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The thermodynamic theory of coherent interfaces developedin Part I of this work is applied to grain bound-

aries (GBs) subject to non-hydrostatic elastic deformations. We derive expressions for the GB free energy as

the reversible work of GB formation under stress. We also present a generalized adsorption equation whose dif-

ferential coefficients define the GB segregation, GB stress tensor, GB excess volume, and GB excess shear. The

generalized adsorption equation generates a set of Maxwellrelations describing cross-effects between different

GB properties. The theory is applied to atomistic simulations of a symmetrical tilt GB in Cu and Cu-Ag alloys.

Using a combination of molecular dynamics and Monte Carlo methods, we compute a number of GB excess

quantities and their dependencies on the applied stresses,temperature and chemical composition in the grains.

We also test several Maxwell relations and obtain excellentagreement between the theory and simulations.

PACS numbers: 64.10.+h, 64.70.K-, 68.35.-p, 68.35.Md

Keywords: Grain boundary; interface thermodynamics; interface free energy; interface stress; segregation.

I. INTRODUCTION

Solid-solid interfaces are important elements of materials microstructure. They can strongly affect thermody-

namic stability of materials, phase transformations and many physical and mechanical properties.1,2 In Part I of this

work3 we developed a thermodynamic theory of coherent interfacesin multicomponent systems subject to non-

hydrostatic mechanical stresses. Coherent interfaces were defined as those whose formation and motion conserves

lattice sites and which support static shear stresses applied parallel to the interface plane. For such interfaces,

we derived thermodynamic equations for the interface free energyγ as an excess of appropriate thermodynamic

potentials. We also derived a generalized adsorption equation, along with its Gibbs-Helmholtz form, which are

the fundamental equations of interface thermodynamics. The generalized adsorption equation naturally led us

to definitions of the interface stress tensor, the interfaceexcess volume, the excess shear and a number of other

measurable excess quantities. It also generated a set of Maxwell relations describing interesting cross-effects.

The goal of Part II of this work is to apply the theory of Ref. 3 to atomistic simulations of coherent grain bound-

aries (GBs). GBs are interfaces between regions of the same crystalline phase with different lattice orientations.

Similarly to coherent phase boundaries, coherent GBs can support not only stresses normal to their plane but also

shear stresses parallel to it. When a coherent GB moves, it conserves the number of lattice sites and only rearranges

them from one crystallographic orientation to the other. Ifa GB can be equilibrated under applied stresses, the

grains generally end up in different thermodynamic states due to elastic anisotropy of the lattice. In particular,

their equilibrium chemical compositions and strain energydensities can be generally different. In such cases, the

GB can be formally treated as simply a particular case of a phase boundary and our theory3 applies without mod-

ifications. However, there are certain crystallographic symmetries and types of applied loads that leave the grains

thermodynamically identical. The exact definition of “thermodynamically identical” grains and the corresponding

symmetries were discussed in Part I.3 In such cases, the two grains are parts of asingle phase and all thermody-
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namic equations must be modified accordingly. The equationstake simpler forms, which facilitates their testing

by simulations. At the same time, this relatively simple case preserves most of the key concepts and relations of

the general theory,3 including the adsorption equation, the excess volume, excess shear, interface stress, and most

of the Maxwell relations. Thus, this case offers a convenient test bed of our theory.

In Section II we discuss symmetry requirements imposed on GBs that preserve the grain identity under stresses

and specialize the general thermodynamic relations of Ref.3 to this case. In Section III we introduce our simu-

lation methodology and provide computational details. Theresults of the simulations are reported in Section IV,

which is the central part of this work. The results include the effects of deformation, temperature and chemical

composition of the GB free energy and GB stress. We also test several Maxwell relations that characterize me-

chanical, mechanochemical, thermomechanical and thermochemical responses of the boundary. In Section V we

summarize our work and draw conclusions.

II. THERMODYNAMICS OF GRAIN BOUNDARIES

A. Grain boundary symmetry considerations

When the grains separated by a GB are stress-free, they are thermodynamically identical and form a single-

phase system. As mentioned above, when a stress is applied tothe GB, it generally destroys the initial equilibrium

between the grains due to elastic anisotropy of the lattice.The system can reach a new equilibrium state, but the

states of the grains generally become non-identical. We areinterested in different cases, namely, in special cases

when the applied stresses do preserve the single-phase nature of the system.

As an example, consider a coherent symmetrical tilt GB shownschematically in Fig. 1. Suppose the tilt axis of

the boundary is aligned parallel to the Cartesian axisx1 while the GB plane is normal to the axisx3. Due to the

mirror symmetry across the GB plane, homogeneous tensions,compressions and in-plane shears parallel to the GB

plane preserve the thermodynamic identity of the grains. The same is true for tensions and compressions normal

to the GB plane. Furthermore, due to the twofold symmetry around thex2 axis, the shear stressσ31 parallel to

the tilt axis also leaves the grains identical. The only remaining stress component is the shearσ32 applied normal

to the tilt axis. This stress can cause GB migration coupled to shear deformation of the grains.4 Hypothetically,

this migration could be stopped by creating different chemical compositions in the grains and thus an additional

thermodynamic driving force opposing the coupled motion. However, even if that happened, the difference in

chemical compositions would destroy the thermodynamic identity of the grains and the single-phase treatment of

the GB would be impossible. To summarize, we can elasticallydeform a bicrystal with a symmetrical tilt boundary

and still treat the two grains as a single phase as long as we keepσ32 = 0.

There can be other boundaries permitting single-phase treatment under applied stresses. For example, a twist

boundary produced by rotation of two cubic lattices around acommon [110] axis contains two mutually perpendic-

ular two-fold symmetry axes lying in the GB plane. Suppose these symmetry axes are aligned with the coordinate

axesx1 andx2. Then the system preserves the single-phase state when it issubject to homogeneous lateral defor-

mations, normal tension or compression, and eitherσ31 6= 0 with σ32 = 0 or σ32 6= 0 with σ31 = 0. While such

twist boundaries could be the subject of future work, in thispaper we chose a simpler and better studied case of a

symmetrical tilt GB.

In the equations presented in this Section, we include all stress components with the understanding that in

applications to a particular GB some of them may disappear due to symmetry restrictions.
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B. The grain boundary free energy

To simplify the exposition, we will focus on a binary substitutional solid solution whose chemical composition

will be characterized by the atomic fraction,c2, of component 2. An extension to multicomponent systems with

both substitutional and interstitial atoms is straightforward by analogy with Part I.3 Vacancies are neglected andc2
can be interpreted as the fraction of lattice sites occupiedby atoms 2. This solid solution has eight thermodynamic

degrees of freedom which can be, for example, the temperature T , compositionc2, and six components of the

stress tensorσij .

Following Gibbs,5 we define the GB free energyγ as the reversible work required for creation of a unit GB

area. To expressγ through other thermodynamic properties, we consider a thought experiment in which the GB

is formed starting from a single-crystalline sample. The GBformation process is illustrated by a two-dimensional

schematic in Fig. 2. The initial state of the system is an infinitely large single crystal, in which we select a region

of volumeV ′ with the shape of a parallelepiped. The top and bottom faces of the parallelepiped are and always

remain normal to thex3 axis. This single crystal is in internal equilibrium at uniform values of the temperature,

composition and stress.

To create a tilt GB, we reversibly transform the lattice above a chosen plane normal to thex3 axis to a new

crystallographic orientation. The shape of the upper part of the selected region, which now becomes part of the

upper grain, undergoes a shear deformation parallel to the GB plane(x1, x2). The process is also accompanied by

a tensile or compressive deformation normal to thex3 axis. During this process, the cross-section of the region

parallel to the GB plane remains fixed in order to maintain thecoherency. Suppose the lattice of the lower grain

is fixed in space. Then, as a result of the GB formation, the lattice sites near the upper face of the parallelepiped

undergo a displacement by a vectorB shown in Fig. 2. This vector will appear in the subsequent thermodynamic

equations because it defines the mechanical work,Wm, performed by the stressσij during the GB formation.

As in Part I,3 we assume that the GB formation occurs at fixed values ofT , σ3i, and the diffusion potential,6,7

M21, of component 2 relative to component 1. The system is open and its average chemical composition is allowed

to vary (subject to the conservation of sites). The system can also exchange heat with the environment. In the final

state, the grains are thermodynamically identical and thushave the same temperature, chemical composition and

stress as in the initial single crystal. The energy change∆U of the discussed region is the sum of the heatT∆S,

the chemical workM21∆N2, the mechanical workWm = AΣiBiσ3i, and the non-mechanical workWnm = γA

expended for the formation of the GB. HereA is the GB area,∆S is the entropy change of the region, and∆N2 is

the change in the number of atoms 2. The First Law of thermodynamics leads to the following expression forγA:3

γA = ∆U − T∆S −M21∆N2 −A
∑

i=1,2,3

Biσ3i. (1)

This equation can be rewritten in a form which is more convenient for atomistic simulations. Namely,∆U can

be computed as

∆U = U −N(Ug/Ng), (2)

whereU is the total energy of the region containing the GB,N is the total number of atoms in this region, and

the quantitiesUg andNg refer to anarbitrarily chosen homogeneous region inside one of the grains (hence the

subscriptg). More generally, for any extensive propertyZ we introduce the notation

[Z]N := Z −N (Zg/Ng) . (3)
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The meaning of[Z]N is the GB excess of propertyZ relative to a homogeneous grain region comprising the same

total number of atoms as the region containing the boundary.For example, the excess[N2]N characterizes the GB

segregation of component 2. It can be shown that the excess quantities defined by Eq. (3) do not depend on the

choice of the boundaries of the two regions (with and withoutthe GB) involved in the calculation.3,8

It should be emphasized that the above definition of excessesis different from the one introduced by Gibbs,

which was based on the construct of the dividing surface.5 In the latter case, the two regions used in the excess

calculation have the same volume but generally contain different numbers of atoms. Accordingly, the Gibbsian

excess volume of any interface is zero by definition. The excess defined by Eq. (3) retains the GB excess volume,

an important property which was measured both experimentally9–11 and in simulations.12–14

Using this definition of excess quantities, Eq. (1) finally becomes

γA = [U ]N − T [S]N −M21 [N2]N − σ33[V ]N −A
∑

i=1,2

Biσ3i. (4)

Note that in the mechanical work term, we separated the contributions fromi = 1, 2 andi = 3. This produced a

separate term containing the GB excess volume[V ]N = AB3 and two terms representing the work of the shear

stressesσ31 andσ32, respectively. The coefficientsAB1 andAB2 appearing in the last two terms are the excess

shears of the boundary. Such shears exist only for coherent interfaces and were discussed in detail in Ref. 3.

Eq. (4) is a particular case of Eq. (96) of Part I.3 It clearly shows that the free energy of a GB subject to an applied

stress includes the work performed by the stress during the boundary formation. In the particular case when the

grains are stressed hydrostatically, the terms withσ31 andσ32 disappear. Furthermore, in hydrostatic systems

M21 = µ2 − µ1, whereµi are chemical potentials of the components. (While undefinedin non-hydrostatically

stressed solids,5 chemical potentials are well-defined quantities under hydrostatic conditions.) Eq. (4) becomes

γA = [U − TS + pV − µ1N1 − µ2N2]N

= U − TS + pV − µ1N1 − µ2N2, (5)

wherep := −σ33 is pressure inside the grains and we used the relationUg − TSg + pVg − µ1N1g − µ2N2g = 0

for homogeneous hydrostatic systems. Eq. (5) recovers Gibbs’ expression forγA in fluid systems.5

C. The adsorption equation

The adsorption equation of an interface expresses the differential ofγA in terms of differentials of independent

intensive variables defining the equilibrium state of the system. It is the fundamental equation of the interface,

from which all other interface properties we can be derived.The adsorption equation of a GB subject to applied

stresses was derived in Part I3 as a particular case of the general coherent interface theory when the two phases

are thermodynamically identical. Without repeating the derivation, we will adapt Eq. (93) from Ref. 3 for the

particular case considered here:

d (γA) = −[S]NdT − [N2]NdM21 − [V ]Ndσ33

− A
∑

i=1,2

Bidσ3i +A
∑

i,j=1,2

τijdeji. (6)

The last sum in this equation contains the symmetrical2×2 lateral strain tensordeji describing elastic stretching

(de11 andde22) and shearing (de12) of the boundary. It is the small-strain tensor relative to the current state of
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the boundary. The coefficients in front ofdeji describe the effect of the lateral strains on the total GB free energy

γA. Tensorτij is called theGB stress tensor and is similar to the interface stress discussed by Gibbs forsolid-fluid

interfaces.5 Gibbs distinguished between the reversible work of interface formation, represented byγ, and the

reversible work of elastic deformation of the interface, represented by interface stress. For solid-fluid interfaces,

the components ofτij turn out to be quite different fromγ and can be positive or negative.15 The same is expected

to be true for the GB stress.

As other coefficients in Eq. (6), the GB stress is an excess quantity. Namely, it is the excess of lateral components

of the stress tensor relative to their values inside the grains. The local stress in the GB core region is generally

different from the stressσij in the grains, creating a tensile or compressive state of theboundary core described by

τij . Adapting Eq. (95) from Ref. 3,τij can be written in the form

τij =
1

A



σijV − δijσ33V −ABiσ3j − δij
∑

k=1,2

ABkσ3k





−
N

ANg

(σijVg − δijσ33Vg) . (7)

Here,δij is the Kronecker delta,σij are the lateral stress components averaged over the volumeV of the region

containing the GB, andVg andNg refer to an arbitrarily chosen homogeneous region inside the grains. Eq. (7)

shows that, even thoughτij is an excess of the lateral stress components, its calculation generally involves also the

shear and normal stress componentsσ3k (k = 1, 2, 3). This complexity of the GB mechanics is further manifested

in the Maxwell relations discussed later. In the particularcase when the grains are hydrostatic, the adsorption

equation becomes

d (γA) = −[S]NdT − [N2]Nd (µ2 − µ1) + [V ]Ndp+A
∑

i,j=1,2

τijdeji, (8)

with the GB stress given by

τij =
V

A
(σij + δijp) . (9)

The adsorption equation (6) contains eight independent differentials representing the eight degrees of freedom

of the single-phase system. However, as discussed above, inorder to keep the grains thermodynamically identical,

certain symmetry-dictated constraints need to be imposed on the applied stresses, such asσ32 = 0 for symmetrical

tilt boundaries. Such constraints reduce the actual numberparameters that can be varied independently.44

Equation (6) can be rewritten in another form by expressing[S]N from Eq. (4) and inserting it in Eq. (6). After

some rearrangement this gives

d

(

γA

T

)

= −
Ψ

T 2
dT −

[N2]N
T

dM21 −
[V ]N
T

dσ33−
A

T

∑

i=1,2

Bidσ3i +
A

T

∑

i,j=1,2

τijdeji, (10)

where

Ψ := [U ]N −M21 [N2]N − σ33[V ]N −A
∑

i=1,2

Biσ3i. (11)

Eq. (10) can be called the Gibbs-Helmholtz form of the adsorption equation. Its derivation is mathematically

similar to the derivation of the classical Gibbs-Helmholtzequation∂ (G/T ) /∂T = −(U + pV )/T 2 for bulk fluid
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systems,G being the Gibbs free energy.16 In fact, if all variables in Eq. (10) are fixed and only temperature is

varied, this equation reduces to∂ (γA/T )/∂T = −Ψ/T 2 with γA playing the role ofG andΨ playing the role

of the enthalpyU + pV .

The advantage of the Gibbs-Helmholtz form (10) over the standard form of the adsorption equation is that the

former does not contain the excess entropy, the quantity which is difficult to measure or compute. This makes

Eq. (10) more suitable for calculations ofγ by thermodynamic integration. Indeed, all excess quantities appearing

in Eq. (10) are easily accessible by atomistic simulations.Thus, all differential coefficients of this equation can

be readily computed along an equilibrium path connecting a chosen reference state with the state of interest. This

approach to calculation ofγ will be applied later in this paper.

D. The Lagrangian and physical forms of the adsorption equation

As discussed in Section II B (see also Part I),3 the productγA appearing in the adsorption equations (6) and (10)

is the total free energy of a GB patch within a selected regioncontaining a fixed set of lattice sites. During the lateral

deformations described by the strain tensordeij , those lattice sites are conserved and are only stretched and/or

sheared elastically parallel to the GB plane. In terms of continuum mechanics,17 this means that the Lagrangian

area of the GB remains fixed whereas its Eulerian (physical) areaA changes. Let the GB area in its current state,

i.e. prior to the application of the straindeij , be denotedA′. Then there are two ways to define a specific GB free

energy: by dividingγA by the physical (elastically deformed) areaA, and by dividing it by the Lagrangian area

A′. The first definition gives the physical GB free energyγ, while the second gives the Lagrangian GB free energy

γ′ := (γA)/A′.

This classification can be applied to all other excess quantities: any total excess[Z]N generates the specific ex-

cesses[Z]N/A (physical) and[Z]N/A′ (Lagrangian). In particular, the GB stressτij introduced above is the phys-

ical specific excess of the lateral stress components, whereasτ ′ij := (τijA)/A
′ is the corresponding Lagrangian

excess. Likewise, besides the physical excess shearsB1 andB2 we can introduce their Lagrangian counterparts

B′
1
:= (B1A) /A

′ andB′
2
:= (B2A) /A

′.

To emphasize that Eqs. (6) and (10) are Lagrangian forms of the adsorption equation, they can be rewritten as

dγ′ = −
[S]N
A′

dT −
[N2]N
A′

dM21 −
[V ]N
A′

dσ33

−
∑

i=1,2

B′
idσ3i +

∑

i,j=1,2

τ ′ijdeji
(12)

and

d

(

γ′

T

)

= −
Ψ

A′T 2
dT −

[N2]N
A′T

dM21 −
[V ]N
A′T

dσ33−
∑

i=1,2

B′
i

T
dσ3i +

∑

i,j=1,2

τ ′ij
T

deji, (13)

where all differential coefficients are Lagrangian specificexcesses. To obtain the respective physical forms of the

adsorption equation, we take the differential ofγA in the left-hand side and move the termγdA to the right-hand

side. Using the relationdA = A
∑

i,j=1,2 δijdeij , we obtain

dγ = −
[S]N
A

dT −
[N2]N
A

dM21 −
[V ]N
A

dσ33

−
∑

i=1,2

Bidσ3i +
∑

i,j=1,2

(τij − δijγ) deji
(14)
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and

d
( γ

T

)

= −
Ψ

AT 2
dT −

[N2]N
AT

dM21 −
[V ]N
AT

dσ33−
∑

i=1,2

Bi

T
dσ3i +

∑

i,j=1,2

(τij − δijγ)

T
deji. (15)

As for phase boundaries,3 Eqs. (12) and (14) generate the Lagrangian form of the Shuttleworth equation,8

∂γ′

∂eij
= τ ′ij , (16)

as well as its physical form,18

∂γ

∂eij
= τij − δijγ. (17)

E. Maxwell relations

All forms of the adsorption equation discussed above expressdγ, d(γA), d(γ/T ) andd(γA/T ) as perfect dif-

ferentials of intensive variables. These equations generate a number of Maxwell relations between their differential

coefficients. Since these differential coefficients are either Lagrangian or physical excesses, each Maxwell relation

can be written in two forms: Lagrangian and physical. The preferred choice of the form depends on the case.

For example, in Maxwell relations involving the GB stress, the Lagrangian form contains the readily accessible

tensorτ ′ij , whereas the physical form contains the quantity(τij − δijγ) whose calculation requires knowledge of

γ. Becauseγ is difficult to compute or measure experimentally, the Lagrangian form is preferred.

A number of Maxwell relations were presented in Part I of thiswork.3 For reference purposes, they are listed

below in a form adapted for GBs. Each relation is given in the Lagrangian and physical forms. In some cases,

when the derivatives are taken at a fixed cross-section of theGB, the two forms are identical and we list only

the Lagrangian form. As in Ref. 3, all relations are divided into four categories, depending on the type processes

represented by the derivatives.

(i) Mechanical relations:

∂τ ′ij
∂ekl

=
∂τ ′kl
∂eij

,
∂ (τij − δijγ)

∂ekl
=

∂ (τkl − δklγ)

∂eij
,

i, j, k, l = 1, 2,

(18)

∂τ ′ij
∂σ33

= −
∂ ([V ]N/A′)

∂eij
,

∂ (τij − δijγ)

∂σ33

= −
∂ ([V ]N/A)

∂eij
,

i, j = 1, 2,

(19)

∂τ ′ij
∂σ3k

= −
∂B′

k

∂eij
,

∂ (τij − δijγ)

∂σ3k

= −
∂Bk

∂eij
,

i, j, k = 1, 2,

(20)

∂B′
k

∂σ33

=
∂ ([V ]N/A′)

∂σ3k

, k = 1, 2. (21)
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(ii) Mechanochemical relations:

∂τ ′ij
∂M21

= −
∂ ([N2]XY /A

′)

∂eij
,

∂ (τij − δijγ)

∂M21

= −
∂ ([N2]N/A)

∂eij
,

i, j = 1, 2,

(22)

∂ ([V ]N/A′)

∂M21

=
∂ ([N2]N/A′)

∂σ33

, (23)

∂B′
k

∂M21

=
∂ ([N2]N/A′)

∂σ3k

, k = 1, 2. (24)

(iii) Thermomechanical relations:

∂
(

τ ′ij/T
)

∂T
= −

∂
(

[Ψ]N/A′T 2
)

∂eij
,

∂ {(τij − δijγ) /T }

∂T
= −

∂
(

[Ψ]N/AT 2
)

∂eij
,

i, j = 1, 2,

(25)

∂ ([V ]N/A′T )

∂T
=

∂
(

[Ψ]N/A′T 2
)

∂σ33

, (26)

∂B′
k

∂T
=

∂
(

[Ψ]N/A′T 2
)

∂σ3k

, k = 1, 2. (27)

(iv) Thermochemical relation:

∂ ([N2]N/A′T )

∂T
=

∂
(

[Ψ]N/A′T 2
)

∂M21

, (28)

Eqs. (18), (19) and (20) describe the effect of applied stresses on the GB stress. In Eq. (19), the right-hand side

describes the GB “Poisson effect”, i.e, the effect of lateral strains on the GB “thickness” (excess volume per unit

area). The right-hand side of Eq. (21) represents a more subtle effect, in which applied shear stresses influence the

GB excess volume. The right-hand sides of Eqs. (22), (23) and(24) describe the effect of applied lateral strains,

normal stress and shear stresses on GB segregation.

III. METHODOLOGY OF ATOMISTIC SIMULATIONS

A. Simulated systems

A bicrystal containing a symmetrical tiltΣ5 (310) GB was created by standard geometric constructions.19 The

grains were symmetrically misoriented by36.87◦ around the[001] tilt axis parallel to thex1 direction of the

coordinate system. The GB plane is(310) and is normal to thex3 axis. The atomic structure of this boundary

viewed down the tilt axis consists of identical kite-shapedstructural units shown in Fig. 3. Due to the2mm
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symmetry of this boundary, uniform elastic deformations ofthe bicrystal create identical stress tensors in both

grains and thus preserve equilibrium between them as long asthe shear stressσ32 remains zero. A nonzeroσ32

destroys the identity of the grains and induces coupled motion of this boundary.4,20 It should be noted that this

boundary remains coupled even atσ32 = 0. Its spontaneous displacements up and down are accompaniedby

concurrent grain translations by geometrically prescribed amounts.4 Such coupled displacement-translation events

are equilibrium fluctuations and do not contradict our thermodynamic analysis.

The simulation block had dimensions22 × 23 × 145 Å and contained5256 atoms (Fig. 4). Periodic boundary

conditions were applied in thex1 andx2 directions parallel to the GB plane. In thex3 direction, the grains

terminated at “surface regions” labeled 1 and 2. The thickness of each surface region was twice the cutoff radius

of atomic interactions. The motion of atoms in these regionswas subject to certain restrictions which produced

desired states of stress in the system. Unless otherwise stated, the atoms in region 2 are fixed in their perfect lattice

positions to prevent rigid translations of the entire simulation block.

We used pure Cu and Cu-Ag alloys as model materials. Interactions between the atoms were modeled by

embedded-atom method potentials for copper21 and the Cu-Ag system.22 The binary potential reproduces the

eutectic phase diagram of the Cu-Ag system in semi-quantitative agreement with experiment.23 Cu was chosen as

component 1 and Ag as component 2. The chemical composition is characterized by the atomic fraction,cAg, of

Ag atoms. In this work we studied Cu-rich solid solutions with cAg less than 1%.

B. Simulations in pure Cu

The effect of elastic deformation on GB properties in pure Cuwas studied at the temperature of 0 K. Lateral

deformations of the simulation block were described by a small-strain tensoreij relative to the initial state with

stress-free grains. To compute the GB excess properties as functions ofe11, e22, σ31 andσ33 and to test the

Maxwell relations (18)-(21), the GB was elastically deformed along various deformation paths. The deformations

included tensions and compressions parallel to the coordinate axes and a shear parallel to the GB plane in thex1

direction.

Uniaxial and biaxial deformations parallel to the GB plane were modeled by imposing the strainse11 or e22 (or

both) while keeping the stress componentsσ31, σ32 andσ33 zero. For biaxial deformations the block was strained

by e11 = e22 := e. The deformations were implemented by scaling the atomic coordinates in small increments

followed by static relaxation after each step. During the relaxation, the lateral dimensions of the system were kept

fixed, allowing the atoms to move until the total energy reached a minimum. The amount of strain was varied from

−1.6% (compression) to1.6% (tension). Because the principal axes of stress and strain coincide by symmetry

of the system, such deformations do not create any shear stressesσ31 or σ32. Furthermore, atoms in the surface

region 1 were allowed to move freely in thex3 direction, imposing the zero-stress conditionσ33 = 0.

Tension and compression normal to the GB plane were applied by scaling thex3 coordinates of all atoms by

small increments followed by static relaxation. During therelaxation, atomic positions in the surface regions 1

and 2 remained fixed. This deformation produced a normal stressσ33 while keeping the shear stressesσ31 andσ32

zero by symmetry. The relaxedσ33 values implemented in the simulations ranged form−2.4 GPa (compression)

to 2.7 GPa (tension).

Finally, the shear stressσ31 parallel to the tilt axis was applied at fixed lateral dimensions of the simulation block

and zeroσ33. The shear was imposed by incremental rigid displacements of surface region 1 in thex1 direction
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while keeping fixed atomic positions in surface region 2. During the relaxation, the atoms in surface region 1 were

allowed to move only in thex3 direction, imposing theσ33 = 0 condition. Using this procedure,σ31 was ramped

from 0 to 1.49 GPa. Changing the sign of the shear would produce identical result due to the mirror plane normal

to thex1 axis.

For calculation of excess quantities, the region containing the GB comprised all atoms separated by more than

20 Å from each of the surface regions. The grain properties were computed by averaging over two approximately

25 Å thick homogeneous regions selected inside the grains and not influenced by the GB or the surface regions.

The exact boundaries of these regions were chosen to coincide with (310) atomic planes. To calculate the relevant

components of vectorB, all atoms outside the GB core were assigned to individual (310) layers and average

coordinates of atoms belonging to such layers were computed. Let (X1, X2, X3) denote the average coordinates

of the top layer of the region containing the GB relative to its bottom, and let(X1g, X2g, X3g) be a similar vector

computed for the selected homogeneous grain region. ThenB1 andB3 are given byBi = Xi − (N/Ng)Xig ,

i = 1, 3.

Testing the Maxwell relations required calculation of derivatives of GB excess quantities with respect toe11,

e22, σ31 or σ33. To this end, the discrete data points obtained by individual simulations were fitted with a second

order polynomial and the derivative was evaluated for the stress-free state.

The GB properties at finite temperatures were studied by molecular dynamics (MD) simulations in the NVT

ensemble using the Nose-Hoover thermostat. The MD simulations employed the ITAP Molecular Dynamics (IMD)

program24–26and were performed in the temperature range from 0 K to 900 K in100 K steps. At each temperature,

the simulation block was pre-expanded by the thermal expansion factor computed previously21 to eliminate thermal

stresses in the grains. No restrictions were imposed on atomic motion in the surface regions 1 and 2, turning them

to open surfaces. While this procedure ensured stress-freestates inside the grains, finite lateral stressesσ11 and

σ22 existed in the GB region due to the GB stressτij . At each temperature, the system was equilibrated for

2 ns, followed by a 10 ns long production run during which multiple snapshots of the system were generated.

The snapshots contained positions of atoms as well as their energies and stresses. This data was later used for

post-processing the results.

C. Simulations for the binary Cu-Ag system

To model the binary Cu-Ag system at finite temperatures, we used Monte Carlo (MC) simulations in the semi-

grand canonical ensemble.27–29 In this ensemble, the temperature and the total numberN of atoms are fixed,

whereas the positions and chemical species of the atoms can vary. Each step of the MC process includes a random

selection of an atom and its small random displacement with simultaneous random change of its chemical species.

The trial move is accepted or rejected according to the Metropolis algorithm. The probability of switching chemical

species depends on the diffusion potentialM21, which is an input parameter of the simulation. The MC simulations

allow the system to reach equilibrium much faster than by MD simulations, which require actual diffusion of atoms.

The MC simulations were performed at a constant temperatureof 800 K and sampled the composition range

from cAg = 0 to cAg = 0.58% inside the grains. Different chemical compositions in the grains were created

by adjusting the value ofM21. Prior to each simulation, the block was pre-expanded according to the expansion

coefficient of a bulk solid solution subject to the chosenM21. Such expansion coefficients were computed in

separate MC simulations of a single crystal with all-periodic boundary conditions in the NPT ensemble at zero
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pressure. This pre-expansion procedure was applied to eliminate the compositional and thermal stresses inside the

grains. During the subsequent MC simulations, thex1 andx2 dimensions of the simulation block remained fixed,

whereas in thex3 direction the grains terminated at free surfaces. In each simulation run, the system was first

equilibrated by5×104 MC steps per atom, followed by a production stage which typically comprised7×105 MC

steps per atom. During the production run, snapshots containing energies, stresses and atomic species of individual

atoms were generated every 70 MC steps per atom.

To test the Maxwell relations, four types of simulation wereconducted: (i) biaxial tension/compression parallel

to the GB plane at constantT , M21, σ31 andσ33, (ii) tension/compression normal to the GB plane at constant

T , M21 and e, (iii) variation of M21 at constantT , σ31, σ33 and e, and (iv) variation ofT at constantM21,

σ31, σ33 ande. The elastic deformations were implemented by the same methodology as in the 0 K simulations

described above. In each of the four types of state variations, several MC simulations were performed at different

values of the respective intensive parameter (e, σ33, M21 or T ). Each simulation included the equilibration and

production stages as indicated above and produced average values of the relevant GB properties. The discrete

data points thus obtained were fitted with a second order polynomial to compute the respective derivative. All

derivatives appearing in the Maxwell relations were evaluated for the same thermodynamic state of the grains,

namely,T = 800 K, M21 = 0.4 eV andσij = 0. In this state, the chemical composition inside the grains was

cAg = 0.036% .

IV. RESULTS

A. Pure Cu at 0 K

At 0 K the entropy terms in all equations vanish and there is noneed to compute the excess entropy[S]N .

This simplifies all thermodynamic equations and enables direct calculation ofγ through appropriate excesses of

energy and other quantities. Calculations at 0 K allow us to test the proposed thermodynamic integration schemes

by computingγ both directly (as indicated below) and by integration of theadsorption equation. We will test

several integration paths corresponding to different types of deformation. Thermodynamic integration requires

knowledge ofγ in a reference state. The latter was chosen to be the state with stress-free grains at 0 K. The GB

free energyγ0 in this state is readily computed by[U ]N/A′, whereA′ is the respective GB area. The calculations

giveγ0 = 0.905 J/m2 in agreement with previous work.19

1. Tension and compression parallel to the GB plane

The GB free energy was computed as a function of strain for twouniaxial deformations (e11 ande22) and the

biaxial deformation. Because allσ3i are zero, Eq. (4) reduces to

γ = [U ]N/A, (29)

offering an easy recipe for calculation ofγ. On the other hand, the integrated forms of Eq. (6) for these deforma-

tions are
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γ =
γ0A

′

A
+

1

A

ˆ

τ11Ade11, (30)

γ =
γ0A

′

A
+

1

A

ˆ

τ22Ade22, (31)

γ =
γ0A

′

A
+

1

A

ˆ

(τ11 + τ22)Ade. (32)

The GB stressτij is readily computed from Eq. (7), which withσ3i = 0 reduces to

τii =
1

A

(

σiiV −
N

Ng

σiiVg

)

, i = 1, 2. (33)

By the symmetry of the systemτ12 = 0.

For the reference state (σij = 0), the calculations giveτ11 = 1.305 J/m2 andτ22 = 1.774 J/m2. During the

biaxial deformation, both components ofτij decrease under tension and increase under compression (Fig. 5). The

fact that∂τii/∂e < 0 indicates that the GB core is “softer” than the lattice (positive excess of compliance). At all

strains tested, both components ofτij remain positive, i.e., the GB core is under tension.

Figure 6 displays the plots ofγ as a function of strain for all three deformation paths. The discrete points

were obtained by direct calculations from Eq. (29), whereasthe lines were computed by integration of Eqs. (30),

(31) and (32). The excellent agreement between the two calculations confirm the correctness and accuracy of our

methodology. Note that∂γ/∂eii > 0, i.e.,γ increases under tension and decreases under compression. Since both

components ofτij are larger thanγ, this behavior is consistent with the Shuttleworth equation (17).

2. Deformation normal to the GB plane

When the GB is subject to a normal stressσ33, γ is no longer identical to the excess energy. In addition to

[U ]N , there is another term representing the mechanical work of the normal stress when the boundary is formed.

Accordingly, Eqs. (4) and (6) become

γ = [U ]N /A− σ33[V ]N/A (34)

and

γ = γ0 −
1

A

ˆ

[V ]N dσ33, (35)

respectively.

The integration in Eq. (35) requires knowledge of the excessGB volume [V ]N as a function ofσ33. This

function has been calculated and is illustrated in Fig. 7 with [V ]N normalized by the GB area (which remains

constant during the deformation). The stress-free value of[V ]N/A is 0.316 Å; it increases under tension and
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decreases under compression. The plot also reveals a significant tension-compression asymmetry of the excess

volume. Namely, the GB core is elastically stiffer under compression and more compliant under tension.

Fig. 8 shows the GB free energy computed directly from Eq. (34) (discrete points) and by thermodynamic

integration using Eq. (35) (solid line). Again excellent agreement is observed between the two calculation methods.

It is noteworthy thatγ decreases under normal tension and increases under normal compression, which is consistent

with the positive sign of the excess volume. The variations in γ are nearly linear in stress, which is consistent with

the fact that[V ]N varies withσ33 by only a few percent. It should be noted, however, that at thestress level of

about 3 GPa neglecting the second term in Eq. (34) would produce a 10% overestimate of the GB free energy.

This effect can be quite significant given that in experiment(especially in polycrystalline materials) local stresses

produced in GB regions by nearby dislocations and other defects, or arising due to the concentration of applied

loads, can readily reach GPa levels.

3. Shear deformation parallel to the tilt axis

Under a shear stressσ31, all atoms have a displacement component in thex1 direction parallel to the tilt axis.

An example is shown in Fig. 9(a) where we plot the elastic displacementsu1 relative to the state with stress-free

grains versus thex3 coordinate forσ31 = 1.5 GPa. Eachu1 was averaged over atoms lying in the same (310) plane

parallel to the GB. Observe that inside the grainsu1 is a linear function ofx3. The slope of this line represents the

inverse of the shear straine31 and is the same in both grains by crystal symmetry. Note the significant decrease of

the slope in the GB core. This decrease creates a relative shift of the two linear segments and reflects the excess

of shear in the GB. This plot demonstrates how the excess shear contributes to elastic response of the bicrystal.

Weissmülleret al.30 have recently developed a kinematic theory for the average excess shear in polycrystalline

materials.

For a GB subject to the shear stressσ31, Eq. (4) gives

γ = [U ]N /A− σ31B1, (36)

where the second term accounts for the work done by the stressduring the GB formation. The integrated form of

the adsorption equation (6) is

γ = γ0 −

ˆ

B1dσ31. (37)

The excess shearB1 is plotted in Fig. 9(b) versus the shear stressσ31. The obvious linearity of the plot indicates

that the GB is deformed in a linear-elastic mode, with the stiffness coefficient of about 150 GPa/nm. The respective

compliance coefficient is about 7 pm/GPa. By fitting a mechanical model to experimental data for nanocrystalline

Pd,31 Weissmüller et al.30 have recently estimated the GB compliance coefficient to be 18 pm/GPa. The comparison

is reasonable given that these numbers refer to different models, different materials, and a specific GB in our case

and a polycrystalline material in the experiment.31

Fig. 10 shows the GB free energyγ as a function ofσ31 computed directly from Eq. (36) and by integration of

Eq. (37). The symmetry of this GB dictates thatγ should not depend on the sign ofσ31. It is therefore expected

thatγ should reach a maximum or minimum in the stress-free state. For this particular boundary the stress-free
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state is a maximum, withγ slowly decreasing under stress. Considering that this effect is a higher order than linear,

it is not surprising thatγ is reduced by only 0.88% under the maximum stress of 1.5 GPa tested in this work.

4. Maxwell relations

There are six Maxwell relations that can be tested by simulations of pure Cu at 0 K. Three of them are satis-

fied automatically by the symmetry of the chosen GB, which dictates that both derivatives must be zero. Three

remaining relations are non-trivial and permit testing by simulations. Each of these relations has a physical and a

Lagrangian formulation, making the total of six relations.We will present tests of two of them in detail. Test of

other Maxwell relations are summarized in Tables I (Lagrangian form) and II (physical form).

We first examine the Maxwell relation (18) in the physical form. The derivatives in this relation correspond to

different uniaxial deformation paths described in SectionIV A 1. To compute these derivatives, we need to know

τii andγ as functions ofe11 ande22 for these two paths. The calculations were performed using Eqs. (29) and

(33) for each deformed state of the boundary. The obtained(τ11 − γ) and(τ22 − γ) are plotted as functions of the

strainse22 ande11 in Figs. 11(a) and 11(b), respectively. The discrete pointscorrespond to separate simulations

for different strains. The dashed lines are tangents to the plots representing the computed derivatives at zero strain.

The derivatives were found to be 0.0159 J/m2 for both plots. Thus, the Maxwell relation (18) holds withinthe

accuracy of our calculations.

In the second example we test the relation (19), this time in the Lagrangian form. To evaluate the derivative in

the left-hand side,τ ′
11

was computed as a function ofσ33 for the elastic deformation described in Section IV A 2.

For the derivative in the right-hand side, the excess GB volume was computed as a function ofe11 (Section IV A 1)

and normalized by the stress-free GB areaA′. The respective plots are shown in Fig. 12. The derivatives evaluated

at zero stress were found to be−0.0113 nm and0.0114 nm, respectively, which is in excellent agreement with

prediction of Eq. (19).

B. Pure Cu at finite temperatures

For a single-component GB with stress-free grains at finite temperatures, Eq. (4) gives the GB free energy

γA = [U ]N − T [S]N . (38)

Because the excess entropy[S]N cannot be easily computed by MD simulations,γ was calculated by thermody-

namic integration of the Gibbs-Helmholtz equation (10) which does not contain[S]N . We chose the integration

path on which temperature varies,σ31 andσ33 remain zero, and the lateral strain is adjusted to accommodate the

thermal expansion of the lattice. For this path, the integrated form of Eq. (10) is

γA =
(γ0A0) T

T0

− T

T̂

T0

(

[U ]N
T 2

−
(τ11 + τ22)A

T

de

dT

)

dT. (39)

Here,e is the biaxial lateral strain and the derivativede/dT is the thermal expansion coefficient of the stress-free Cu

lattice. The quantitiesγ0, A0 andT0 are the GB free energy, area and temperature corresponding to the reference
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state. The excess quantities[U ]N andτii involved in Eq. (39) were computed for a discrete set of temperatures

along the path and are presented in Figs. 13 and 14, respectively. Note that the GB stressτii is anisotropic at all

temperatures along the path, with both components decreasing with temperature.

The solid line in Fig. 15 indicates the GB free energyγ computed from Eq. (39) as a function of temperature.

The reference temperatureT0 = 300 K was used and the integration was performed to temperaturesboth below

and aboveT0. The two points on the plot indicate the values ofγ at 0 K and at 300 K. The reference valueγ0 was

obtained by quasi-harmonic calculations28, whereas the 0 K value was computed directly by Eq. (29). Observe

that the integration towards 0 K gives exactly the number obtained by the direct calculation, which validates our

methodology. Over the entire temperature range studied here,γ decreases from 0.905 J/m2 at 0 K to 0.660 J/m2 at

900 K. The trend forγ to decrease with temperature is consistent with previous simulations.32,33

C. Cu-Ag alloys at finite temperatures

Fig. 16 shows MC snapshots of the simulation block with the grain compositions of0.036%,0.24% and0.58%

Ag at 800 K. These images demonstrate that Ag strongly segregates to the GB and that the segregated amount

and the width of the segregation region both increase with temperature. It is also apparent that at the highest Ag

concentrations studied here, the boundary becomes visiblydisordered. In Fig. 17 we plot the excess GB volume

per unit area as a function of grain composition. The discrete points on the plot represent individual MC runs at

particular values of the imposed diffusion potentialM21. The excess GB volume monotonically increases withcAg

and becomes nearly four times the value in pure Cu whencAg reaches the maximum concentration of 0.58%. This

increase is consistent with the larger size of Ag atoms in comparison with Cu atoms. Note that the slope of the plot

increases at high concentrations when the boundary develops the atomic disorder.

For the simulation conditions discussed here, Eq. (4) givesthe GB free energy

γA = [U ]N − T [S]N − [N2]NM21. (40)

To circumvent a calculation of[S]N , γ was computed as a function ofcAg by integration of the adsorption equation

with respect tocAg from the pure copper state (cAg = 0) to the current composition. The value ofγ for pure Cu

was taken from the MD simulations discussed in Section IV B. On this integration path, the temperature remains

fixed at 800 K, the grains are stress-free, andM21 is varied to gradually increase the concentration of Ag. The

lateral dimensions of the system are also varied due to the compositional strain.6,7,34 For this path, the integrated

form of Eq. (6) is

γA = γ0A0 −

cAg
ˆ

0

{

[N2]N
dM21

dcAg
+ (τ11 + τ22)A

de

dcAg

}

dcAg, (41)

where the derivativede/dcAg represents the change in the stress-free lattice constant with composition.

The GB excesses entering Eq. (41) were computed as functionsof composition and are shown in Figs. 18 and 19.

As already expected from the images in Fig. 16, the GB segregation [N2]N/A increases with the grain composition

(Fig. 18). In the composition range where the boundary preserves its relatively ordered structure, the shape of the

segregation curve is qualitatively consistent with the Langmuir–McLean isotherm.1 At higher Ag concentrations
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when the GB becomes more disordered, the slope of the segregation isotherm increases, indicating an increased

capacity of this GB to absorb Ag atoms. Fig. 19 shows the GB stress componentsτ11 andτ22 as functions of

cAg. Both components decrease with concentration and eventually merge, making the GB stress tensor virtually

isotropic. Note the change of sign ofτii at cAg≈ 0.28%, indicating that the GB is under tension below this

composition and under compression above. A similar reversal of sign of GB stress with alloy composition was

observed experimentally in the Pd-H system.35,36 The experiments also revealed a correlation between the GB

excess volume and segregation.35 The two systems are very different in both thermodynamics and the mechanism

solubility (interstitial mechanism in Pd-H, substitutional in Cu-Ag). It can be noted, however, that the interstitial

hydrogen and the “oversized” substitutional Ag atoms both produce compressive stresses in the lattice and can be

expected to increase the GB excess volume when segregation occurs.

Finally, the GB free energyγ computed by thermodynamic integration (41) is plotted versuscAg in Fig. 20. The

plot shows the expected decrease ofγ with alloying and is convex at small concentrations in agreement with the

Langmuir–McLean isotherm. At higher concentrations the plot turns over and becomes concave. This change of

shape reflects the positive deviation of the segregation isotherm from the Langmuir–McLean form (cf. Fig. 18),

causing the more rapid decrease ofγ. Overall, the GB free energy decreases at this temperature from γ = 0.70

J/m2 for pure Cu toγ = 0.54 J/m2 at cAg = 0.58%.

D. Effects of elastic deformation and temperature on segregation

The MC simulations were also used to study the effect of elastic deformation, parallel and normal to the GB

plane, and temperature on GB segregation. These effects areexpressed by appropriate Maxwell relations, which

were used in the Lagrangian form in order to avoid a calculation ofγ as a function of respective intensive variables.

The effect of elastic deformation parallel to the GB plane was modeled by applying a biaxial straine. For this

type of deformation, the Maxwell relation (22) predicts

∂ (τ ′
11

+ τ ′
22
)

∂M21

= −
∂ ([N2]N/A′)

∂e
. (42)

Fig. 21(a) shows the GB segregation per unit reference area as a function of straine computed at constantM21

and zeroσ31 andσ33. The total amount of segregation increases linearly with strain in this deformation range.

As expected, tension favors the segregation of larger Ag atoms. Fig. 21(b) shows that the sum of the GB stress

components decreases withM21 (i.e., with increasingcAg), which is again consistent with the atomic size effect.

The computed derivatives appearing in Eq. (42) are−0.46± 0.08 Å−2 in the left-hand side and0.46± 0.01 Å−2

in the right-hand side. They are opposite in sign and equal inmagnitude within the error bars in agreement with

Eq. (42).

Secondly, we examined the effect of the normal stressσ33 on segregation and tested the Maxwell relation (23).

According to this relation, the effect ofσ33 on segregation is related to the change in the GB excess volume with

M21. Fig. 22(a) shows the segregation[N2]N/A′ as a function ofσ33 at fixed lateral dimensions of the simulation

block, constant value ofM21 and zeroσ31. As expected from the atomic size effect, the segregation increases under

tension (σ33 > 0) and decreases under compression (σ33 < 0). Similarly, the GB excess volume increases with

increasingM21 (and thuscAg) [Fig. 22(b)]. The respective derivatives are found to be0.027± 0.004 Å−2GPa−1

in the left-hand side and0.030± 0.0006 Å−2GPa−1 in the right-hand side. Within the error bars, these derivatives

are equal in agreement with Eq. (23).
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Finally, we tested Eq. (28) which involves the change in segregation with temperature. Fig. 23 displays

[N2]N/A′T and[Ψ]N/A′T 2 as a functions ofT andM21, respectively. These variations occur at zeroσ31 andσ33

and fixed GB area. According to Eq. (11), the potentialΨ reduces to[U ]N−[N2]NM21. Within the accuracy of our

calculations, the obtained derivatives,− (2.7± 0.1)×10−8 Å−2K−2 in the left-hand side and− (3.0± 0.9)×10−8

Å−2K−2 in the right-hand side, are equal as predicted by Eq. (28).

The effect of the shear stressσ31 on segregation is expected to be a second or higher order effect for this GB

and was not studied here.

V. DISCUSSION AND CONCLUSIONS

Thermodynamic properties of GBs play an important role in many materials processes. The GB free energy

controls the driving force of grain coarsening and affects the barriers of phase nucleation.1,2,37The GB stress affects

internal stresses in nanocrystalline materials30,35,38,39and their chemical reactivity. GB segregation can drastically

change mechanical properties of polycrystalline materials.1,2 Some phenomena can be caused by cross-effects,

such as the effect of elastic stresses on GB segregation and segregation on elastic compliance of the material.

Experimental studies of GB thermodynamics are invaluable but rare, difficult and usually provide information

averaged over multiple GBs. Critical insights can be gainedby atomistic simulations of individual GBs with

precisely known crystallography, structure and chemical composition.

Although real materials are often subject to mechanical loads, thermodynamic calculations are usually focused

on GBs between stress-free grains. It is straightforward toapply a stress to a GB in atomistic simulations. The

main obstacle has been the absence of a thermodynamic framework for calculations of GB properties under stress.

The existing thermodynamic theories either disregard the stresses altogether or consider only a hydrostatic state of

stress. In the latter case, the GBs are treated essentially the same way as interfaces in fluid systems. It has not been

known how to compute, or even properly define, the GB free energy, GB stress and other excess properties when

the GB is subject to non-hydrostatic stresses.

In this work we applied the thermodynamic theory of coherentinterfaces3 to coherent GBs in the presence of

non-hydrostatic stresses. The equations of Ref. 3 were adapted to GBs in two ways. Firstly, the fact that the system

contains only one phase was taken into account. This significantly simplified the calculations. In particular, the

interface excess quantities are now defined through2 × 2 determinants which can be transformed to simpler and

more intuitive expressions. Secondly, the GB theory recognizes that for the system to remain a single phase under

applied stresses, both the stress tensor and the GB itself must possess certain symmetries. Such symmetries must

be identified and formulated as appropriate constrains imposed on possible state variations.

The GB free energyγ has been defined as the reversible work of GB formation under an applied non-hydrostatic

stress. Equation (4) expressesγ through appropriate excesses of extensive properties and contains a term account-

ing for the work of the applied stress. This term includes thework of the shear stress parallel to the boundary plane,

which exists only for coherent GBs (i.e., when the shear stresses causes an elastic response of the boundary and not

GB sliding). Furthermore, our definition ofγ contains only the diffusion potentials of substitutional components,

avoiding chemical potentials that are undefined quantitiesin non-hydrostatic solids. It is only for hydrostatic grains

thatγ can be expressed through chemical potentials as indicated in Eq. (5).

Two forms of the generalized adsorption equation have been presented in this work: the standard form (6) and

the Gibbs-Helmholtz form (10). The differential coefficients of these equations define the GB excesses which
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are physically meaningful and in principle measurable quantities. Along with the already known excesses such

as the GB segregation, GB stress and and GB excess volume, thegeneralized adsorption equation introduces

the excess GB shear. The additional term containing the GB shear did not exist in previous formulations of the

adsorption equation for GBs.8 It has naturally appeared in our formulation due to the incorporation of the applied

shear stress. As mentioned earlier, the existence of excessshear was recognized in previous mechanical theories

of interfaces and was referred to as “slip”.30,35,38However, this quantity was not associated with an additional term

in the adsorption equation. (See Ref. 3 for a discussion of the thermodynamic approach developed in this work in

comparison with previous mechanical theories of interfaces.30,35,38,40,41)

The Gibbs-Helmholtz form (10) of the adsorption equation affords efficient numerical calculations ofγ by

thermodynamic integration starting from a state for whichγ is known. This integration requires knowledge of the

readily accessible excess quantities along the integration path, such as the excess energy, the amount of segregation

and the GB stress. Equation (7) provides a numerical recipe for calculations of the GB stress as an appropriate

excess of the lateral stress components. Despite the critical importance of the GB free energy, only a few previous

calculations were performed for finite temperatures32,33and none for stressed grains.

The generalized adsorption equation generates a number of Maxwell relations between its differential coeffi-

cients. These relations describe a variety of cross-effects between segregation, stresses, strains, temperature and

other parameters. They describe physically measurable effects, some of which can be practically important. As

one example, Eq. (24) predicts a relation between the effectof an applied shear stress on GB segregation, on one

hand, and the response of the excess shear to changes in the diffusion potential, on the other hand. The diffusion

potential can be controlled by varying the chemical composition of the material.

The proposed theory has been applied to atomistic simulations of the symmetrical tiltΣ5 (310) [001] GB in

Cu and Cu-Ag alloys. Accurate atomistic potentials have been used, making these simulations relevant to real

materials. A combination of MD and MC methods has been applied to study the effects of elastic deformation,

chemical composition and temperature on GB properties. Along with providing useful information about typical

orders of magnitude of the effects, these simulations also served as a test bed of the theory. A number of cross-

checks have been made by comparing different calculations of the same physical quantity. For example, the GB

free energy computed by thermodynamic integration was compared with results of direct calculations at 0 K. As

another example, several Maxwell relations have been tested by separate calculations of the derivatives appearing

in the right and left-hand sides. Excellent agreement was invariably found in all tests, giving us confidence in the

correctness of the proposed thermodynamic equations and the accuracy of our simulations.

The simulations have also demonstrated that the effects of elastic stresses, temperature and segregation on the

GB free energy can be significant. These effects could compromise the accuracy of many simplified theories

involving GB precesses. For example, in the classical theory of heterogeneous nucleation at GBs,γ is assumed

to be constant. Variations ofγ with temperature, segregation and applied stresses can significantly impact the

nucleation barriers and thus the predicted nucleation rates. It should be noted that some of the GB properties

are affected by variations in temperature and chemical composition stronger thanγ. For example, the excess GB

volume increases a factor of four and the GB stress changes its sign with the introduction of less than one atomic

per cent of Ag in Cu.

Finally, it should be recognized that some aspects of our simulations are specific to the particularΣ5 GB chosen

for this work. This boundary has a mirror symmetry across theplane normal to the tilt axis, as do most of other

symmetrical tilt GBs. Due to this symmetry, (i) the stress-free value of the excess GB shear along the tilt axis is

zero [Fig. 9(b)], and (ii) thermodynamic properties of thisGB do not depend on the sign of the shear stressσ31



19

applied parallel to the tilt axis. As a result, the effect ofσ31 on γ and other GB properties is quadratic in stress,

see example in Fig. 10. This is in contrast to the excess volume, which has a finite value for stress-free grains

(Fig. 7) and produces a linear response of GB properties toσ33 [see examples in Figs. 8 and 12(a)]. For GBs that

do not possess the mentioned mirror symmetry, the response to the shear stress can be linear and thus stronger. For

example, the symmetrical tiltΣ13 (34̄1) [111] GB in Al studied by atomistic simulations42 shows a 0.2 Å shift of

one grain relative to the other parallel to the tilt axis [111]. This nonzero shift is an intrinsic structural property

of this GB and constitutes its stress-free excess shear. It preserves the twofold symmetry of the GB structure

around thex2 axis, so that the boundary can still support an applied shearstressσ31. Due to this nonzero shift, the

response of the GB properties toσ31 is expected to be linear, a prediction which could be tested by simulations.

The interplay between GB thermodynamics and crystal symmetry is an interesting subject that deserves a more

detailed study in the future.
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∂τ ′
11 ∂τ ′

22 ∂B′
1 ∂ ([V ]N/A′)

∂e11 - 0.0376 J/m2 0.0 0.0114 nm

∂e22 0.0376 J/m2 - 0.0 0.03749 nm

∂σ31 0.0 0.0 - 0.0

∂σ33 -0.0113 nm -0.03771 nm 0.0 -

Table I: Derivatives involved in the Lagrangian form of the Maxwell relations (18)-(21) computed at 0 K. The expressionsin

the first row are the denominators of the partial derivatives, while the first column contains the numerators. The derivatives

were evaluated for the state with stress-free grains. The table is symmetrical (within the accuracy of our calculations) in accord

with predictions of the Maxwell relations. Some of the entries are zero due to the symmetry of the GB.

∂ (τ11 − γ) ∂ (τ22 − γ) ∂B1 ∂ ([V ]N/A)

∂e11 - 0.0159 J/m2 0.0 0.0203 nm

∂e22 0.0159 J/m2 - 0.0 0.006086 nm

∂σ31 0.0 0.0 - 0.0

∂σ33 0.0203 nm -0.006086 nm 0.0 -

Table II: Derivatives involved in the physical form of the Maxwell relations (18)-(21) computed at 0 K. The expressions in the

first row are the denominators of the partial derivatives, while the first column contains the numerators. The derivatives were

evaluated for the state with stress-free grains. The table is symmetrical (within the accuracy of our calculations) in accord with

predictions of the Maxwell relations. Some of the entries are zero due to the symmetry of the GB.
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Figure 1: Geometry of a symmetrical tilt GB relative to the coordinate axes.
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Figure 2: Two-dimensional schematic of the formation of a coherent GB from a single crystal. (a) Initial single-phase region

of volumeV ′. (b) Bicrystal created by lattice transformation to a new orientation above a plane normal tox3. (c) Overlapping

shapes of the initial and final regions, showing the displacement vectorB. This two-dimensional schematic does not show the

shear deformation normal to the page.
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Figure 3: Atomic structure of the symmetrical tiltΣ5(310) GB. The open and filled circles indicate atomic positions in alternate

(002) planes parallel to the page. The tilt axis is normal to the page. The kite-shaped structural units are outlined.
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Figure 4: Simulation block containing theΣ5 (310) symmetrical tilt GB. The GB position is indicated by the red color. The

atoms colored in grey form the surface regions 1 and 2 discussed in the text. Boundary conditions parallel to the GB plane are

periodic. The image was produced with the AtomEye visualization program.43
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Figure 5: GB stress in pure Cu at 0 K as a function of strain. (a)Biaxial strain (e := e11 = e22); (b) Uniaxial straine11; (c)
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Figure 6: GB free energy as a function of strain for pure Cu at 0K. (a) Biaxial strain (e := e11 = e22); (b) Uniaxial straine11;

(c) Uniaxial straine22.
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pure Cu at 0 K.
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Figure 8: GB free energy as a function of normal stressσ33 for pure Cu at 0 K. The discrete points were obtained by direct

calculation while the lines by thermodynamic integration.
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Figure 13: Excess GB energy[U ]
N
/A as a function of temperature for stress-free grains in pure Cu. The points were obtained

by MD simulations and are connected by lines as a guide to the eye.
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Figure 14: GB stress componentsτ11 andτ22 as functions of temperature for stress-free grains in pure Cu. The points were

obtained by MD simulations and are connected by lines as a guide to the eye.
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Figure 15: GB free energyγ as a function of temperature for stress-free grains in pure Cu. The line was computed by ther-

modynamic integration while the points represent direct calculations at the reference temperature ofT0 = 300 K and at 0 K.
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Figure 16: Snapshots of the Cu-Ag simulation block with the GB concentration of silvercAg (a) 0.036%, (b) 0.24%, and (c)

0.58% atT = 800 K. Cu atoms are shown in yellow and Ag atoms in dark blue. The images were produced with the AtomEye

visualization program.43
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Figure 17: Excess GB volume per unit area,[V ]N/A, as a function of the silver concentration in the grains at a fixed temperature

of 800 K. The points were obtained by MC simulations and are connected by lines as a guide to the eye.
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Figure 18: GB segregation[N2]N/A as a function of the grain compositioncAg at a fixed temperature of 800 K. The points

were obtained by MC simulations and are connected by lines asa guide to the eye.
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of 800 K. The points were obtained by MC simulations and are connected by lines as a guide to the eye.
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Figure 20: GB free energyγ computed by thermodynamic integration as a function of the grain compositioncAg at a fixed

temperature of 800 K. The point atcAg = 0 represents the GB free energy in pure Cu used as the referencevalue.
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Figure 21: Test of the Lagrangian form of the Maxwell relation (22) for the GB in the binary Cu-Ag solution at 800 K. The

discrete points represent MC simulation data. (a) GB segregation [N2]N/A′ as a function of biaxial strain parallel to the

boundary. (b) Sum of the principal components,τ ′
11 andτ ′

22, of the GB stress tensor as a function of the diffusion potential

M21. The slopes of the dashed lines represent the derivatives appearing in the Maxwell relation. The vertical dashed lines

indicate the state in which the derivatives are taken, i.e.,stress-free grains with the chemical composition ofcAg = 0.036%.

The right triangles with the slopes of0.46 Å−2 and−0.46 Å−2, respectively, are shown as a guide to the eye.
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Figure 22: Test of the Lagrangian form of the Maxwell relation (23) for the GB in the binary Cu-Ag solution at 800 K.

The discrete points represent MC simulation data. (a) GB segregation[N2]N/A′ as a function of normal stressσ33. (b) Excess

volume[V ]N/A′ as a function of the diffusion potentialM21. The slopes of the dashed lines represent the derivatives appearing

in the Maxwell relation. The vertical dashed lines indicatethe state in which the derivatives are taken, i.e., stress-free grains with

the chemical composition ofcAg = 0.036%. The right triangles with the slopes of0.030 Å−2GPa−1 and0.027 Å−2GPa−1,

respectively, are shown as a guide to the eye.
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Figure 23: Test of the Lagrangian form of the Maxwell relation (28) for the GB in the binary Cu-Ag solution at 800 K. The

discrete points represent MC simulation data. (a) GB segregation [N2]N/A′ as a function of temperature. (b) The potential

[Ψ]N/A′T 2 as a function of the diffusion potentialM21. The slopes of the dashed lines represent the derivatives appearing in

the Maxwell relation. The vertical dashed lines indicate the state in which the derivatives are taken, i.e., stress-free grains with

the chemical composition ofcAg = 0.036%. The right triangles with the slopes of−2.7 × 10−8 Å−2K−2 and−3.0 × 10−8

Å−2K−2, respectively, are shown as a guide to the eye.


