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The thermodynamic theory of coherent interfaces develap&art | of this work is applied to grain bound-
aries (GBs) subject to non-hydrostatic elastic defornmatioNe derive expressions for the GB free energy as
the reversible work of GB formation under stress. We alsegmea generalized adsorption equation whose dif-
ferential coefficients define the GB segregation, GB stiessar, GB excess volume, and GB excess shear. The
generalized adsorption equation generates a set of Marslations describing cross-effects between different
GB properties. The theory is applied to atomistic simulaiof a symmetrical tilt GB in Cu and Cu-Ag alloys.
Using a combination of molecular dynamics and Monte Carlthods, we compute a number of GB excess
quantities and their dependencies on the applied strassegerature and chemical composition in the grains.
We also test several Maxwell relations and obtain excellgntement between the theory and simulations.

PACS numbers: 64.10.+h, 64.70.K-, 68.35.-p, 68.35.Md
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.  INTRODUCTION

Solid-solid interfaces are important elements of matemaicrostructure. They can strongly affect thermody-
namic stability of materials, phase transformations andyhméaysical and mechanical propertfesn Part | of this
work® we developed a thermodynamic theory of coherent interfacesulticomponent systems subject to non-
hydrostatic mechanical stresses. Coherent interfacesdefined as those whose formation and motion conserves
lattice sites and which support static shear stresseseappérallel to the interface plane. For such interfaces,
we derived thermodynamic equations for the interface fresrgy~y as an excess of appropriate thermodynamic
potentials. We also derived a generalized adsorption eqyatlong with its Gibbs-Helmholtz form, which are
the fundamental equations of interface thermodynamicse gdneralized adsorption equation naturally led us
to definitions of the interface stress tensor, the intertacess volume, the excess shear and a number of other
measurable excess quantities. It also generated a set afdllarlations describing interesting cross-effects.

The goal of Part Il of this work is to apply the theory of Refadtomistic simulations of coherent grain bound-
aries (GBs). GBs are interfaces between regions of the saystalline phase with different lattice orientations.
Similarly to coherent phase boundaries, coherent GBs gamostinot only stresses normal to their plane but also
shear stresses parallel to it. When a coherent GB movesgisecees the number of lattice sites and only rearranges
them from one crystallographic orientation to the othera [BEB can be equilibrated under applied stresses, the
grains generally end up in different thermodynamic states tod elastic anisotropy of the lattice. In particular,
their equilibrium chemical compositions and strain enatggsities can be generally different. In such cases, the
GB can be formally treated as simply a particular case of a@baundary and our thedrgpplies without mod-
ifications. However, there are certain crystallographimsetries and types of applied loads that leave the grains
thermodynamically identical. The exact definition of “threxdynamically identical” grains and the corresponding
symmetries were discussed in Paftlh such cases, the two grains are parts afngle phase and all thermody-



namic equations must be modified accordingly. The equatairessimpler forms, which facilitates their testing
by simulations. At the same time, this relatively simpleecpseserves most of the key concepts and relations of
the general theoryjncluding the adsorption equation, the excess volume, ssxskear, interface stress, and most
of the Maxwell relations. Thus, this case offers a convetrtest bed of our theory.

In Section Il we discuss symmetry requirements imposed og B8t preserve the grain identity under stresses
and specialize the general thermodynamic relations of R&d.this case. In Section 11l we introduce our simu-
lation methodology and provide computational details. fésailts of the simulations are reported in Section 1V,
which is the central part of this work. The results include #ffects of deformation, temperature and chemical
composition of the GB free energy and GB stress. We also ¢esral Maxwell relations that characterize me-
chanical, mechanochemical, thermomechanical and théremoical responses of the boundary. In Section V we
summarize our work and draw conclusions.

II. THERMODYNAMICS OF GRAIN BOUNDARIES
A. Grain boundary symmetry considerations

When the grains separated by a GB are stress-free, theyemradtlynamically identical and form a single-
phase system. As mentioned above, when a stress is apptleel 8B, it generally destroys the initial equilibrium
between the grains due to elastic anisotropy of the latfi¢te system can reach a new equilibrium state, but the
states of the grains generally become non-identical. Wingeeested in different cases, namely, in special cases
when the applied stresses do preserve the single-phase nathe system.

As an example, consider a coherent symmetrical tilt GB shestrematically in Fig. 1. Suppose the tilt axis of
the boundary is aligned parallel to the Cartesian axisvhile the GB plane is normal to the axig. Due to the
mirror symmetry across the GB plane, homogeneous tensiongyressions and in-plane shears parallel to the GB
plane preserve the thermodynamic identity of the grain® Sdme is true for tensions and compressions normal
to the GB plane. Furthermore, due to the twofold symmetryadathez, axis, the shear stress; parallel to
the tilt axis also leaves the grains identical. The only r@ing stress component is the shegs applied normal
to the tilt axis. This stress can cause GB migration coupeshear deformation of the graifigdypothetically,
this migration could be stopped by creating different cteincompositions in the grains and thus an additional
thermodynamic driving force opposing the coupled motiorowidver, even if that happened, the difference in
chemical compositions would destroy the thermodynamintitleof the grains and the single-phase treatment of
the GB would be impossible. To summarize, we can elastick#fgrm a bicrystal with a symmetrical tilt boundary
and still treat the two grains as a single phase as long as egke = 0.

There can be other boundaries permitting single-phasartegd under applied stresses. For example, a twist
boundary produced by rotation of two cubic lattices aroundramon [110] axis contains two mutually perpendic-
ular two-fold symmetry axes lying in the GB plane. Supposs#ésymmetry axes are aligned with the coordinate
axesr; andz,. Then the system preserves the single-phase state whesultject to homogeneous lateral defor-
mations, normal tension or compression, and either# 0 with o3o = 0 0or o35 # 0 with o3; = 0. While such
twist boundaries could be the subject of future work, in faper we chose a simpler and better studied case of a
symmetrical tilt GB.

In the equations presented in this Section, we include edksstcomponents with the understanding that in
applications to a particular GB some of them may disappeatalsymmetry restrictions.



B. The grain boundary free energy

To simplify the exposition, we will focus on a binary substibnal solid solution whose chemical composition
will be characterized by the atomic fractiaf, of component 2. An extension to multicomponent systemb wit
both substitutional and interstitial atoms is straightfard by analogy with Part Vacancies are neglected and
can be interpreted as the fraction of lattice sites occupyestoms 2. This solid solution has eight thermodynamic
degrees of freedom which can be, for example, the temper@tucompositionc,, and six components of the
stress tensar;;.

Following Gibbs> we define the GB free energyas the reversible work required for creation of a unit GB
area. To express through other thermodynamic properties, we consider aghbexperiment in which the GB
is formed starting from a single-crystalline sample. Thef@Bnation process is illustrated by a two-dimensional
schematic in Fig. 2. The initial state of the system is an it#iy large single crystal, in which we select a region
of volume V"’ with the shape of a parallelepiped. The top and bottom fatdseqparallelepiped are and always
remain normal to the:3 axis. This single crystal is in internal equilibrium at wmifm values of the temperature,
composition and stress.

To create a tilt GB, we reversibly transform the lattice abavchosen plane normal to the axis to a new
crystallographic orientation. The shape of the upper phiti@ selected region, which now becomes part of the
upper grain, undergoes a shear deformation parallel to Bipléne(z1, z2). The process is also accompanied by
a tensile or compressive deformation normal to theaxis. During this process, the cross-section of the region
parallel to the GB plane remains fixed in order to maintaindbleerency. Suppose the lattice of the lower grain
is fixed in space. Then, as a result of the GB formation, thicdasites near the upper face of the parallelepiped
undergo a displacement by a vecBishown in Fig. 2. This vector will appear in the subsequenttioglynamic
equations because it defines the mechanical widtk, performed by the stresg; during the GB formation.

As in Part I3 we assume that the GB formation occurs at fixed valueg, efs;, and the diffusion potenti&l/
M>,, of component 2 relative to component 1. The system is opeiitsiaverage chemical composition is allowed
to vary (subject to the conservation of sites). The systematso exchange heat with the environment. In the final
state, the grains are thermodynamically identical and liawe the same temperature, chemical composition and
stress as in the initial single crystal. The energy chahgeof the discussed region is the sum of the HEALS,
the chemical workl\{/3; A N, the mechanical workV,,, = AX; B;os;, and the non-mechanical wotk,,,,, = vA
expended for the formation of the GB. Hetds the GB area] S is the entropy change of the region, ahd is
the change in the number of atoms 2. The First Law of thermaahjcs leads to the following expression fod:3

YA =AU —TAS — My AN, — A Y Bios;. (1)
i=1,2,3

This equation can be rewritten in a form which is more congetfor atomistic simulations. NamelU can
be computed as

AU =U - N(Ug/Nq)a (@)

whereU is the total energy of the region containing the GB,is the total number of atoms in this region, and
the quantitied/, and .V, refer to anarbitrarily chosen homogeneous region inside one of the grains (hence the
subscripty). More generally, for any extensive prope#ywe introduce the notation

[ZIn = Z = N (Zy/Ng) . 3)
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The meaning ofZ] v is the GB excess of propery relative to a homogeneous grain region comprising the same
total number of atoms as the region containing the boundr@myexample, the exce§d| y characterizes the GB
segregation of component 2. It can be shown that the excestities defined by Eq. (3) do not depend on the
choice of the boundaries of the two regions (with and witltbatGB) involved in the calculatioh®

It should be emphasized that the above definition of excdassdifferent from the one introduced by Gibbs,
which was based on the construct of the dividing surfatethe latter case, the two regions used in the excess
calculation have the same volume but generally contaiedifft numbers of atoms. Accordingly, the Gibbsian
excess volume of any interface is zero by definition. The exdefined by Eq. (3) retains the GB excess volume,
an important property which was measured both experimgftiliand in simulation$?-14

Using this definition of excess quantities, Eq. (1) finallztmes

YA =[U]n = T[S]n — M2 [N2]N_0'33[V]N_AZBZ'0'31'- (4)
i=1,2
Note that in the mechanical work term, we separated the ibotiobns fromi = 1,2 andi = 3. This produced a
separate term containing the GB excess volliile; = ABs3 and two terms representing the work of the shear
stressegs; andose, respectively. The coefficient$B; and AB, appearing in the last two terms are the excess
shears of the boundary. Such shears exist only for cohernfaces and were discussed in detail in Ref. 3.

Eq. (4) is a particular case of Eq. (96) of Pattit clearly shows that the free energy of a GB subject to aniagpl
stress includes the work performed by the stress duringdbedary formation. In the particular case when the
grains are stressed hydrostatically, the terms withand o3, disappear. Furthermore, in hydrostatic systems
Mo = uo — u1, Wherep; are chemical potentials of the components. (While undefinesbn-hydrostatically
stressed solidschemical potentials are well-defined quantities under bsi@tic conditions.) Eq. (4) becomes

~A [U—-TS+pV — 1Ny — paNoJ

= U-TS+pV — 1Ny — p2Na, 5)

wherep := —o33 is pressure inside the grains and we used the reléfjon T'S, + pV; — i N1g — paNag = 0
for homogeneous hydrostatic systems. Eq. (5) recoverssGisipression fory A in fluid systems.

C. The adsorption equation

The adsorption equation of an interface expresses theaiffial ofy A in terms of differentials of independent
intensive variables defining the equilibrium state of thetesn. It is the fundamental equation of the interface,
from which all other interface properties we can be derivEide adsorption equation of a GB subject to applied
stresses was derived in Pattds a particular case of the general coherent interfaceytiveloen the two phases
are thermodynamically identical. Without repeating theidgion, we will adapt Eq. (93) from Ref. 3 for the
particular case considered here:

d(’yA) = —[S]NdT — [Ng]NdMgl — [V]Nd0'33
— A Z Bida'gi + A Z Tijdeji. (6)
i=1,2 i,7=1,2

The last sum in this equation contains the symmettice? lateral strain tensafe,; describing elastic stretching
(de11 anddess) and shearingde;2) of the boundary. It is the small-strain tensor relativette turrent state of
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the boundary. The coefficients in front@é;; describe the effect of the lateral strains on the total GB &eergy
~A. Tensorr;; is called theGB stresstensor and is similar to the interface stress discussed by Gibbsolat-fluid
interfaces. Gibbs distinguished between the reversible work of int&féormation, represented by and the
reversible work of elastic deformation of the interfaceresented by interface stress. For solid-fluid interfaces,
the components af;; turn out to be quite different from and can be positive or negati¥&The same is expected
to be true for the GB stress.

As other coefficients in Eq. (6), the GB stress is an excesstiuaNamely, it is the excess of lateral components
of the stress tensor relative to their values inside thengrathe local stress in the GB core region is generally
different from the stress;; in the grains, creating a tensile or compressive state dithedary core described by
7;;. Adapting Eq. (95) from Ref. 3;; can be written in the form

1

Tij = Z EijV — 61']'0'33‘/ — ABiUgj — §ij Z ABkng
k=1,2
N
- AN, (03 Vg — 6ijossVy) - (7)

Here,d;; is the Kronecker deltag;; are the lateral stress components averaged over the vdfuofehe region
containing the GB, and, and N, refer to an arbitrarily chosen homogeneous region insidegtiains. Eq. (7)
shows that, even thougt; is an excess of the lateral stress components, its calonlgéinerally involves also the
shear and normal stress componenjis(k = 1, 2, 3). This complexity of the GB mechanics is further manifested
in the Maxwell relations discussed later. In the particdase when the grains are hydrostatic, the adsorption
equation becomes

d (vA) = —[SINdT — [No]nd (p2 — i) + [VIndp+ A Y 7ijdeys, (8)

i,j=1,2

with the GB stress given by
% (@i + 0ijp) - 9)

The adsorption equation (6) contains eight independefardifitials representing the eight degrees of freedom
of the single-phase system. However, as discussed abowelento keep the grains thermodynamically identical,
certain symmetry-dictated constraints need to be imposeleapplied stresses, suchsas = 0 for symmetrical
tilt boundaries. Such constraints reduce the actual nupdr@meters that can be varied independéfitly.

Equation (6) can be rewritten in another form by expressiflg from Eq. (4) and inserting it in Eq. (6). After
some rearrangement this gives

Tij =

A v [Na]n [V]n
d (T) = _ﬁdT — T —d 33—— Z B; dO’gZ - Z Tijdeji, (10)
z 1,2 z,]:l,2
where
V.= [U]N—M21 [NQ]N—O'gg[V]N—AZBiO'&'. (11)
i=1,2

Eq. (10) can be called the Gibbs-Helmholtz form of the adsmmpequation. Its derivation is mathematically
similar to the derivation of the classical Gibbs-Helmheltatiord (G/T) /0T = —(U + pV')/T? for bulk fluid
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systems G being the Gibbs free enerd§.n fact, if all variables in Eq. (10) are fixed and only tempara is
varied, this equation reducesd&qyA/T) /OT = —¥/T? with A playing the role of and ¥ playing the role
of the enthalpy/ + pV'.

The advantage of the Gibbs-Helmholtz form (10) over theddash form of the adsorption equation is that the
former does not contain the excess entropy, the quantitgtwisi difficult to measure or compute. This makes
Eq. (10) more suitable for calculationspby thermodynamic integration. Indeed, all excess quastiappearing
in EQ. (10) are easily accessible by atomistic simulatiortsus, all differential coefficients of this equation can
be readily computed along an equilibrium path connectiniyasen reference state with the state of interest. This
approach to calculation of will be applied later in this paper.

D. The Lagrangian and physical forms of the adsorption equabn

As discussed in Section |1 B (see also Parttie producty A appearing in the adsorption equations (6) and (10)
is the total free energy of a GB patch within a selected regintaining a fixed set of lattice sites. During the lateral
deformations described by the strain tendey;, those lattice sites are conserved and are only stretchs/dran
sheared elastically parallel to the GB plane. In terms otinanm mechanic$! this means that the Lagrangian
area of the GB remains fixed whereas its Eulerian (physica§.a changes. Let the GB area in its current state,
i.e. prior to the application of the straife,;, be denoted!’. Then there are two ways to define a specific GB free
energy: by dividingyA by the physical (elastically deformed) ardaand by dividing it by the Lagrangian area
A’. The first definition gives the physical GB free enesgwhile the second gives the Lagrangian GB free energy
7= (vA) /A

This classification can be applied to all other excess qgtiesttiany total exce§s |y generates the specific ex-
cesses$Z] /A (physical) andZ] x /A’ (Lagrangian). In particular, the GB stress introduced above is the phys-
ical specific excess of the lateral stress components, ahefe:= (7;; A)/A’ is the corresponding Lagrangian
excess. Likewise, besides the physical excess stigaesid B, we can introduce their Lagrangian counterparts
B} = (B1A) /A and B := (B2 A) /A’.

To emphasize that Egs. (6) and (10) are Lagrangian formsedddisorption equation, they can be rewritten as

A’ A (12)
ZB dogi + 7 deﬂ
1=1,2 1,7=1,2
and
Yy ¥ [Na] N ;
d (T) = — T — S dMa ~ A/Td 33—;1:2 dagz ;2 deﬂ, (13)

where all differential coefficients are Lagrangian spe@ficesses. To obtain the respective physical forms of the
adsorption equation, we take the differentiahof in the left-hand side and move the tefidA to the right-hand
side. Using the relatiodA = A", ._, , d;;de;;, we obtain

N.
dy = [S] ar — N2lv dMgl—%d 053
(14)
ZBda&—i— > (7 — 6i7) deji

1=1,2 1,7=1,2



and

4 [No]n VN B; (Tij — 9457)
d(F) = =T — op-dMa — —Fdoss i;g Tdagﬁi;? Ll dey;.  (15)

As for phase boundarié<€sgs. (12) and (14) generate the Lagrangian form of the Swdtth equatios,

/
0y —
=T,
3eij J

(16)

as well as its physical forrif

v
% = Tij — 5”’}/ (17)

E. Maxwell relations

All forms of the adsorption equation discussed above esptesd(vA), d(y/T) andd(vA/T) as perfect dif-
ferentials of intensive variables. These equations gémamumber of Maxwell relations between their differential
coefficients. Since these differential coefficients areezit. agrangian or physical excesses, each Maxwell relation
can be written in two forms: Lagrangian and physical. Thegred choice of the form depends on the case.
For example, in Maxwell relations involving the GB streds tagrangian form contains the readily accessible
tensorr;;, whereas the physical form contains the quarttity — d;;v) whose calculation requires knowledge of
~. Becausey is difficult to compute or measure experimentally, the Lagian form is preferred.

A number of Maxwell relations were presented in Part | of thigk.2 For reference purposes, they are listed
below in a form adapted for GBs. Each relation is given in thghangian and physical forms. In some cases,
when the derivatives are taken at a fixed cross-section oGBethe two forms are identical and we list only
the Lagrangian form. As in Ref. 3, all relations are dividetbifour categories, depending on the type processes
represented by the derivatives.

(i) Mechanical relations:

Orj; 0ty 9 (7 — 0i7) _ O (Tkt — Orry)

dery  Oejj’ e Oe;j ’ (18)
i7j7 k7l = 1727

Oy _ o(VIn/A)  O(my —dyy) _  O(VIn/A)

80’33 861'3' ’ 80’33 861'3' ’ (19)
i,j=1,2,

aT{j B 83;C o (Tij — 51'3"7) - 0By,

803k - 861']' ’ 803k - 6eij ’ (20)
i, k=12,

! !
0By, :a([V]N/A), k=1,2. (21)
0033 dosy,




(i) Mechanochemical relations:

ori;  O([Na]xy/A)  O(ri; — 0i;7) d ([N2]n/A)

8M21 o 861']' ’ a]Vfgl 861']' ’ (22)
i,j=1,2,

O(VIn/A") _ 9([Na|n/A")

oMy Ooss ’ (23)
0B;, _ O([N2]n/A") _
Ny Bour k=12 (24)
(iif) Thermomechanical relations:
O(r;/T) _ O(WIn/A'T?)  0{(ry —iv)/T} O ([¥]n/AT?)
or B 861'3' ’ orT N 8eij ’ (25)
1,7 =1,2,
d([VIn/AT) 0 ([N /A'T?)
3T B 80’33 ’ (26)
0B, O ([V]n/A'T?) B
BTk = oo , k=1,2. (27)
(iv) Thermochemical relation:

oT N OMo

Egs. (18), (19) and (20) describe the effect of applied saesn the GB stress. In Eq. (19), the right-hand side
describes the GB “Poisson effect”, i.e, the effect of ldtetains on the GB “thickness” (excess volume per unit
area). The right-hand side of Eq. (21) represents a moréeseffdct, in which applied shear stresses influence the
GB excess volume. The right-hand sides of Eqgs. (22), (23)2addescribe the effect of applied lateral strains,
normal stress and shear stresses on GB segregation.

. METHODOLOGY OF ATOMISTIC SIMULATIONS

A. Simulated systems

A bicrystal containing a symmetrical ti£5 (310) GB was created by standard geometric constructidiise
grains were symmetrically misoriented B$.87° around the[001] tilt axis parallel to thex; direction of the
coordinate system. The GB plane(&10) and is normal to the:3 axis. The atomic structure of this boundary
viewed down the tilt axis consists of identical kite-shap#mictural units shown in Fig. 3. Due to tRenm
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symmetry of this boundary, uniform elastic deformationgha bicrystal create identical stress tensors in both
grains and thus preserve equilibrium between them as lotigeashear stress;, remains zero. A nonzer@ss
destroys the identity of the grains and induces coupledonadf this boundar$2° It should be noted that this
boundary remains coupled evenat = 0. Its spontaneous displacements up and down are accomganied
concurrent grain translations by geometrically presctrimmounts. Such coupled displacement-translation events
are equilibrium fluctuations and do not contradict our thetlgmamic analysis.

The simulation block had dimensiod8 x 23 x 145 A and contained256 atoms (Fig. 4). Periodic boundary
conditions were applied in the; andz, directions parallel to the GB plane. In thg direction, the grains
terminated at “surface regions” labeled 1 and 2. The thiskrd each surface region was twice the cutoff radius
of atomic interactions. The motion of atoms in these regiwas subject to certain restrictions which produced
desired states of stress in the system. Unless otherwise stae atoms in region 2 are fixed in their perfect lattice
positions to prevent rigid translations of the entire siatioln block.

We used pure Cu and Cu-Ag alloys as model materials. Inferecbetween the atoms were modeled by
embedded-atom method potentials for coppand the Cu-Ag systef. The binary potential reproduces the
eutectic phase diagram of the Cu-Ag system in semi-quéimétagreement with experimefit Cu was chosen as
component 1 and Ag as component 2. The chemical compos#ionaracterized by the atomic fractiang, of
Ag atoms. In this work we studied Cu-rich solid solutionshwifg less than 1%.

B. Simulations in pure Cu

The effect of elastic deformation on GB properties in purev@s studied at the temperature of 0 K. Lateral
deformations of the simulation block were described by allsstiain tensore;; relative to the initial state with
stress-free grains. To compute the GB excess propertiegsnatidns ofe;1, ess, 031 andoss and to test the
Maxwell relations (18)-(21), the GB was elastically defearalong various deformation paths. The deformations
included tensions and compressions parallel to the coatelizxes and a shear parallel to the GB plane incthe
direction.

Uniaxial and biaxial deformations parallel to the GB plarerevmodeled by imposing the straing or es, (0r
both) while keeping the stress componenis, 032 andoss zero. For biaxial deformations the block was strained
by e;1 = ess := e. The deformations were implemented by scaling the atomicdinates in small increments
followed by static relaxation after each step. During tHexation, the lateral dimensions of the system were kept
fixed, allowing the atoms to move until the total energy reata minimum. The amount of strain was varied from
—1.6% (compression) td.6% (tension). Because the principal axes of stress and staaitide by symmetry
of the system, such deformations do not create any sheassttg; or o3.. Furthermore, atoms in the surface
region 1 were allowed to move freely in thre direction, imposing the zero-stress conditeg = 0.

Tension and compression normal to the GB plane were appjietdling thers coordinates of all atoms by
small increments followed by static relaxation. During tkeaxation, atomic positions in the surface regions 1
and 2 remained fixed. This deformation produced a normasirg while keeping the shear stressgs andoss
zero by symmetry. The relaxeds values implemented in the simulations ranged ferth4 GPa (compression)
to 2.7 GPa (tension).

Finally, the shear stress; parallel to the tilt axis was applied at fixed lateral dimemnsiof the simulation block
and zerarsss. The shear was imposed by incremental rigid displacemdrasréace region 1 in the; direction
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while keeping fixed atomic positions in surface region 2. iBgithe relaxation, the atoms in surface region 1 were
allowed to move only in the; direction, imposing thes; = 0 condition. Using this procedurez; was ramped
from 0 to 1.49 GPa. Changing the sign of the shear would pmdientical result due to the mirror plane normal
to thex; axis.

For calculation of excess quantities, the region contgittie GB comprised all atoms separated by more than
20 A from each of the surface regions. The grain propertiee wemputed by averaging over two approximately
25 A thick homogeneous regions selected inside the graidsianinfluenced by the GB or the surface regions.
The exact boundaries of these regions were chosen to ceindild (310) atomic planes. To calculate the relevant
components of vectaB, all atoms outside the GB core were assigned to individubD)3ayers and average
coordinates of atoms belonging to such layers were compiietd X, Xo, X3) denote the average coordinates
of the top layer of the region containing the GB relative sohibttom, and let X 4, X»,4, X3,) be a similar vector
computed for the selected homogeneous grain region. Bheand B; are given byB; = X, — (N/Ny)X,g,
i=1,3.

Testing the Maxwell relations required calculation of datives of GB excess quantities with respectie,
ea2, 031 OF o33. TO this end, the discrete data points obtained by individimaulations were fitted with a second
order polynomial and the derivative was evaluated for thesstfree state.

The GB properties at finite temperatures were studied by catde dynamics (MD) simulations in the NVT
ensemble using the Nose-Hoover thermostat. The MD sinounsgmployed the ITAP Molecular Dynamics (IMD)
programt*26and were performed in the temperature range from 0 K to 90010®K steps. At each temperature,
the simulation block was pre-expanded by the thermal expafactor computed previousito eliminate thermal
stresses in the grains. No restrictions were imposed oniatowotion in the surface regions 1 and 2, turning them
to open surfaces. While this procedure ensured stresstiaées inside the grains, finite lateral stressgsand
092 existed in the GB region due to the GB stress At each temperature, the system was equilibrated for
2 ns, followed by a 10 ns long production run during which rniplét snapshots of the system were generated.
The snapshots contained positions of atoms as well as theiges and stresses. This data was later used for
post-processing the results.

C. Simulations for the binary Cu-Ag system

To model the binary Cu-Ag system at finite temperatures, veel bdonte Carlo (MC) simulations in the semi-
grand canonical ensemi&2° In this ensemble, the temperature and the total numbeaf atoms are fixed,
whereas the positions and chemical species of the atomsacarBach step of the MC process includes a random
selection of an atom and its small random displacement withlsaneous random change of its chemical species.
The trial move is accepted or rejected according to the Ndelis algorithm. The probability of switching chemical
species depends on the diffusion potentigl, , which is an input parameter of the simulation. The MC sirtiates
allow the system to reach equilibrium much faster than by Miugations, which require actual diffusion of atoms.

The MC simulations were performed at a constant temperatfu8®0 K and sampled the composition range
from cag = 0 t0 cpg = 0.58% inside the grains. Different chemical compositions in thairgs were created
by adjusting the value al/»;. Prior to each simulation, the block was pre-expanded aaogto the expansion
coefficient of a bulk solid solution subject to the chogdh;. Such expansion coefficients were computed in
separate MC simulations of a single crystal with all-peigdabundary conditions in the NPT ensemble at zero
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pressure. This pre-expansion procedure was applied tinalieithe compositional and thermal stresses inside the
grains. During the subsequent MC simulations,thendx, dimensions of the simulation block remained fixed,
whereas in thers direction the grains terminated at free surfaces. In eavhlstion run, the system was first
equilibrated bys x 10* MC steps per atom, followed by a production stage which gipicomprised’ x 10> MC
steps per atom. During the production run, snapshots econggenergies, stresses and atomic species of individual
atoms were generated every 70 MC steps per atom.

To test the Maxwell relations, four types of simulation weoaducted: (i) biaxial tension/compression parallel
to the GB plane at constafit, M»;, 031 andoss, (ii) tension/compression normal to the GB plane at coristan
T, My, ande, (iii) variation of My, at constanfl’, 031, o33 ande, and (iv) variation of7" at constant\/s,,

031, o33 ande. The elastic deformations were implemented by the sameadetbgy as in the 0 K simulations
described above. In each of the four types of state varigtiggveral MC simulations were performed at different
values of the respective intensive parametew{s, My, or T'). Each simulation included the equilibration and
production stages as indicated above and produced aveahges\of the relevant GB properties. The discrete
data points thus obtained were fitted with a second ordempofyal to compute the respective derivative. All
derivatives appearing in the Maxwell relations were evi@ddor the same thermodynamic state of the grains,
namely,T = 800 K, M»>; = 0.4 eV ando;; = 0. In this state, the chemical composition inside the graias w
cag = 0.036% .

IV. RESULTS

A. PureCuatOK

At 0 K the entropy terms in all equations vanish and there is'eed to compute the excess entrdfyy .
This simplifies all thermodynamic equations and enablesctlicalculation ofy through appropriate excesses of
energy and other quantities. Calculations at 0 K allow ugs$bthe proposed thermodynamic integration schemes
by computingy both directly (as indicated below) and by integration of #usorption equation. We will test
several integration paths corresponding to different s$ypedeformation. Thermodynamic integration requires
knowledge ofy in a reference state. The latter was chosen to be the stdiestndiss-free grains at 0 K. The GB
free energyy, in this state is readily computed /] x /A’, whereA’ is the respective GB area. The calculations
giveo = 0.905 J/n? in agreement with previous worR.

1. Tension and compression parallel to the GB plane

The GB free energy was computed as a function of strain forumiaxial deformationse;; andess) and the
biaxial deformation. Because al}; are zero, Eq. (4) reduces to

v =[Uln/A4, (29)

offering an easy recipe for calculation®f On the other hand, the integrated forms of Eq. (6) for thefercha-
tions are
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A1
= 7(14 + Z/TllAdella (30)
A1
= 7?4 + Z/ngAdegg, (31)
A1
’y — 7?4 + Z / (7-11 —|— T22)Ad€. (32)

The GB stress;; is readily computed from Eq. (7), which witty; = 0 reduces to

1/ N )
Tii = 1 (U”V — EUHV(]) ,1=1,2. (33)

By the symmetry of the systems, = 0.

For the reference state; = 0), the calculations give;; = 1.305 JIn? and Ty, = 1.774 J/mP. During the
biaxial deformation, both components©f decrease under tension and increase under compressiob)Fighe
fact thatdr;; /0e < 0 indicates that the GB core is “softer” than the lattice (fesiexcess of compliance). At all
strains tested, both componentsgfremain positive, i.e., the GB core is under tension.

Figure 6 displays the plots of as a function of strain for all three deformation paths. Tieemte points
were obtained by direct calculations from Eq. (29), whethadines were computed by integration of Egs. (30),
(31) and (32). The excellent agreement between the twolediloas confirm the correctness and accuracy of our
methodology. Note thaty/de;; > 0, i.e.,y increases under tension and decreases under compressioab8th
components of;; are larger thary, this behavior is consistent with the Shuttleworth equa{ior).

2. Deformation normal to the GB plane

When the GB is subject to a normal stress, v is no longer identical to the excess energy. In addition to
[U]n, there is another term representing the mechanical workeohbrmal stress when the boundary is formed.
Accordingly, Egs. (4) and (6) become

v=[Uly /A —o033]VIn/A (34)

and

1=0- 5 [ Wiy do, (@)

respectively.

The integration in Eq. (35) requires knowledge of the ex@&@Bsvolume[V]y as a function ofr33. This
function has been calculated and is illustrated in Fig. fiWif] y normalized by the GB area (which remains
constant during the deformation). The stress-free valu@/df /A is 0.316 A; it increases under tension and



13

decreases under compression. The plot also reveals a cigmifension-compression asymmetry of the excess
volume. Namely, the GB core is elastically stiffer under poession and more compliant under tension.

Fig. 8 shows the GB free energy computed directly from Eq) (84screte points) and by thermodynamic
integration using Eq. (35) (solid line). Again excellentegment is observed between the two calculation methods.
Itis noteworthy thaty decreases under normal tension and increases under n@am@alession, which is consistent
with the positive sign of the excess volume. The variationsare nearly linear in stress, which is consistent with
the fact thafV]y varies withoss by only a few percent. It should be noted, however, that astress level of
about 3 GPa neglecting the second term in Eq. (34) would m®dul0% overestimate of the GB free energy.
This effect can be quite significant given that in experin{especially in polycrystalline materials) local stresses
produced in GB regions by nearby dislocations and otherctiefer arising due to the concentration of applied
loads, can readily reach GPa levels.

3. Shear deformation paralld to thetilt axis

Under a shear stress, all atoms have a displacement component inathélirection parallel to the tilt axis.
An example is shown in Fig. 9(a) where we plot the elasticldspments; relative to the state with stress-free
grains versus thes coordinate fors; = 1.5 GPa. Eachi; was averaged over atoms lying in the same (310) plane
parallel to the GB. Observe that inside the grainss a linear function ofz3. The slope of this line represents the
inverse of the shear strain3; and is the same in both grains by crystal symmetry. Note tiéfigant decrease of
the slope in the GB core. This decrease creates a relatifteofliie two linear segments and reflects the excess
of shear in the GB. This plot demonstrates how the excess sbe#ibutes to elastic response of the bicrystal.
Weissmiilleret al.3® have recently developed a kinematic theory for the averagess shear in polycrystalline
materials.

For a GB subject to the shear stress, Eq. (4) gives

VZ[U]N/A—O'3131, (36)

where the second term accounts for the work done by the sttey) the GB formation. The integrated form of
the adsorption equation (6) is

Y= — /Bld0’31- (37)

The excess shed?; is plotted in Fig. 9(b) versus the shear stregs The obvious linearity of the plot indicates
that the GB is deformed in a linear-elastic mode, with thitn&iss coefficient of about 150 GPa/nm. The respective
compliance coefficient is about 7 pm/GPa. By fitting a meatemodel to experimental data for nanocrystalline
Pd 3 Weissmiiller et af® have recently estimated the GB compliance coefficient ta8qa/GPa. The comparison
is reasonable given that these numbers refer to differedetspdifferent materials, and a specific GB in our case
and a polycrystalline material in the experiméht.

Fig. 10 shows the GB free energyas a function ofr3; computed directly from Eq. (36) and by integration of
Eqg. (37). The symmetry of this GB dictates thashould not depend on the sign®f; . It is therefore expected
that~ should reach a maximum or minimum in the stress-free statethis particular boundary the stress-free
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state is a maximum, with slowly decreasing under stress. Considering that this&fe higher order than linear,
it is not surprising that is reduced by only 0.88% under the maximum stress of 1.5 Giedtién this work.

4, Maxwell relations

There are six Maxwell relations that can be tested by sirmnatof pure Cu at 0 K. Three of them are satis-
fied automatically by the symmetry of the chosen GB, whichiadés that both derivatives must be zero. Three
remaining relations are non-trivial and permit testing Imgidations. Each of these relations has a physical and a
Lagrangian formulation, making the total of six relatiovge will present tests of two of them in detail. Test of
other Maxwell relations are summarized in Tables | (Lagian@prm) and Il (physical form).

We first examine the Maxwell relation (18) in the physicalnforThe derivatives in this relation correspond to
different uniaxial deformation paths described in SectéA 1. To compute these derivatives, we need to know
T and~ as functions ok;; andess for these two paths. The calculations were performed usigy £29) and
(33) for each deformed state of the boundary. The obtaingd- +) and(m2 — ~y) are plotted as functions of the
strainsess andey; in Figs. 11(a) and 11(b), respectively. The discrete paintsespond to separate simulations
for different strains. The dashed lines are tangents toltite pepresenting the computed derivatives at zero strain.
The derivatives were found to be 0.0159 3/far both plots. Thus, the Maxwell relation (18) holds withire
accuracy of our calculations.

In the second example we test the relation (19), this timbénliagrangian form. To evaluate the derivative in
the left-hand sider;, was computed as a function @f; for the elastic deformation described in Section IVA 2.
For the derivative in the right-hand side, the excess GBmelwas computed as a functionaf (Section IVA 1)
and normalized by the stress-free GB afgaThe respective plots are shown in Fig. 12. The derivativakiated
at zero stress were found to b#.0113 nm and0.0114 nm, respectively, which is in excellent agreement with
prediction of Eq. (19).

B. Pure Cu at finite temperatures

For a single-component GB with stress-free grains at fieitgpteratures, Eq. (4) gives the GB free energy

YA = [Uln —T[S]n. (38)

Because the excess entrd®jy cannot be easily computed by MD simulationsyas calculated by thermody-
namic integration of the Gibbs-Helmholtz equation (10) ethiloes not contaifs]. We chose the integration
path on which temperature varies,; andoss remain zero, and the lateral strain is adjusted to accomtadde
thermal expansion of the lattice. For this path, the integtform of Eq. (10) is

T
(7040) T [Uly (711 +722) A de
To

Here e is the biaxial lateral strain and the derivatilte/ dT is the thermal expansion coefficient of the stress-free Cu
lattice. The quantitiesy, Ag andTj are the GB free energy, area and temperature correspomdihg teference



15

state. The excess quantitifs] y and7;; involved in Eq. (39) were computed for a discrete set of tenapees
along the path and are presented in Figs. 13 and 14, resplgctNote that the GB stress; is anisotropic at all
temperatures along the path, with both components deaggasth temperature.

The solid line in Fig. 15 indicates the GB free energgomputed from Eq. (39) as a function of temperature.
The reference temperatufg = 300 K was used and the integration was performed to temperabathsbelow
and abovdy. The two points on the plot indicate the valuesyadt O K and at 300 K. The reference valygwas
obtained by quasi-harmonic calculatiéfsvhereas the 0 K value was computed directly by Eq. (29). @bse
that the integration towards O K gives exactly the numbeaioled by the direct calculation, which validates our
methodology. Over the entire temperature range studies] helecreases from 0.905 Hrat 0 K to 0.660 J/rhat
900 K. The trend fory to decrease with temperature is consistent with previouslsitions®33

C. Cu-Ag alloys at finite temperatures

Fig. 16 shows MC snapshots of the simulation block with treergcompositions 06.036%, 0.24% and0.58%
Ag at 800 K. These images demonstrate that Ag strongly satgedo the GB and that the segregated amount
and the width of the segregation region both increase wittperature. It is also apparent that at the highest Ag
concentrations studied here, the boundary becomes vidibdydered. In Fig. 17 we plot the excess GB volume
per unit area as a function of grain composition. The discpeints on the plot represent individual MC runs at
particular values of the imposed diffusion potenfiéd,. The excess GB volume monotonically increases with
and becomes nearly four times the value in pure Cu wigmeaches the maximum concentration of 0.58%. This
increase is consistent with the larger size of Ag atoms ingamson with Cu atoms. Note that the slope of the plot
increases at high concentrations when the boundary des/temtomic disorder.

For the simulation conditions discussed here, Eq. (4) give$B free energy

’}/A = [U]N — T[S]N — [NQ]NMgl. (40)

To circumvent a calculation ¢6] v, v was computed as a function@fy by integration of the adsorption equation
with respect tacag from the pure copper statesg = 0) to the current composition. The value pfor pure Cu
was taken from the MD simulations discussed in Section IV B.tids integration path, the temperature remains
fixed at 800 K, the grains are stress-free, drgl is varied to gradually increase the concentration of Ag. The
lateral dimensions of the system are also varied due to thmpositional strairf:”34 For this path, the integrated
form of Eq. (6) is

Cag

dM-
YA = Ao — / {[NQ]N 21
0

dCAg

de
+ (111 + ™22) Ad—} deag, (41)
CAg

where the derivativee/dcag represents the change in the stress-free lattice consintemposition.

The GB excesses entering Eqg. (41) were computed as funcicosnposition and are shown in Figs. 18 and 19.
As already expected from the images in Fig. 16, the GB setjoeg&V-| v /A increases with the grain composition
(Fig. 18). In the composition range where the boundary pvesadts relatively ordered structure, the shape of the
segregation curve is qualitatively consistent with the dranir—McLean isothermi.At higher Ag concentrations
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when the GB becomes more disordered, the slope of the séigregatherm increases, indicating an increased
capacity of this GB to absorb Ag atoms. Fig. 19 shows the G8sstcomponents;; and s as functions of
cag- Both components decrease with concentration and evéntuatge, making the GB stress tensor virtually
isotropic. Note the change of sign aof; at cag~ 0.28%, indicating that the GB is under tension below this
composition and under compression above. A similar reVefssign of GB stress with alloy composition was
observed experimentally in the Pd-H syst&m® The experiments also revealed a correlation between the GB
excess volume and segregatf§iThe two systems are very different in both thermodynamicsthe mechanism
solubility (interstitial mechanism in Pd-H, substitutadnn Cu-Ag). It can be noted, however, that the interstitial
hydrogen and the “oversized” substitutional Ag atoms batddpce compressive stresses in the lattice and can be
expected to increase the GB excess volume when segregatiorso

Finally, the GB free energy computed by thermodynamic integration (41) is plotted wetgg in Fig. 20. The
plot shows the expected decreaseyafith alloying and is convex at small concentrations in agreet with the
Langmuir—McLean isotherm. At higher concentrations tha fiirns over and becomes concave. This change of
shape reflects the positive deviation of the segregatiadhasm from the Langmuir—McLean form (cf. Fig. 18),
causing the more rapid decreaseyofOverall, the GB free energy decreases at this temperatumef = 0.70
J/n? for pure Cu toy = 0.54 J/n? atcag = 0.58%.

D. Effects of elastic deformation and temperature on segregion

The MC simulations were also used to study the effect of ielagtformation, parallel and normal to the GB
plane, and temperature on GB segregation. These effecexpressed by appropriate Maxwell relations, which
were used in the Lagrangian form in order to avoid a caloutedifv as a function of respective intensive variables.

The effect of elastic deformation parallel to the GB planewaodeled by applying a biaxial strain For this
type of deformation, the Maxwell relation (22) predicts

Oy +75) _ D ([Nolw/A) .
OMoq Ode

Fig. 21(a) shows the GB segregation per unit reference areafanction of straire computed at constarit/s;
and zeraos; andoss. The total amount of segregation increases linearly witairstin this deformation range.
As expected, tension favors the segregation of larger Amatd=ig. 21(b) shows that the sum of the GB stress
components decreases witlh; (i.e., with increasing: 4,4), which is again consistent with the atomic size effect.
The computed derivatives appearing in Eq. (42)-atet6 + 0.08 A~2 in the left-hand side an@l46 4 0.01 A2
in the right-hand side. They are opposite in sign and equaldgnitude within the error bars in agreement with
Eq. (42).

Secondly, we examined the effect of the normal steggson segregation and tested the Maxwell relation (23).
According to this relation, the effect ef3 on segregation is related to the change in the GB excess eolith
My, . Fig. 22(a) shows the segregatiov,| y /A’ as a function obss at fixed lateral dimensions of the simulation
block, constant value aff5; and zerars;. As expected from the atomic size effect, the segregatiumeases under
tension ¢33 > 0) and decreases under compressiogn (< 0). Similarly, the GB excess volume increases with
increasingM>; (and thusca,) [Fig. 22(b)]. The respective derivatives are found t27 + 0.004 A—2GPa!
in the left-hand side an@ 030 + 0.0006 A—2GPa ! in the right-hand side. Within the error bars, these deiieat
are equal in agreement with Eq. (23).
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Finally, we tested Eq. (28) which involves the change in eggtion with temperature. Fig. 23 displays
[Na]n /AT and[¥]y /A'T? as a functions of and M, respectively. These variations occur at zegpandoss
and fixed GB area. Accordingto Eq. (11), the potentiaéduces tdU ]y — [ N2] y M1 . Within the accuracy of our
calculations, the obtained derivatives(2.7 + 0.1) x 10~8 A=2K~2 in the left-hand side and (3.0 + 0.9) x 10~8
A~2K~=2in the right-hand side, are equal as predicted by Eq. (28).

The effect of the shear stresg; on segregation is expected to be a second or higher ordet &jfethis GB
and was not studied here.

V. DISCUSSION AND CONCLUSIONS

Thermodynamic properties of GBs play an important role imynaaterials processes. The GB free energy
controls the driving force of grain coarsening and affdutstiarriers of phase nucleatib®®’ The GB stress affects
internal stresses in nanocrystalline mateffai&38:3%nd their chemical reactivity. GB segregation can dralyica
change mechanical properties of polycrystalline matgtialSome phenomena can be caused by cross-effects,
such as the effect of elastic stresses on GB segregationegmegation on elastic compliance of the material.
Experimental studies of GB thermodynamics are invaluabterére, difficult and usually provide information
averaged over multiple GBs. Critical insights can be gaibgdtomistic simulations of individual GBs with
precisely known crystallography, structure and chemioatosition.

Although real materials are often subject to mechanicaldpthermodynamic calculations are usually focused
on GBs between stress-free grains. It is straightforwampigly a stress to a GB in atomistic simulations. The
main obstacle has been the absence of a thermodynamic fakfw calculations of GB properties under stress.
The existing thermodynamic theories either disregardtitesses altogether or consider only a hydrostatic state of
stress. In the latter case, the GBs are treated essentialsatne way as interfaces in fluid systems. It has not been
known how to compute, or even properly define, the GB free@®n@&@B stress and other excess properties when
the GB is subject to non-hydrostatic stresses.

In this work we applied the thermodynamic theory of coheirtarfaced to coherent GBs in the presence of
non-hydrostatic stresses. The equations of Ref. 3 weraedlgpGBs in two ways. Firstly, the fact that the system
contains only one phase was taken into account. This signific simplified the calculations. In particular, the
interface excess quantities are now defined thraugh2 determinants which can be transformed to simpler and
more intuitive expressions. Secondly, the GB theory retgthat for the system to remain a single phase under
applied stresses, both the stress tensor and the GB itsetfpoasess certain symmetries. Such symmetries must
be identified and formulated as appropriate constrains é®gpon possible state variations.

The GB free energy has been defined as the reversible work of GB formation undapplied non-hydrostatic
stress. Equation (4) expressethrough appropriate excesses of extensive propertiesandins a term account-
ing for the work of the applied stress. This term includesibek of the shear stress parallel to the boundary plane,
which exists only for coherent GBs (i.e., when the sheasstg causes an elastic response of the boundary and not
GB sliding). Furthermore, our definition gfcontains only the diffusion potentials of substitutionairponents,
avoiding chemical potentials that are undefined quantitiesn-hydrostatic solids. It is only for hydrostatic grgin
that~ can be expressed through chemical potentials as indicated.i(5).

Two forms of the generalized adsorption equation have bessepted in this work: the standard form (6) and
the Gibbs-Helmholtz form (10). The differential coefficierof these equations define the GB excesses which
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are physically meaningful and in principle measurable gtias. Along with the already known excesses such
as the GB segregation, GB stress and and GB excess volumgetiegalized adsorption equation introduces
the excess GB shear. The additional term containing the @Brsiiid not exist in previous formulations of the
adsorption equation for GBSlt has naturally appeared in our formulation due to the ipocation of the applied
shear stress. As mentioned earlier, the existence of exbess was recognized in previous mechanical theories
of interfaces and was referred to as “sli§3"®>*¥However, this quantity was not associated with an addititamen

in the adsorption equation. (See Ref. 3 for a discussionefitarmodynamic approach developed in this work in
comparison with previous mechanical theories of inteigd@é® 38404}

The Gibbs-Helmholtz form (10) of the adsorption equaticforafs efficient numerical calculations af by
thermodynamic integration starting from a state for whjds known. This integration requires knowledge of the
readily accessible excess quantities along the integrptith, such as the excess energy, the amount of segregation
and the GB stress. Equation (7) provides a numerical recipediculations of the GB stress as an appropriate
excess of the lateral stress components. Despite theatiitiportance of the GB free energy, only a few previous
calculations were performed for finite temperatdtédand none for stressed grains.

The generalized adsorption equation generates a numbeawiv®l relations between its differential coeffi-
cients. These relations describe a variety of cross-affeetween segregation, stresses, strains, temperature and
other parameters. They describe physically measuraldeteffsome of which can be practically important. As
one example, Eq. (24) predicts a relation between the affesnh applied shear stress on GB segregation, on one
hand, and the response of the excess shear to changes iffftisedipotential, on the other hand. The diffusion
potential can be controlled by varying the chemical compmsiof the material.

The proposed theory has been applied to atomistic simakaid the symmetrical tilE25 (310) [001] GB in
Cu and Cu-Ag alloys. Accurate atomistic potentials havenbeged, making these simulations relevant to real
materials. A combination of MD and MC methods has been agptiestudy the effects of elastic deformation,
chemical composition and temperature on GB propertiesnd\weith providing useful information about typical
orders of magnitude of the effects, these simulations @sees as a test bed of the theory. A number of cross-
checks have been made by comparing different calculatibtteecsame physical quantity. For example, the GB
free energy computed by thermodynamic integration was eoetpwith results of direct calculations at 0 K. As
another example, several Maxwell relations have beendéstseparate calculations of the derivatives appearing
in the right and left-hand sides. Excellent agreement weariably found in all tests, giving us confidence in the
correctness of the proposed thermodynamic equations arattiuracy of our simulations.

The simulations have also demonstrated that the effectastiestresses, temperature and segregation on the
GB free energy can be significant. These effects could comismthe accuracy of many simplified theories
involving GB precesses. For example, in the classical thebheterogeneous nucleation at GBsis assumed
to be constant. Variations of with temperature, segregation and applied stresses caificigtly impact the
nucleation barriers and thus the predicted nucleatiorsrateshould be noted that some of the GB properties
are affected by variations in temperature and chemical csitipn stronger than. For example, the excess GB
volume increases a factor of four and the GB stress chargsigit with the introduction of less than one atomic
per cent of Ag in Cu.

Finally, it should be recognized that some aspects of ounlsitions are specific to the particuldb GB chosen
for this work. This boundary has a mirror symmetry acrosspia@e normal to the tilt axis, as do most of other
symmetrical tilt GBs. Due to this symmetry, (i) the stres=mefvalue of the excess GB shear along the tilt axis is
zero [Fig. 9(b)], and (ii) thermodynamic properties of t8 do not depend on the sign of the shear stegss
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applied parallel to the tilt axis. As a result, the effectbgf on~ and other GB properties is quadratic in stress,
see example in Fig. 10. This is in contrast to the excess wuwvhich has a finite value for stress-free grains
(Fig. 7) and produces a linear response of GB propertiegd¢see examples in Figs. 8 and 12(a)]. For GBs that
do not possess the mentioned mirror symmetry, the resportise shear stress can be linear and thus stronger. For
example, the symmetrical ti£13 (341) [111] GB in Al studied by atomistic simulatiof$shows a 0.2 A shift of
one grain relative to the other parallel to the tilt axis [JL1This nonzero shift is an intrinsic structural property
of this GB and constitutes its stress-free excess shearnesepses the twofold symmetry of the GB structure
around ther, axis, so that the boundary can still support an applied sttezgsr3;. Due to this nonzero shift, the
response of the GB propertiesdg, is expected to be linear, a prediction which could be testesiulations.
The interplay between GB thermodynamics and crystal symynietan interesting subject that deserves a more
detailed study in the future.
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|| oi | o |8Bi|o(VIn/A)
Oe11 - 0.0376 J/rA| 0.0 | 0.0114 nm
Hea2|0.0376 J/IM - 0.0| 0.03749 nm|
Oos1 0.0 0.0 - 0.0
0o33(-0.0113 nm-0.03771 nnm 0.0 -

Table I: Derivatives involved in the Lagrangian form of thelvell relations (18)-(21) computed at 0 K. The expressians
the first row are the denominators of the partial derivativesile the first column contains the numerators. The devieat
were evaluated for the state with stress-free grains. Tle tesymmetrical (within the accuracy of our calculatipimsaccord
with predictions of the Maxwell relations. Some of the edrare zero due to the symmetry of the GB.

| o =] 0(m2 =) [0B1] 0 (VIn/A) |

Oe11 - 0.0159 J/M | 0.0| 0.0203 nm
De22 |0.0159 J/m - 0.0(0.006086 nm
0031 0.0 0.0 - 0.0

Oo3z| 0.0203 nm|-0.006086 nm 0.0 -

Table II: Derivatives involved in the physical form of the kdeell relations (18)-(21) computed at 0 K. The expressionthe
first row are the denominators of the partial derivativesilevthe first column contains the numerators. The derivativere
evaluated for the state with stress-free grains. The taldgmmetrical (within the accuracy of our calculations)éoad with
predictions of the Maxwell relations. Some of the entrieszaro due to the symmetry of the GB.
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Figure 1: Geometry of a symmetrical tilt GB relative to th@atinate axes.
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Grain 2

Grain 1 GB

(a) (b)

Grain 2

()

Figure 2: Two-dimensional schematic of the formation of hesent GB from a single crystal. (a) Initial single-phasgioa

of volumeV". (b) Bicrystal created by lattice transformation to a neiemmation above a plane normaltg. (c) Overlapping
shapes of the initial and final regions, showing the dispte® vectoB. This two-dimensional schematic does not show the
shear deformation normal to the page.

Figure 3: Atomic structure of the symmetrical fil5 (310) GB. The open and filled circles indicate atomic positiondteraate
(002) planes parallel to the page. The tilt axis is normahtogage. The kite-shaped structural units are outlined.
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Surface
region 2

Figure 4: Simulation block containing the5 (310) symmetrical tilt GB. The GB position is indicated by the realor. The
atoms colored in grey form the surface regions 1 and 2 diedussthe text. Boundary conditions parallel to the GB plaree a
periodic. The image was produced with the AtomEye visutitimprogrant®
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Figure 5: GB stress in pure Cu at 0 K as a function of strainB{akial strain ¢ := e11 = e22); (b) Uniaxial straine;1; ()

Uniaxial strainess.
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Figure 6: GB free energy as a function of strain for pure Culdt &) Biaxial strain ¢ := e11 = e22); (b) Uniaxial straine;1;

(c) Uniaxial straineao.
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Figure 7: Excess GB volume per unit ar¢t]~ /A, as a function of normal stresss. The calculation was performed for
pure Cu at O K.
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Figure 8: GB free energy as a function of normal stressfor pure Cu at 0 K. The discrete points were obtained by direct
calculation while the lines by thermodynamic integration.
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Figure 9: (a) Displacement; of atoms in the direction parallel to the GB plane versus tistadce normal to the GB. The
applied shear stressdég; = 1.5 GPa and the temperature is 0 K. The relative shift of the bated segments of the plot is
indicated. (b) Excess GB sheBi as a function of applied shear stress. Note that the stress-free value Bf is zero by the
symmetry of the GB studied in this work.



30

0.905 | ' ' '

Direct A
Integration — |

©
©
o
@

0.901

0.899

GB free energy (J/m2)

0.897

15 10 -05 00 05 10 15
o, (GPa)

Figure 10: GB free energy as a function of shear stress; parallel to the tilt axes at 0 K. The discrete points were ioleid
by direct calculations while the line by thermodynamic grion.
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Figure 11: Test of the Maxwell relation (18) in the physiaalm. The points represent calculations for individualissat 0
K. The dashed lines are slopes to the plots of({@) — ) versuses2 and (b)(m22 — «y) versusei1 at zero stress. The right
triangles with the slopes of 0.0159 Jmre shown as a guide to eye.



32

GB volume [V]

-2.0 -1.0 0.0 1.0 2.0
e ,(%)
Figure 12: Test of the Maxwell relation (19) in the Lagramgfarm. The points represent calculations for individuahists

at 0 K. The dashed lines are slopes to the plots of{ayersusoss and (b)[V],, /A’ versuse::. The right triangles with the
slopes of-0.0113 nm and0.0114 nm, respectively, are shown as a guide to the eye.
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Figure 13: Excess GB enerd¥/] , /A as a function of temperature for stress-free grains in pur€f@e points were obtained
by MD simulations and are connected by lines as a guide toythe e
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Figure 14: GB stress components andmz. as functions of temperature for stress-free grains in pureTe points were
obtained by MD simulations and are connected by lines asdeguithe eye.
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Figure 15: GB free energy as a function of temperature for stress-free grains in pure The line was computed by ther-
modynamic integration while the points represent direttutations at the reference temperaturelpf= 300 K and at 0 K.
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Figure 16: Snapshots of the Cu-Ag simulation block with tH& €dncentration of silverag (a) 0.036%, (b) 0.24%, and (c)
0.58% atl" = 800 K. Cu atoms are shown in yellow and Ag atoms in dark blue. Thegies were produced with the AtomEye
visualization prograni®
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Figure 17: Excess GB volume per unit argéd}n /A, as a function of the silver concentration in the grains atedftemperature
of 800 K. The points were obtained by MC simulations and arseoted by lines as a guide to the eye.
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Figure 18: GB segregatioiV2|n /A as a function of the grain compositieng at a fixed temperature of 800 K. The points
were obtained by MC simulations and are connected by linesyasde to the eye.
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Figure 19: The components: andrz, of the GB stress tensor as functions of the grain composiigat a fixed temperature
of 800 K. The points were obtained by MC simulations and armeoted by lines as a guide to the eye.
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Figure 20: GB free energy computed by thermodynamic integration as a function of traéngcompositioncag at a fixed
temperature of 800 K. The point gty = 0 represents the GB free energy in pure Cu used as the referaluee
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Figure 21: Test of the Lagrangian form of the Maxwell relat{@2) for the GB in the binary Cu-Ag solution at 800 K. The
discrete points represent MC simulation data. (a) GB sedi@y[N2]~ /A’ as a function of biaxial strain parallel to the
boundary. (b) Sum of the principal components, and 3., of the GB stress tensor as a function of the diffusion paent
Mo>1. The slopes of the dashed lines represent the derivatiyesasipg in the Maxwell relation. The vertical dashed lines
indicate the state in which the derivatives are taken, steess-free grains with the chemical compositiorgf = 0.036%.
The right triangles with the slopes 0f46 A~2 and—0.46 A2, respectively, are shown as a guide to the eye.
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Figure 22: Test of the Lagrangian form of the Maxwell relati@3) for the GB in the binary Cu-Ag solution at 800 K.
The discrete points represent MC simulation data. (a) GBegdgion[N2] /A’ as a function of normal stresss. (b) Excess
volume[V]n /A’ as a function of the diffusion potential>;. The slopes of the dashed lines represent the derivatiyesasapg
in the Maxwell relation. The vertical dashed lines indidhiestate in which the derivatives are taken, i.e., stressgrains with
the chemical composition afy = 0.036%. The right triangles with the slopes 6030 A~>GPa ' and0.027 A~2GPa’,
respectively, are shown as a guide to the eye.
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Figure 23: Test of the Lagrangian form of the Maxwell relat{@8) for the GB in the binary Cu-Ag solution at 800 K. The
discrete points represent MC simulation data. (a) GB sedi@y[N2]~ /A’ as a function of temperature. (b) The potential
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[T]n/A'T? as a function of the diffusion potentiall>;. The slopes of the dashed lines represent the derivatiyesagpg in
the Maxwell relation. The vertical dashed lines indicate state in which the derivatives are taken, i.e., stress¢rains with
the chemical composition ey = 0.036%. The right triangles with the slopes ef2.7 x 1078 A=2K=2 and—3.0 x 1078

A—2K~2, respectively, are shown as a guide to the eye.



