = |Hbl|. These two sets of exchange
couplings are responsible for the exchange energies be-
tween two adjacent Fe films. We numerically calculated
the magnetoresistance curves assuming two possible crys-
tallographic orientations namely, [110] and [100]. Our
results show that quasiperiodic magnetic multilayers ex-
hibit a rich variety of configurations induced by the ex-
ternal magnetic field. In particular, two points may be
emphasized: (i) the well-defined even and odd parity ob-
served in the behavior of the magnetoresistance curves
and (ii) the positive change of the magnetoresistance with
∆MR/∆H > 0.

As illustrated in Figs. 2 and 3, magnetoresistance
curves for odd and even Fibonacci generations show dif-
ferent profiles. This is a consequence of the quasiperi-
odic sequence itself, since even generations of the se-
quence terminate with B, while odd generations start
and end with A. This subtle difference is responsible
for the well-defined even and odd parity related to the
generation number of the Fibonacci structure. A simi-
lar parity had been observed previously in the specific
heat of quasiperiodic magnetic super-lattices17. On the
other hand, a much more interesting and novel behav-
ior is the positive change of magnetoresistance charac-
terized by ∆MR/∆H > 0, illustrated in Figs. 4 and 5.
Our numerical results showed that in the low field region,
the transitions, induced by the increase of the magnetic
field, may lead to a magnetic configuration with a higher
magnetoresistance. This is a direct consequence of the
quasiperiodic distribution of the Cr layers in the multi-
layer structure.
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FIG. 1: Schematic multilayers constructed following the Fi-
bonacci sequence. (a) and (b) correspond to S1, one repre-
senting Cr thickness equal to t1 = 3.0 nm and the other for
Cr thickness equal to t2 = 1.5 nm. (c) S2 and (d) S3 depict
the magnetic counterpart of the second and third Fibonacci
sequence, respectively.
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FIG. 2: Normalized magnetoresistance curves for growth di-
rection [110] for the (a) fourth and (b) sixth Fibonacci gen-
erations.
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FIG. 3: Normalized magnetoresistance curves for growth di-
rection [110] for the (a) fifth and (b) seventh Fibonacci gen-
erations.
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FIG. 4: Normalized magnetoresistance curves for the (a)
fourth and (b) fifth Fibonacci generations obtained for the
growth direction [100]. Positive magnetoresistance changes
are evident.
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FIG. 5: Diagram of the fourth Fibonacci generation (growth
direction [100]). The magnetization of each ferromagnetic
layer is represented schematically by an arrow.


