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By explicitly taking into account the effects of vibration-induced dipole-dipole 

interactions between periodic supercells, we derive an efficient formulation to calculate the 

phonon frequencies of an ionic crystal. We demonstrate that the vibration-induced dipole-dipole 

interactions lead to a constant contribution to the interatomic force constant in real space.  It 

recovers the result by Cochran and Cowley at the long wavelength limit. Using MgO as the 

prototype, we demonstrate that a 16-atom 2×2×2 supercell of the primitive unit cell is sufficient 

to obtain the phonon dispersions when the dipole-dipole interactions are considered. We find that 

not properly taking into account the dipole-dipole interaction leads to oscillations along the 

(0,0,q) direction for the longitudinal optical phonon dispersion in a 128-atom elongated 1×1×16 

supercell of the cubic structure . 
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I. INTRODUCTION 

The phonon approach 1-2 is currently the most efficient method for predicting 

thermodynamic properties of a solid at finite temperatures.  It has been implemented under the 

framework of first-principles theories: the linear-response3-4  and supercell methods. 5-6 In the 

literature, the supercell method is also referred to as the direct approach, or the small 

displacement method, or the frozen phonon approach. In the linear-response method, the 

dynamical matrix is calculated in reciprocal space assuming that the electronic wave functions 

respond linearly to the change in atomic positions. In comparison, the supercell method 

calculates the interatomic force constants (IFC) in the real space using the Hellmann–Feynman 

theorem 7 for finding the force acting on an atom after perturbation from its equilibrium position.  

The present work focuses on a long-standing problem within the supercell method, i.e. 

how to account for the effects of vibration-induced dipole-dipole interactions on the phonon 

frequencies of an ionic crystal or a polar material. For an ionic crystal, the longitudinal optical 

vibrations can induce the dynamical electric dipoles along the wave vector (q) direction. These 

dipoles, in turn, can act on the longitudinal optical vibrations, resulting in frequency splitting 

between the longitudinal optical (LO) and the transverse optical (TO) phonons. 3  Efforts to 

formulate or account for this effect dated back to the 1930s. Lyddane et al. 8 first accurately 

formulated the polar vibrations of cubic alkali halides at the long wavelength limit. Cochran and 

Cowley 9 demonstrated a systematic formulation  suitable for a crystal with general symmetry. 

The computational formulations presented by Gonze and Lee 4  are suitable for an arbitrary q 

point in the Brillouin zone by explicitly considering the dipole-dipole interactions although they 

are presently only implemented within the framework of the linear-response method. Other 

important works 10-13 involve calculations either using an elongated supercell specific for a 
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particular material or of the phonon frequencies at specific rather than arbitrary q points in the 

Brillouin zone. To put it simply, calculating the phonon frequency of an ionic crystal at an 

arbitrary q point in the Brillouin zone using a general supercell is still a challenge in the 

supercell method. 

In a recent publication, we 14 proposed a mixed-space approach which could properly 

account for the contribution of the vibration-induced dipole-dipole interactions to the IFC in real 

space. In the present work we provide a systematic formulation by reconsidering the fundamental 

dipole-dipole interactions. Section II summarizes the general phonon theory of lattice vibrations 

in a crystal, emphasizing the concepts of Hamiltonian, the exact wave vector point, and the 

Fourier interpolation. In Sec. III, we demonstrate that the effect of vibration-induced dipole-

dipole interactions on phonons is the addition of a constant to the IFC in real space. In Sec. IV, 

we discuss the formulation in terms of analytic and nonanalytic contributions and how to 

properly interpret the calculated phonon dispersions for MgO in the literature without 

considering the vibration-induced dipole-dipole interactions. As examples, Sec. V discusses two 

calculations for MgO, one with a 16-atom regular supercell and one with a 128-atom elongated 

supercell, demonstrating the accuracy of the mixed-space approach. Finally, Sec. VI is a 

summary. 

 

II. GENERAL PHONON THEORY 

We start with a brief review of the phonon theory. For a system made up of infinitely 

repeating primitive unit cells with lattice vectors a, b, and c, the Hamiltonian in a harmonic 

approximation can be expressed as: 1, 3 
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where  is the Planck constant, P and Q index the primitive unit cells within a crystal, j and k 

label the atoms within the primitive unit cell containing M atoms, jμ  is the mass of atom j, 

)(Pu j
α  (α = 1, 2, 3) is the Cartesian displacement from its static position of the jth atom in the 

Pth primitive unit cell, and ),( QPC jk
αβ  is the real-space IFC between the jth atom within the 

primitive unit cell P and kth atom within the primitive unit cell Q. Because of translational 

invariance ),( QPC jk
αβ depends on P and Q only through the difference 3 R = RP – RQ, where  RP 

represents position of the Pth primitive unit cell in the crystal. 

In principle, Eq. 1 cannot be solved directly since it has infinite dimensions. To reduce 

the dimension of the problem, the widely adopted solution 1, 15 is the periodic supercell 

approach by which the individual phonon vibration is described in the wave vector space. 

Considering the fact that phonon vibrations are periodic, we can choose to solve those vibrations 

at the exact wave vector (q) point, qS, defined for a specific system or a supercell, S, built by 

enlarging  the primitive unit cell by Na, Nb, and Nc times, along the direction of the primitive 

lattice vector a, b, and c, respectively, as 

Eq. 2. ),,(2 cbaiSq i
i
S =∗=⋅ Integerπ  

To mimic a crystal, such a system is implicitly further enlarged by making infinitely-exact copies 

of the supercell S over the whole space, including the atomic displacements. Within this periodic 

supercell system, we can separate the P dependent part of )(Pu j
α  in Eq. 1 by rewriting it as  

Eq. 3, )exp()( P
jj iuPu RqS ⋅= αα  
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noting that the term juα  on the right hand side of Eq. 3 is now only dependent on the internal 

atomic position within the primitive unit cell. Substituting Eq. 3 into Eq. 1, the phonon problem 

is then reduced to the diagonalisation of the 3M-dimensional dynamical matrix D by finding 

roots of the secular determinant: 1, 15 

   Eq. 4, 0)()(det 2 =− SS qq ωαβ
jkD  

where  

Eq. 5, ∑ Φ= ⋅
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kj
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in which N=Na*Nb*Nc and we have utilized the results derived from the conditions of Eq. 2, i.e., 

at all qS’s, 

Eq. 6, 1=⋅SqSie . 

)0,(Pst
αβΦ , on the right hand side of Eq. 5, is called the accumulative IFC 16 since it represents 

the summation of )0,(PC jk
αβ , counting P and all its images resulted from repeating the supercell S 

over the whole space as 

Eq. 7. ∑
∞

+=Φ
S

jk
st SPCP )0,()0,( αβ
αβ  

The solutions of Eq. 4, ωj(qS) (j= 1, 2, …, 3M), are the phonon frequencies.  

The procedures described by Eq. 1-7 give the precise solutions for the phonon 

frequencies at those exact q points, i.e., all qS’s. However, a realistic calculation of the 

thermodynamic properties of a material 14, 17 needs the accurate phonon density of states 

constructed by sampling the phonon frequencies at a very dense q grid. This task cannot be 

precisely completed using just the exact q points, implying the necessity of using a very large 
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supercell S at prohibitively-expensive computational costs. The alternative practice 3 is to 

generalize the usage of Eq. 4 and Eq. 5 to the case where q is away from the qS for the already 

defined supercell S, as 

Eq. 8, ∑ Φ= ⋅
N

P
st

kj

ijk PeD P )0,(1)( αβ
αβ μμ

Rqq  

and 

Eq. 9. 0)()(det 2 =− qq ωαβ
jkD  

The procedures by Eq. 8 and Eq. 9 are commonly viewed as Fourier interpolation. For this 

method, the input data are simply those calculated jkDαβ  in a coarse grid or αβ
stΦ  in a pre-defined 

supercell.  

As a matter of fact, the Fourier interpolation 3, 16 with Eq. 8 is the standard procedure for 

the two major first-principles methods for phonons - the supercell method and the linear-

response method. For metals, it is indeed found 6, 18 that the Fourier interpolation by Eq. 8 and 

Eq. 9 is a rather good approximation whereas for ionic crystals it is not straightforward due to the 

additional contribution from the vibration-induced dipole-dipole interactions. 

 

III. VIBRATION INDUCED DIPOLE-DIPOLE INTERACTION 

 

A. Assumptions 

For an ionic crystal, when the periodic supercell approach is employed, one has to 

distinguish two cases in calculating phonon frequencies:  

i) At the non-zero qS – the lattice vibration does not result in macroscopic electric 

fields; and 
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ii) Away from the qS - the lattice vibration result in macroscopic electric fields which 

could invalidate the accurate application of the Fourier interpolation by Eq. 8 and 

Eq. 9. 

The effect of macroscopic electric fields on phonons is not yet well accounted for in 

previous implementations of the supercell method. 16, 19 This is due to the fact 11 that within the 

periodic supercell approach the first-principles calculation of )0,(Pst
αβΦ  in Eq. 5 requires the 

macroscopic electric fields to vanish. We described a procedure below to handle the dipole-

dipole interactions among the supercell S’s.  

Let us consider a supercell S built up with N primitive unit cells and use M to represent 

the instant dipole moment due to the lattice vibration. We know 3, 9 that for a lattice vibration, the 

direction of M is always parallel to q̂ , so we will use the scalar quantity qM ˆ⋅  to represent the 

value of dipole moment. Thus, the potential energy due to the dipole-dipole interactions between 

the supercell S’s can be expressed as 

Eq. 10, )ˆ)(ˆ(
2
1)( qEqM ⋅⋅−=DIE  

where E represents the effective macroscopic electric field, which itself represents the averaged 

result from the dipole-dipole interactions between the supercell S’s. Here we have also utilized 

the fact 3, 9 that E is parallel to q̂ . 

 

B.  SIFC - contribution to the IFC by the dipole-dipole interaction among the supercells 

As the electric polarization P is also parallel to q̂ , it is known 1, 3, 9 that 

Eq. 11, )ˆ(4ˆ qPqE ⋅−=⋅ π  

and 3 
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Eq. 12, )ˆ)(ˆˆ(
ˆˆ qEqχqqMqP ⋅⋅⋅+

Ω
⋅=⋅  

where NV=Ω is the volume of the supercell S with V being the volume of the primitive unit 

cell. χ  in Eq. 12 is the dielectric susceptibility. We then get 

Eq. 13, 
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where )(∞ε  is the macroscopic dielectric constant which is related with the dielectric 

susceptibility by   

Eq. 14, )ˆˆ(41ˆˆ )( qχqqεq ⋅⋅+=⋅⋅ ∞ π  

Inserting Eq. 13 into Eq. 10, we obtain the contribution to the potential energy due to the dipole-

dipole interaction between the repeated supercell S’s as 

Eq. 15, 
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As a result, we get SIFC - the contribution to the IFC by the dipole-dipole interaction between 

the supercells by finding the second derivative of the above potential energy with respect to the 

atomic displacement as 

Eq. 16, 
)ˆˆ(

)ˆ()ˆ(4)()( )(
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where e is the charge of an electron and Z is Born effective charge tensor of an atom defined as 4 

Eq. 17, j
j

u
M

eZ
α

β
αβ ∂

∂
=  

Finally, to calculate the phonon frequencies of an ionic crystal at an arbitrary q point in the 

Brillouin zone, we just need to re-cast the accumulative IFC in Eq. 8 as   

Eq. 18, )()0,()0,( DIPP jkjkjk
αβαβαβ ϕφ +=Φ  
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where )0,(Pjk
αβφ  is the accumulative IFC calculated by the first-principles supercell method. 19 

 

IV. DISCUSSIONS 

Eq. 16 plays a central role in the mixed-space approach. 14 It is interesting to note that the 

SIFC represents a constant contribution to the IFC and its value is mathematically of the order of 

~O(1/N), which was observed in a previous elongated supercell calculation. 10 From a 

mathematical point of view, SIFC can be understood as a contribution to the zeroeth order term 

in the Fourier transformation.  

Combining Eq. 8 and Eq. 18, we will show in the next subsection how the effect of SIFC 

on phonon frequency is dictated by the types of q points. At the exact q points (except at 0→q ), 

vibration-induced dipoles for the supercell vanish, such that the effect of SIFC on phonon 

frequency is zero. Note that if a q point is exact or not is decided by the shape and size of the 

predefined supercell, as determined by Eq. 2. At the non-exact q points, the effect of SIFC on 

phonon frequency is non-zero as discussed below. 

 

A. Analytic and nonanalytic terms 

Analytic and nonanalytic terms are terminologies used to distinguish the contributions to 

the dynamical matrix. 1 We can substitute Eq. 18 into Eq. 5 and see that 

Eq. 19, );();()( naDanDD jkjkjk qqq αβαβαβ +=
 

where the analytic and nonanalytic contributions to the dynamic matrix are as follows 

Eq. 20, { }∑ −⋅=
N

P

jk

kj

jk PiPanD )]0()([exp)0,(1);( RRqq αβαβ φ
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It can be seen that )(qf  in Eq. 22 is an improvement over the damping formulation with the 

adjustable parameter developed by  Parliński et al. 20 

 

B. The effect of SIFC on the Fourier interpolation 

We would like to correct one important viewpoint represented in the literature, 10 which 

states that the phonon frequencies calculated by the supercell method are only inaccurate at the 

vicinity of 0→q  if the nonanalytic term is not considered. When q is not at the exact q point, 

we know that the phonon frequency calculated by Eq. 9 is an interpolation. 3, 19 From a 

mathematical point of view, it is required that all values of the IFC’s at the known referencing 

data points be correct. If one or more of the reference IFC values are incorrect, the resulting 

errors will prorogate into the interpolated point. That is to say, for the Fourier interpolation to be 

sufficiently accurate, we must consider the effect of the phonon-induced dipole-dipole 

interaction on the potential energy in Eq. 1 . In this context, Eq. 21 is an accurate interpolation 

for an ionic crystal. 

We now associate Eq. 22 with Eq. 8 and Eq. 2. The purpose of Eq. 8 is to interpolate the 

dynamical matrix for an arbitrary q point, utilizing the IFC’s from one single predefined 

supercell calculation. The physical significance of the exact q point defined in Eq. 2 is that at all 

qS’s the effect of SIFC on the phonon frequency is zero (except at q = 0). However, for an 
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arbitrary non-exact q point, the effect of SIFC on the phonon frequency is not zero anymore and 

has to be considered. Specifically, )(qf  in  Eq. 22 has the properties of: 

i) 1)0( =f . This implies that in the long wave limit of 0→q , we get the result by 

Cochran and Cowley. 9 

ii) 0)( =qf  if q is a nonzero exact q point. This implies that the nonanalytic contribution 

to the phonon frequency is zero at all the nonzero exact q points. We reiterate here that definition 

of the exact q point is dependent on the supercell shape and size defined by Eq. 2. Physically, 

this can be understood by the fact that at a nonzero exact q point, the vibration induced dipole 

moment for the supercell vanishes. 

iii) 0)( ≠qf  if q is not the exact q point. When q is not the exact q point, Eq. 18 is a 

rather accurate input for interpolating the phonon frequency through Eq. 9 together with Eq. 8.  

 

C. Understanding the published results for MgO 

Figure 1 shows the previously-calculated phonon dispersions of MgO by Alfè 19 using the 

supercell method (without considering the effect of SIFC) and linear-response method (including 

the vibration induced dipole-dipole interaction), which we take as an independent support of our 

point of view on the role of the vibration-induced dipole-dipole interaction on phonon frequency. 

For the supercell method, Alfè 19 reported two supercell calculations, one using the 4×4×4 128-

atom supercell and another using the 8×8×8 1024-atom supercell, and the results were compared 

with the linear-response calculations using the 4×4×4 q grid and 8×8×8 q grid, respectively. It 

can be seen that the crossing points between the calculated results with the supercell method and 

the linear-response method are located at the exact q points. Being away from the exact q points, 

it is clearly seen that the errors of the calculated results by the supercell method are not limited to 
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the vicinity of 0→q , as shown by the oscillating-like line pattern for the high frequency 

longitudinal optical branch.  

 

V. COMPUTATIONAL DETAILS, RESULTS AND DISCUSSIONS 

We have chosen MgO as the prototype in the present work. The computational procedure 

is:  

i) Calculate the Hessian matrix 1, 15 based on the supercell method using the 

projector-augmented wave (PAW) method 22-23 implemented in the Vienna ab 

initio simulation package (VASP, version 5.2). The exchange-correlation 

functional according to Ceperley and Alder as parameterized by Perdew and 

Zunger 24 was employed.  

ii) Calculate the Born effective charge tensor and the high frequency static dielectric 

tensor based on the primitive unit cell employing the linear-response theory 

implemented in VASP 5.2 by Gajdos et al. 25 

iii) Modify the Hessian matrix outputted from VASP 5.2 by adding the term defined 

in Eq. 16 in order to account for the effect of SIFC. 

iv) Construct the dynamical matrix using Eq. 8 based on the modified Hessian 

matrix. 

v) Solve Eq. 9 for the phonon frequency for any chosen q point in the Brillouin 

zone. 

 

Two supercell calculations were performed in the present work. The first is with a 

predefined 16-atom 2×2×2 supercell of the primitive unit cell. Figure 2 shows that once the 
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effect of SIFC on phonons is properly considered using Eq. 16, the 16-atom supercell is enough 

for predicting the phonon dispersions of MgO. The minor differences between the phonon 

dispersions calculated with and without SIFC effects for the non-longitudinal optical phonons are 

caused by the small supercell size. Such differences are barely visible for the previously-

published calculation 14 using the 4×4×4 supercell of the primitive unit cell and the one using 

128-atom supercell showed below. 

The second calculation uses a 128-atom 1×1×16 elongated supercell of the cubic unit 

cell. With this supercell, one can get 16 nonzero q points along the (0,0,q) direction. In the past, 

elongated supercells 10, 26-27 were alternative ways to calculate the phonon dispersions for ionic 

crystals if one only needs accurate predictions for phonon frequencies at a few specific q points. 

As shown in Figure 3, if the effect of SIFC on phonons is not properly considered, the supercell 

method can only predict the corrected phonon frequencies for the longitudinal optical phonons at 

the nonzero exact q points. Being away from exact q points, the longitudinal optical phonon 

dispersions with and without the effect of SIFC considered are different from each other.  

Figure 2 and Figure 3 also show the (0,0,q) phonon dispersions for the case without SIFC 

(the dashed line) for the longitudinal optical phonon dispersion. The comparison between the 

results derived from the 1×1×16 elongated supercell and the 2×2×2 supercell demonstrates that 

our mixed-space approach properly takes into account the dipole-dipole interactions between the 

supercells. 

 

VI. Conclusion 
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In summary, our previously proposed mixed-space approach accounting for the effect of 

the vibration-induced dipole-dipole interaction on phonon frequencies is derived from the 

fundamental concept of electric dipole-dipole interactions among the supercells. We demonstrate 

that the contribution of the dipole-dipole interactions between the supercells to the interatomic 

force constant can be accounted for by adding a constant term into the real-space force constant. 

We use MgO as an example to compare the calculated phonon frequencies with and without the 

contribution with the former showing excellent agreement with experimental data.  
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Figure captions. 

 

 

Figure 1. Phonon dispersions of MgO calculated with the supercell method and with linear 

response (Courtesy from Comput. Phys. Commun. and Alfè). Pink dotted and green dashed lines 

correspond to calculations with a 4×4×4 supercell (128 atoms) and a 4×4×4 equispaced grid of q-

points (linear response). Blue dashed and red solid lines correspond to calculations with an 

8×8×8 supercell (1024 atoms) and an 8×8×8 grid of q-points with the two methods, respectively. 

Experimental data are displayed with blue stars. For interpretation of the references and other 

legends in the figure, the reader is referred to Fig. 3 in the paper by Alfè.  19  
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Figure 2. Phonon dispersions of MgO calculated with a 16-atom 2×2×2 supercell of the primitive 

unit cell. The solid (dashed) lines represent the present calculation with (without) considering the 

term represented by Eq. 16 which is the contribution to the IFC by the dipole-dipole interaction 

between the supercells. The open circles (red) are the inelastic neutron scattering data by 

Sangster et al. 28 
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Figure 3. (0,0,q) Phonon dispersions of MgO calculated with a 128-atom 1×1×16 elongated 

supercell of the 8-atom cubic unit cell. The solid (dashed) lines represent the present calculation 

with (without) considering the term represented by Eq. 16 which is the contribution to the IFC by 

the dipole-dipole interaction between the supercells. The open circles (red) are the inelastic 

neutron scattering data by Sangster et al. 28 

 


