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In clean inversion symmetric materials, spin-orbit coupling is not thought to have a pronounced
effect on spin-singlet superconductivity. Here we show that for the recently discovered pnictide
superconductor SrPtAs, this is not the case. In particular, for spin-singlet superconductivity in
SrPtAs, strong spin orbit coupling leads to a significant enhancement of both the spin suscepti-
bility and the paramagnetic limiting field with respect to that usually expected for spin-singlet
superconductors. The underlying reason for this is that, while SrPtAs has a center of inversion
symmetry, it contains weakly coupled As-Pt layers that do not have inversion symmetry. This local
inversion symmetry breaking allows for a form of spin orbit coupling that dramatically effects super-
conductivity. These results indicate that caution should be used when interpreting measurements
of the spin-susceptibility and the paramagnetic limiting field if superconductivity resides in regions
of locally broken inversion symmetry.

Spin-orbit coupling (SOC) has emerged as a central
interaction in condensed matter physics. It plays an im-
portant role in creating topological insulators1 and in
understanding spin-transport.2 Furthermore, it has been
found to play a role in superconductivity in three con-
texts: SOC appears relevant to the recently observed
increase of the superconducting Tc of thin films by a
magnetic field3 (the origin of this increase is not yet un-
derstood); impurity spin-orbit scattering has been shown
to lead to a finite spin susceptibility in dirty spin-singlet
superconductors at zero temperature;4 and in materials
that lack a center of inversion symmetry, SOC is impor-
tant to understand the response of superconductors to
magnetic fields. However, when inversion symmetry is
present, the role of SOC on clean spin-singlet supercon-
ductors is not thought to be particularly noteworthy. In
this work we show that this is not the case. In partic-
ular, we show that in the recently discovered inversion
symmetric pnictide SrPtAs,5 SOC has a pronounced ef-
fect on the superconducting properties.

The superconducting pnictides6 present a fascinat-
ing class of materials that highlight the interplay be-
tween electronic correlations, superconductivity, and
magnetism in a multi-orbital system.7 SrPtAs is a mem-
ber of this family with a unique feature: the As-Pt
atoms in a single layer form a honeycomb lattice, see
Fig. 1. This is in contrast to previously studied pnic-
tide superconductors that contain square lattices. Un-
like the square lattice pnictides, the honeycomb lattice
layers in SrPtAs do not have inversion symmetry. The
broken inversion symmetry inherent to a single As-Pt
layer has non-trivial consequences. In particular, assum-
ing that SrPtAs is a spin-singlet superconductor, we pre-
dict a non-vanishing spin susceptibility at zero tempera-
ture with a magnitude that is a significant portion of the
normal state spin-susceptibility. We further show that

it is likely to have a critical field larger than the param-
agnetic limiting field. This behavior is not expected for
tetragonal pnictide superconductors, for which the indi-
vidual As-Fe layers contain a center of inversion symme-
try. Our results highlight that such measurements are
not sufficient to distinguish spin-triplet and spin-singlet
pairing in materials for which superconductivity resides
in regions that do not locally have inversion symmetry.

SrPtAs has a superconducting transition temperature
Tc = 2.4 K and the resistivity shows metallic behavior.5

The unit cell of SrPtAs contains two inequivalent As-
Pt layers that are related by inversion symmetry, see
Fig. 1. As mentioned above, a single As-Pt layer does
not have a center of inversion symmetry. This allows
for a particular form of SOC that exists in each layer.
As shown below, this SOC is larger than the inter-layer
coupling. We therefore consider SrPtAs to be a super-
conductor with local inversion-symmetry breaking. We
use this term to refer to the fact that physical properties
usually associated with non-centrosymmetric supercon-
ductivity appear in SrPtAs, despite the presence of a cen-
ter of inversion symmetry. For spin-singlet superconduc-
tors, these properties include an enhanced paramagnetic
depairing field and a non-vanishing spin-susceptibility
at zero temperature.8–18 In the following, we initially
present the electronic structure of SrPtAs and then turn
to an examination of the superconducting state in this
material.

First-principles calculations were performed using the
highly precise full-potential linearized augmented plane
wave (FLAPW) method.19 We have used the experi-
mental lattice constants a = 4.24Å and c = 8.98Å20

and a cutoff of 186 eV for basis functions. The local
density approximation (LDA) is used for the exchange-
correlation as parameterized by Hedin and Lundqvist,21

and SOC has been calculated using a second-variational
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treatment.22 Fig. 2 and Fig. 3 show the results of LDA
calculations with and without SOC. Energy bands near
the Fermi level originate from Pt 5d and As 4p orbitals.
Specifically, the Fermi surface sheets labeled a and b in
Fig. 3 (a) stem from Pt dxy, dx2−y2 , As px, and py or-
bitals while that labeled c stems from Pt dxz , dyz and
As pz orbitals. Our results without spin-orbit coupling
agree with those of Ref. 23. Note the qualitative changes
when SOC is added. In particular, the spin-orbit cou-
pling leads to appreciable changes in the band structure
along the symmetry lines of H − A and L −H . Also of
relevance is the difference between the bands along the
symmetry lines H −A−L and K −Γ−M when there is
no SOC (Fig. 2). This difference is due to inter-layer cou-
pling between the As-Pt layers. This coupling vanishes
for symmetry reasons in the plane given by kz = π/c.
The band structure reveals that the band splittings due
to SOC are comparable to or larger than those due to
inter-layer coupling. This fact plays an important role in
the superconducting state.
To understand the bands stemming from the LDA cal-

culations, it is useful to consider initially a single As-Pt
layer. A key point is that this layer does not have a center
of inversion and, therefore, a SOC of the form

Hi
so = αi

∑

k,s,s′

gk · σss′c
†

ksi
c
ks′i

(1)

exists, where c†
ksi

(c
ksi

) creates (annihilates) an electron

with momentum k and pseudo-spin s in layer i, σ denote
the Pauli matrices, and αi is the layer i SOC energy.
Time-reversal symmetry imposes gk = −g

−k. Invariance
of the Hamiltonian under the mirror symmetries with
normals along the z axis and along the Pt-Pt bond imply
that g(kx, 0, 0) = g(kx, 0, π/c) = 0 (here a Pt-Pt bond is
taken to be along the y axis). This reveals itself for bands
along the A to L direction in the Brillouin zone, where
there is no spin-orbit splitting, see Fig. 3(b). Within a
tight-binding approach, we find gk = ẑ

∑

i sin(k · T i),

FIG. 1. (Color online) (a) Structure and (b) Brillouin zone in
SrPtAs. Red, blue, and grey spheres denote Pt, As, and Sr
atoms, respectively.
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FIG. 2. (Color online) Energy bands of SrPtAs (a) without
and (b) with SOC. Zero energy represents the Fermi level.
Indices a, b, and c in (a) represent the three bands crossing
the Fermi level.

FIG. 3. (Color online) Cross sections of the Fermi surface of
SrPtAs with and without SOC. Figure (a) [(b)] is for kz = π/c
and no SOC [with SOC], while Figure (c) [(d)] is for kz = 0
and no SOC [with SOC]. Indices a, b, and c in (a) represent
the three bands crossing the Fermi level.

where T i are the translation vectors T 1 = (0, a, 0), T 2 =

(
√
3a/2,−a/2, 0), and T 3 = (−

√
3a/2,−a/2, 0). This

form of SOC can be found for all bands stemming from
Pt d orbitals by including hopping to neighboring As p
orbitals and by including on-site SOC for both As and Pt
sites. Symmetry also allows for gx and gy to be non-zero.
However these must be odd in kz and, within a tight-
binding analysis, are only found by including hopping
along the z-axis. Given the much weaker dispersion of
the bands along kz relative to the in-plane dispersion, we
expect that gx and gy are much smaller than gz and we
will only include gz in the following.

The analysis in the previous paragraph applies to a
single As-Pt layer. The two inequivalent As-Pt layers
are related by inversion symmetry, consequently, αi is
of opposite sign for the two layers, i.e., αi = (−1)iα. To
complete the description for the solid, a coupling between
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the two inequivalent layers is required. We take this to
be ǫc(k) (symmetry requires this to vanish for kz = π/c).
Provided there are no band degeneracies other than spin
and layer degeneracies, a generic Hamiltonian for SrPtAs
is then

H0 =
∑

k

Ψ†(k)
{

[ǫ1(k)− µ]σ0τ0 + α(k)σzτz

+Re[ǫc(k)]σ0τx + Im[ǫc(k)]σ0τy
}

Ψ(k), (2)

where Ψ(k) = (ck↑1
, ck↓1

, ck↑2
, ck↓2

)T , σi (τi) are Pauli

matrices that operate on the pseudo-spin (layer) space
and α(k) = αgz(k). This Hamiltonian can be diagonal-
ized with resulting dispersion relations ǫ±(k) = ǫ1(k) ±
√

|ǫc(k)|2 + α2(k) and each state has a 2-fold Kramers
degeneracy. To gain an intuition for the terms ap-
pearing in this Hamiltonian, we state the results for a
simple tight-binding theory (note that below we keep
these terms arbitrary). This yields ǫ1(k) = t1(cosk ·
T1 + cosk · T2 + cosk · T3) + tc2 cos(ckz) and ǫc(k) =
tc cos(kzc/2)(1+e−ik·T3+eik·T2) with Ti and α(k) given
above.
Now we turn to the superconducting state for which we

show that the strong SOC is important. In the limit that
the inter-layer coupling vanishes, we have two uncoupled
non-centrosymmetric systems. It is known that in non-
centrosymmetric spin-singlet superconductors the spin-
susceptibility and the paramagnetic limiting field are sig-
nificantly enhanced, if the SOC strength is much larger
than the superconducting gap.8–11,13,15 Given the large
SOC relative to the inter-layer coupling, it is conceivable
that the behavior of superconducting SrPtAs resembles
that of a non-centrosymmetric material. For this reason
we calculate both the spin-susceptibility and the limit-
ing field assuming that superconductivity in SrPtAs is
spin-singlet (this is a reasonable assumption comparing
with other pnictide superconductors.)7 To be concrete we
assume intra-layer s-wave pairing with an interaction

Hsc = −V
∑

k,k′,i,s,s′

c†
ksi

c†
−ks′i

c−k′

s′ick′

si (3)

where, as is usual in the weak coupling limit, the sums
over k and k′ are restricted to electronic states within an
energy range ωc of the Fermi energy and V is determined
by the observed transition temperature. Note that our
results do not depend qualitatively on the choice of s-
wave pairing.
For a system described by the Hamiltonian (2) and

(3), the susceptibility in the superconducting and normal
state can be calculated using24

χs
ij = −µ2

BT
∑

n

∑

k

tr[σiG(k, ωn)σjG(k, ωn)

− σiF (k, ωn)σ
T
j F

†(k, ωn)] (4)

with G(k, ωn) and F (k, ωn) the normal and anomalous
Green’s functions in the Matsubara formulation. Note

that even for this ‘one-band’ formulation, the Green’s
functions are 4 × 4 matrices, so that the trace runs over
both layer and spin indices. In the notation of the Hamil-
tonian (2) there are three bands crossing the Fermi en-
ergy in SrPtAs [labeled a, b, and c in Figs. 2(a)and 3(a)]
and we can generalize the above expression to

χij =
∑

ν

χij(ν) (5)

where the sum runs over the three orbital bands ν =
a, b, c. Below we calculate the susceptibility χij(ν) sepa-
rately for each band ν using Eq. (4).
In the normal state, F ν(k, ωn) = 0, and we find for

fields parallel to ẑ,

χ0
z(ν) = 2µ2

B

∑

k,i=±

∂nF (ǫ
ν
i (k))

∂ǫνi
=

∑

k

χ0
P (k, ν), (6)

where nF (ǫ) is the Fermi distribution function as a func-
tion of energy ǫ and χ0

p(k, ν) denotes a Pauli susceptibil-
ity for band ν. This susceptibility describes intra-band
processes and at low temperatures is proportional to the
density of states at the Fermi level. For fields in plane,
we find

χ0
⊥z(ν) =

∑

k

{ |ǫνc (k)|2χ0
P (k, ν) + [αν(k)]2χ0

vV (k, ν)

|ǫνc (k)|2 + [αν(k)]2

}

,

(7)
where we introduced

χ0
vV (k, ν) = 2µ2

B

{nF (ǫ
ν
+(k))− nF (ǫ

ν
−(k))

√

|ǫνc (k)|2 + [αν(k)]2

}

. (8)

This contribution describes processes between the two
pseudo-spin/layer bands of the same orbital band (la-
beled by ν) and is thus referred to as van Vleck sus-
ceptibility. For the superconducting states in the limit
√

|ǫνc (k)|2 + [αν(k)]2 ≫ ∆ν , we recover the expressions
given in Eqs. (6) and (7), where for the Pauli sus-
ceptibility, we have to replace ǫν±(k) with Eν

±(k) =
√

[ǫν±(k)]
2 + [∆ν ]2. The Pauli susceptibility contribution

thus vanishes due to the opening of the superconduct-
ing gap, while the van Vleck susceptibility is unchanged
by superconductivity, even at T = 0. Consequently,
χSC
z will behave like that expected for a conventional

spin-singlet superconductor while χSC
⊥z will have a large

spin susceptibility, even at T = 0. To demonstrate this,
Fig. 4 shows the ratio of χSC

⊥z (ν) in the superconduct-
ing phase at T = 0 to the normal state in-plane sus-
ceptibility χ0

⊥z(ν) as a function of αν/tνc for the three
bands ν = a, b, c (where αν is the spin-orbit strength
and tνc is the interlayer coupling strength). These values
were determined using simple tight-binding calculations
for the three Fermi surface sheets a, b, c. Estimating the
ratios αν/tνc from the band structure, we find values of
χSC
⊥z (ν)/χ

0
⊥z(ν) = 0.11, 0.42, and 0.91 for Fermi surface

sheet ν = a, b, and c, respectively. Consequently, we
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FIG. 4. (Color online) Spin susceptibility at T = 0 in the su-
perconducting state normalized with respect to the normal
state susceptibility for the three bands crossing the Fermi
surface as a function of αν/tνc . The black squares denote
approximate values for these three bands. The tight binding
parameters used are (t1, tc, tc2, µ): band a (1.25, 0.1, 0.05,
0.5); band b (1, 0.1, 0.05, 2.5); and band c (-0.48, 0.075, -0.03,
0.6).

expect that a sizable portion of the normal state suscep-
tibility will exist in the limit T → 0 for in-plane magnetic
fields. We note that related behavior has recently been
predicted for multi-layer systems.25

The enhanced susceptibility suggests that the Pauli
limiting field will also be enhanced. To cal-
culate this, we include the Zeeman field HZ =
∑

k,s,s′,i
gµBH · σs,s′c

†

ksi
c
ks′i

and orient the field in the

basal plane. Within weak-coupling theory and assuming
√

|ǫc(k)|2 + α(k)2 ≫ gµB|H| (which is well supported by
LDA results), we find the following expression for Tc as
a function of h = gµB|H|:

ln
( Tc

Tc0

)

= −Ψ
(1

2

)

+Re
{1

2

〈

Ψ
(1

2
+ ih(k)

)〉

k

}

, (9)

where

h(k) =

h|ǫc(k)|
2πkBTc

√

|ǫc(k)|2 + α2(k)
, (10)

Tc0 is the transition temperature for h = 0, 〈f〉k means
an average of f over the Fermi surface, Re means real
part, and Ψ(x) is the digamma function. The band index,
ν, is omitted for brevity. In the limit that ǫc = 0, we find
that Tc is independent of h. This is in agreement with the
result predicted and observed for non-centrosymmetric
superconductors in the limit of large SOC.10,15 At Tc = 0,
using Eq. (9), we find that the Pauli limiting field is given
by

Ψ
(1

2

)

=
〈

ln | h|ǫc(k)|
2πkBTc0

√

|ǫc(k)|2 + α2(k)
|
〉

k
. (11)

Using tight-binding calculations, we estimate that the
enhancement of the Pauli limiting field, hP /hP0 (where
hP0 is the limiting field when α = 0), takes the values

1.1, 1.8, and 7.4 for Fermi sheet a, b, and c, respectively.
Provided that the orbital upper critical field is sufficiently
large, an enhanced Pauli limiting field should be observ-
able. For fields along the z axis, a usual Pauli suppression
is expected.
We point out that in addition to a spin-singlet pairing

order parameter, a spin-triplet order parameter compo-
nent will also appear.26 In particular, in a given layer a
spin-triplet component with d(k) along the direction of
g(k) exists, such that it has opposite sign in the two in-
equivalent layers of SrPtAs. Using the results of Ref. 26,
we estimate that the size of the spin-triplet order pa-
rameter component is a factor α/W smaller than the
spin-singlet order parameter (W is the bandwidth). Con-
sequently, this spin-triplet pairing will not qualitatively
change the results given above. We also note that the
Cooper pairs will in general have both spin-singlet and
spin-triplet parts even without any spin-triplet order pa-
rameter component. This spin mixing of the Cooper
pairs is included in the theory presented above.
In the calculation above, we focussed on a spin-singlet

order parameter. If the instability would occur in the
spin-triplet channel, the SOC would force the d(k) vec-
tor to lie parallel to g(k).26 A magnetic field in the
ẑ direction would therefore be pair breaking, similar
to the spin-singlet case. Thus, as is also the case in
non-centrosymmetric superconductors,11 measurements
of spin-susceptibility and the critical field of SrPtAs do
not suffice to distinguish spin-triplet and spin-singlet
pairing.
In conclusion, we have shown that the unique struc-

ture in the pnictide SrPtAs has non-trivial effects on su-
perconductivity. In particular, the lack of an inversion
center in the As-Pt honeycomb lattice layers, combined
with strong spin-orbit coupling, allows a significant en-
hancement of both the Pauli limiting field and the spin
susceptibility for spin-singlet superconductivity. SrPtAs
provides an ideal example of a material with inversion
symmetry for which SOC can make a pronounced effect
on spin-singlet superconductivity.
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