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Abstract 
 

 An x-ray fluorescence holograph contains information on both the amplitude and the phase of the x-ray scattering signal from a 
crystal structure. X-ray fluorescence holography is potentially a technique to directly extract atomic level structure information from 
crystal samples. We present here a  reconstruction algorithm using spherical harmonic analysis that significantly improves the 
structure-resolving power of x-ray fluorescence holography over the widely used multiple energy Barton transform approach. 
Compared to the direct method for x-ray diffraction, this new  direct method has the advantages of full model independence and 
applicability to crystal systems with large contrast in atomic numbers.   

   PACS numbers: 61.05.cc, 0705.Kf, 42.40.Kw, 02.30.Zz  
 

     X-ray Fluorescence Holography (XFH) is a promising 
technique for model-independent structure determination from 
single crystals. Unlike standard x-ray diffraction (XRD) 
methods that measure only the magnitude of the structure 
factors and require significant a priori knowledge of the crystal 
structure for generating a solution, XFH is sensitive to both the 
amplitude and phase of the structure factor. However, even 
though the first experimental XFH measurement was realized  
fifteen years ago [1, 2], and data collection procedures have 
greatly improved with the advent of high flux third generation 
synchrotron sources, there still are  no effective methods for 
retrieving quantitative structural information from x-ray 
holograms. 
     The complete structural information of a crystal can be 
represented by a 3-dimensional density distribution of electron 
charge, or its Fourier transformation in the reciprocal space, 
viz., the structure factors. The electron density is a fundamental 
physical property of an electronic system. As stated in the 
Hohenberg–Kohn theorem [3], the ground state energy and all 
other observables of the system are uniquely determined by the 
density. Hence, establishment of an experimental method that 
directly measures the electron density distribution of a crystal 
structure will be an important progress in solid state physics.  
The current direct methods of x-ray crystallography assume that 
the crystals consist of discrete atoms [4], and thus provide 
electron densities limited by the isolated–atom approximation. 
The derivation of a more realistic electron density that reflects 
the charge localization arising from chemical bonding still 
relies on model building and refinements [5]. We will introduce 
a  reconstruction algorithm for XFH data that can retrieve the 
electron density directly without the discrete atom assumption. 
    Previous work widely used the Barton transform [6], an 
atomic image reconstruction algorithm based on the Helmholtz-
Kirchhoff integral theorem, for analyzing XFH data.  The 3D 
image calculated with the Barton transform is the wave field 
amplitude around the fluorescence emitting atoms formed by a 
fictitious converging spherical wave through the recorded 
hologram. This image assumes maxima at atomic positions, but 
is distorted because of interference between the scattered 
waves. The interference artifacts can be suppressed by summing 
multiple energy XFH data [2].  However, the resulting image 
differs significantly from the true charge density of a material.  
Typically, it is extremely difficult, if not impossible, to solve 
unknown structures or to do any quantitative structural analysis 
with XFH data using the Barton transform.  

   Much effort has been invested in developing methods to 
extract the electron density directly from an XFH measurement. 
Chukhovskii et al [7] proposed a Fourier  transform type 
algorithm to  derive  the  distribution of electron charge density 
from XFH data. Their results using a single wavelength 
hologram are similar to, but have better spatial resolution than 
those obtained with the Barton transform.  Seemingly, the 
algorithm can restore the true electron charge density  from data 
taken with a suitably large  energy range;  however, this is 
impractical with current experimental approaches.  Marchesini 
et al.[8] proposed an iterative image deconvolution method to 
construct the electron charge density from XFH data. They 
demonstrated the method by approximating the atoms in the 
crystal as point charges.  However, there is no proof that their 
iterative procedure will converge to the true electron charge 
density.    Matsushita el al [9, 10] developed  the scattering 
pattern matrix (SPM) method to derive a 3D atomic distribution 
function defined in real space from the 2D hologram taken in k 
space with the  iterative-scaling algorithm of maximum-
entropy. By using the non-negative constrain, and imposing 
translational symmetry of the atomic distribution function, they 
successfully reconstructed atomic images from measured XFH 
holograms without significant artifacts. Most recently, The 
SPM method has been successfully used to reconstruct 3D 
atomic images of a SrTiO3 crystal from multiple energy 
internal-detector electron holography data.[11]   This fitting-
based reconstruction algorithm requires atomic information of 
an unit cell before solving the structure. .  Chukhovskii et al [2, 
3] defined a scattering function connecting  the XFH hologram 
function to the structure factors.  Using standard least square 
methods, they retrieved a set of structure factors from an XFH 
hologram simulated with the same set of structure factors. This 
formalism needs to be tested with more realistic model 
holograms based on real space atomic configurations. As we 
indicate later, each XFH hologram can be expressed by a 
complete set of structure factors with a finite number limited by 
the energy of the scattered waves. The complete set of structure 
factors is needed to avoid truncation errors in the XFH structure 
analysis. 
    In order to solve an unknown structure using XFH data, we 
developed a formalism connecting the structure factors to the 
spherical harmonic components of XFH holograms via a set of 
linear equations.  The electron density then is obtained by 
Fourier expansion, using the structure factors resolved by 
directly solving the linear equations. The major differences of 
our new algorithm to the previous methods are in two respects. 



 

 

First, it provides a better way to sample the XFH data in k-
space. Spherical harmonic is essentially a Fourier 
transformation on a spherical surface; A finite number of 
spherical harmonic coefficients contain all structural 
information in a set of XFH data. The advantage of using 
spherical harmonic expansion lies in the fact that each spherical 
harmonic component represents a weighted integration of the 
hologram on the surface of a sphere in k-space, analogous to 
the integrated intensity of the Bragg peaks in x-ray diffraction.    
As  Warren [14] noted,  intensity as function of the diffraction 
angle, usually is not an observable quantity; rather the 
integrated intensity is more useful since it  can be both 
calculated and measured.  In XFH, each spherical harmonic 
component of the hologram is a well defined quantity, 
expressible as a linear expansion of structure factors with a well 
behaved scattering matrix. Therefore, the second advantage of 
the new algorithm over the previous methods is that it solves 
the structure model-independently without any fitting or 
iteration procedures. We demonstrate below that using the 
spherical harmonic method allows us to retrieve the structure 
factors from holograms simulated with real space atomic 
configuration, and with these structure factors, the electron 
charge density can be reconstructed with high fidelity.  
     The X-ray fluorescence  hologram for a polarized probing 
wave can be expressed [15, 16] as: ߯൫ሬ݇Ԧ൯ ൌ െ ම ሺrԦሻߩ ൫݅݇r݌ݔܧ௘ݎ െ ݅ሬ݇Ԧ · rԦ൯r ሾܣሺkrሻ൅ ሺ݇rሻሺ૓ܤ · rොሻଶሿ ݀rԦ൅ .ܥ .ܥ                                                         ሺ1ሻ 

where, ߯൫ሬ݇Ԧ൯ represents holograph ߯ in k-space, ߩሺݎԦሻ is electron 
density distribution in real space, ݎ௘  is the classical electron 
radius (e2/mc2) , ሾܣሺkrሻ ൅ ሺ݇rሻሺԖܤ · rොሻଶሿ  is a generalized 
expression for the scattering factor between the polarized 
photon and electron, ૓ is the direction of the electric field, and rො 
is the direction of rԦ . Considering near field effect (the 
deviations from plane wave behavior of the probing waves), ܣሺkrሻ ൌ ௜௞௥ െ ଵሺ௞௥ሻమ ൅ 1  and ܤሺkrሻ ൌ  െ ଷ௜௞௥ ൅ ଷሺ௞௥ሻమ  െ 1 . rԦ 
represents the position of the scattering electron relative to the 
fluorescent center at   rԦ ൌ 0. Most complex crystal structures 
encompass multiple fluorescent atomic sites with unique atomic 
distribution in a unit cell.   The experimentally measured 
hologram ߯൫ሬ݇Ԧ൯  from these structures is a superposition of 
fluorescence patterns from different fluorescent atomic sites, 
and the   ߩሺݎԦሻ in equation (1) should be the averaged electron 
charge distribution with respect to all unique fluorescent atomic 
sites of the same chemical species.  In this article, the term 
“electron density” refers to its averaged value when multiple 
fluorescent atomic sites are involved. 

    The hologram ߯൫ሬ݇Ԧ൯ is usually represented as ߯ሺߠ, ߮ሻ for a 
fixed wave number ݇ , where  ሺߠ, ߮ሻ is the direction of ሬ݇Ԧ , as 
represented in a spherical coordinate system of measurement. 
In  transverse waves like x-rays, the polarization vector  ૓ is 
always in a plane perpendicular to the wave vector k.  In the 
direct scheme XFH the unpolarized fluorescence wave is the 
probing wave and the ૓ in (1) is averaged in the plane. The 
equation (1) can be simplified as: ߯൫ሬ݇Ԧ൯ ൌ ම ሺrԦሻߩ ൫݅݇r݌ݔܧ௘ݎ െ ݅ሬ݇Ԧ · rԦ൯r ൤ܣሺrሻ൅ ሺrሻ2ܤ ቀ1 െ ൫k෠ · rො൯ଶቁ൨ ݀rԦ ൅ .ܥ .ܥ    ሺ2ሻ 

For the indirect scheme XFH, the probing wave is the polarized, 
elastically scattered x-ray wave. The indirect XFH can be 
depolarized by summing the holograms measured with two 
perpendicular polarization directions,  Ԗୄ  and Ԗצ . With ሺԖୄ ·

rොሻଶ ൅ ሺԖצ · rොሻଶ ൅ ൫k෠ · rො൯ଶ ൌ 1 , the depolarized indirect XFH 
also can be represented by (2). The following discussions apply 
to both direct XFH and depolarized indirect XFH, as described 
by equation (2). 
     Equation (2) resembles to the Fredholm first kind integral 
equation commonly encountered in typical inverse problems.  
However, here the observed hologram ߯൫ሬ݇Ԧ൯ is only  the real 
part of the integral function and is defined on a sphere surface 
in k space.   In previous works, such as in reference [8], the 
discrete points of the hologram were used to solve the integral 
equation. The resulting system of linear equations was usually 
ill-conditioned and must be solved using least square methods.  
To extract the electron density from XFH, we expand the 
hologram with respect to spherical harmonics, and derive a 
relation between the spherical harmonic coefficients and the 
electron density function. 
By replacing the expression for the plane wave with a spherical 
wave expansion in (2)         ݁݌ݔ൫െ݅ ሬ݇Ԧ · Ԧ൯ݎ ൌ ෍ሺെ݅ሻ௟ሺ2݈ ൅ 1ሻ݆௟ሺ݇ݎሻ ௟ܲ൫ ෠݇ · rො൯ஶ

௟ୀ଴          ሺ3ሻ 

Where, ݆௟ is the spherical Bessel function, and ௟ܲ the Legendre 
function, the hologram ߯ can then be expanded to:       ߯ ൌ ௘ݎ ෍ ම Ԧሻݎሺߩ ݁௜௞௥ݎ ௟ܵሺ݇ݎሻ ௟ܲሺ ෠݇ · rොሻ݀ݎԦஶ

௟ୀ଴ ൅ .ܥ  ሺ4ሻ        .ܥ

Here, ௟ܵሺ݇ݎሻ  is a spherical representation of the scattering 
factor between electrons and photons.   Considering  near field 
effect, ௟ܵሺ݇ݎሻ is written as 

௟ܵሺ݇ݎሻ ൌ ሺെ݅ሻ௟ሺ2݈ ൅ 1ሻ݆௟ሺ݇ݎሻ ൬െ݅݇ݎ ൅ 1ሺkݎሻଶ ൅ 1൰                        ൅ ሺെ݅ሻ௟ ݈ሺ݈ െ 1ሻ2݈ െ 1 ݆௟ିଶሺ݇ݎሻ ൬െ3݅ ݇ݎ ൅ 3ሺkݎሻଶ െ 1൰    
           െ ሺെ݅ሻ௟ ቈሺ݈ ൅ 1ሻଶ2݈ ൅ 3 ൅ ݈ଶ2݈ െ 1቉ ݆௟ሺ݇ݎሻሺെ3݅݇ݎ ൅ 3ሺkݎሻଶ െ 1ሻ ሺ5ሻ

      ൅ ሺെ݅ሻ௟ ሺ݈ ൅ 1ሻሺ݈ ൅ 2ሻ2݈ ൅ 3 ݆௟ାଶሺ݇ݎሻሺെ3݅݇ݎ ൅ 3ሺkݎሻଶ െ 1ሻ  
 

Also considering 

௟ܲ൫ ෠݇ · rො൯ ൌ ସగଶ௟ାଵ ∑ ௟ܻ௠ሺߠ௞, ߮௞ሻ ௟ܻ௠כ ሺߠ௥, ߮௥ሻ௟௠ୀି௟ , the spherical 
harmonic expansion of hologram is given by: 

                         ߯ ൌ ෍ ෍ ௟ܻ௠ሺߠ௞, ߮௞ሻܽ௟௠୪
୫ୀି୪

ஶ
௟ୀ଴ ൅ .ܥ  ሺ6ሻ                 .ܥ

where, ܽ௟௠ is  calculated as:             ܽ௟௠ ൌ ௘2݈ݎߨ4 ൅ 1 ම Ԧሻݎሺߩ ݁௜௞௥ݎ ௟ܵሺ݇ݎሻ ௟ܻ௠כ ሺߠ௥, ߮௥ሻ  Ԧ        ሺ7ሻݎ݀

The integral in equation (7) extends over the entire volume of a 
single crystal. The finite crystal size can be represented by a 
periodical ߩሺݎԦሻ   in infinite 3D space multiplied with an 
envelope size distribution function ሺrሻߤ  .   By using the 
translation symmetry of the crystal, the electron density can be 
written as   ߩሺݎԦሻ ൌ ∑ ሺ݅ሬ݄Ԧ݌ݔܧ൫ሬ݄Ԧ൯ߩ · Ԧሻݎ ሺrሻߤ , where, ൫ሬ݄Ԧ൯ߩ   is  
related to the atomic structure factor  ܨሺሬ݄Ԧ) by ߩ൫ሬ݄Ԧ൯ ൌ  ሺሬ݄Ԧሻ/Vܨ
(V=unit cell volume) ,   A simple form of  ߤሺrሻ is an unit step 
function: ߤ ൌ ݎሺߟ െ  .଴ is the average crystal sizeݎ ଴ሻ , whereݎ
Then, equation (7) can be rewritten as ܽ௟௠ൌ ሺ4ߨሻଶ2݈ ൅ 1 ሺ݅ሻ௟ ෍ ൤ ௟ܻ௠כ ሺߠ௛, ߮௛ሻ න ݆௟ሺ݄ݎሻ݁௜௞௥ߤሺrሻ ௟ܵሺ݇ݎሻݎ݀ݎ൨ ൫ሬ݄Ԧ൯௛ߩ                                                                                                              ሺ8ሻ 



Now we consider the complex conjugate of (6), and add it to the 
expression of hologram as a real function: 

                 ߯ ൌ ෍ ෍ ௟ܻ௠ሺߠ௞, ߮௞ሻሺܽ௟௠ ൅ ሺെ1ሻ௠ܽ௟ି௠כሻ୪
୫ୀି୪

ஶ
௟ୀ଴ ൌ ෍ ෍ ௟ܻ௠ሺߠ௞, ߮௞ሻc୪୫୪

୫ୀି୪
ஶ

௟ୀ଴                         ሺ9ሻ 

The c୪୫s are the coefficients of spherical harmonics that can be 
calculated directly from the experimental hologram data. Since 
the hologram χ is a real function, there are only l+1 
independent spherical harmonic coefficients for each l. The  c୪୫  
coefficients provide a series of linear equations related to the 
structure factors: ܿ௟௠ൌ ෍ ቈ ଶ݅௟2݈ߨ8 ൅ 1 ௟ܻ௠כ ሺߠ௛, ߮௛ሻ න ݆௟ሺ݄ݎሻ݁௜௞௥ ௟ܵሺ݇ݎሻߤሺrሻݎ݀ݎ቉ ൫ሬ݄Ԧ൯௛൅ߩ ෍ ቈ ଶ݅௟2݈ߨ8 ൅ 1 ௟ܻ௠כ ሺߠ௛, ߮௛ሻ න ݆௟ሺ݄ݎሻ݁ି௜௞௥ ௟ܵכሺ݇ݎሻߤሺrሻݎ݀ݎ቉ כ൫െ݄ሬሬሬሬሬԦ൯ߩ

௛                                                                                                             ሺ10ሻ 
Neglecting the anomalous scattering factors by assuming  ߩ൫ሬ݄Ԧ൯ ൌ כ൫െ݄ሬሬሬሬሬԦ൯ߩ

(or equivalently, assuming a real electron 
density function in (7)), the spherical harmonic expansion 
coefficient of the hologram can be given as ܿ௟௠ൌ ෍ ቈ16ߨଶ݅௟2݈ ൅ 1 ௟ܻ௠כ ሺߠ௛, ߮௛ሻ න ݆௟ሺ݄ݎሻܴ݁ ቀ݁௜௞௥ ௟ܵሺ݇ݎሻቁ ቉ݎ݀ݎሺrሻߤ ൫ሬ݄Ԧ൯௛ߩ  

                                                                                                           ሺ11ሻ 

    The structure factors ߩ൫ሬ݄Ԧ൯  can be extracted from the 
coefficients of the spherical harmonics by solving linear 
equations (10) or (11). To calculate the matrix elements, we 
need to know the values of ݄, , ௛ߠ and ߮௛. These are constants 
related to the lattice parameters, and can be obtained with 
routine x-ray diffraction measurements or Kossel line 
measurements on single crystals [17]. We also need to estimate 
the crystal size from the line broadening of the x-ray diffraction 
to construct the size distribution function ߤሺrሻ. 
The integral function in (11):                ܵܬ௟ሺ݄, ݇ሻ ൌ න ݆௟ሺ݄ݎሻRe൫݁௜௞௥ ௟ܵሺ݇ݎሻ൯ߤሺrሻݎ݀ݎ         ሺ12ሻ 

is a structure-independent function of h, with given wave vector 
k and the size distribution function ߤሺrሻ. For odd l’s and large 
even l’s,  ܵܬ௟ሺ݄, ݇ሻ abruptly approaches zero at h = 2k. This is 
the consequence of the diffraction limit imposed by equation: ෠݇ · ෠݄ ൌ ݄/2݇. 
     Figure 1 shows an example of the numerical calculation of   ܵܬ௟ሺ݄, ݇ሻ  for  ݈ א ሺ0,55ሻ . Integration is performed with ߤ ൌߟሺݎ െ 200Åሻ. For low even l’s, the function extends beyond h 
=2k, but quickly decays to negligible values.  We attribute this 
to the tails of the Kossel lines with h-values nearest to 2k from 
above. 

 
Fig. 1. (color online) Matrix calculation as a function of h for k 

= 5.55 Å-1 
 
     Even though the diffraction limit reduces the number of 
structure factors that can be derived from the XFH data, it helps 
in defining a finite set of unknowns to be solved in the linear 
equations (10)-(11). All structure factors with h < 2k must be 
included to resolve the  ߩ൫ሬ݄Ԧ൯’s with high accuracy, while it is 
safe to ignore the structure factors with h>2k using selected 
spherical harmonics. 
     The fine structure of the experimental XFH data depends on 
crystal size, the angular resolution of x-ray beam, and other 
factors that may distort  high frequency signals in the hologram. 
For a structure to be reliably solved from the hologram, signals 
more susceptible to experimental condition must be separated 
from those strongly determined by the structure factors. The 
method of spherical harmonic expansion separates hologram 
signals according to their angular frequency, thus allows 
unreliable high frequency signals to be discarded.  In practice, 
low and mid frequency signals are weakly influenced by the 
crystal size and the angular resolution of the x-ray beam. 
      The number of structure factors to be resolved in this 
method only depends on the energy of the probing x-ray wave. 
Therefore, the higher order spherical harmonics generated by 
sharp Kossel lines due to large crystal size can be excluded 
from the structure solving matrix without losing the structural 
information. This acts effectively as a low–pass filter for 
suppressing the non-holographic components, namely the 
object-object terms [18] and the secondary yield caused by 
extinction effect [19] in XFH data. 
     The samples most suitable to XFH measurement are crystals 
close to the ideally imperfect condition, as defined by Warren 
[14], so that both the object-object term and the extinction 
effect can be ignored. In practice, usually the crystals under 
study are imperfect but not ideally imperfect, and have  
distributions in size and orientation of their mosaic blocks. The 
large crystal component and the mosaic clusters with closely 
coincided orientation are the origins of the non-holographic 
contaminations.  Both of these two kinds of non-holographic 
terms manifest their effects as abrupt intensity changes in a very 
narrow angular region in the center of the Kossel lines, and 
therefore contribute mostly to the higher order harmonics.  It 
has been demonstrated in previous studies [19] that the 
scattering from large crystals will also contribute to lower order 
harmonics. The non-holographic terms in these scattering 
contributions  are negligible as they are mostly from the wide 
angular regions away from Kossel lines.  The experimental 
techniques that have been widely used to minimize the non-
holographic terms before data analysis, such as measuring the 
integrated intensity with a finite angular resolution or averaging 
afterwards by applying a low-pass filter [18], and taking the 
holograms with multiple x-ray energies, are   compatible and 
can be used with the spherical harmonic analysis method.      
To demonstrate the structure-resolving power of the spherical 
harmonic analysis method on XFH data, we applied it to a 



 

 

hexagonal HoMnO3 structure (space group P63cm, a = 6.1413 
Å, c = 11.4122Å ) [20]. HoMnO3 is an important multiferroic 
structure [21]. We choose this system as an example because 
this noncentrosymmetric system has a complex structure factor 
and the presence of the heavy holmium atoms in the unit cell, it 
is difficult to accurately determine the oxygen positions using 
regular XRD method. Calculating the spontaneous polarization 
of the system based on its structure requires accurate 
determination of the positions of the oxygen in the unit cell. 
The manganese in the structure is the fluorescence emitter with 
8 keV x-rays used as the probing wave. A depolarized indirect 
hologram is simulated with the equation:  ߯൫ሬ݇Ԧ൯ ൌ ෍ ௚݂ሺሬ݇Ԧ, rనሬሬԦሻ ൫݅݇r୧݌ݔܧ௘ݎ െ ݅ ሬ݇Ԧ · rనሬሬԦ൯r୧ ሺr୧ሻ௜ߤ ൅ .ܥ  ሺ13ሻ    .ܥ

where ௚݂ሺሬ݇Ԧ, rԦሻ  is a generalized atomic scattering factor that 
includes the near field effect [22], the anomalous scattering 
correction, and the polarization factor. We assigned only one of 
the six Mn atoms in the HoMnO3 unit cell as the fluorescence 
emitter in our simulation so that we could compare the 
reconstructed electron density map directly to that of the model 
structure. With an x-ray energy of 8 keV, there are 3334 
structure factors satisfying h<2k. The hologram was simulated 
with 0.5° resolution in both � and φ, resulting in 361x720 data 
points. We employed FORTRAN codes adapted from 
SPHEREPACK 3.0 [23]  to calculate the coefficients clm of 
spherical harmonic expansion from these data points. A 
complementary error function ߤ ൌ ݎ൫ൣ݂ܿݎ݁ െ 150Å൯/50Å൧ was 
used to define the crystalline size in the hologram simulation 
and in the matrix calculation. The ܿ௟௠Ԣs with ݈ א ሺ21,99ሻ and ݉ א ሺ0, ݈ሻ  were used to construct 4740 complex linear 
equations (11). The matrix is directly invertible with a moderate 
condition number 434.5. We used the matrix division function 
of MATLAB to solve this overdetermined linear system.  

 
 

 Fig. 2: (color online) (a) Reconstructed electron density in 
(100) plane from the solved structural factors of HoMnO3, (b) 
structure image from Barton’s method with 5 energies, and (c) 
from Barton’s method with  1 energy. 
 

      The 3344 structure factors we extracted had a standard 
deviation of approximately 1.8% with respect to the model 
values. We then constructed an electron density map in the 
(100) plane of HoMnO3 with these structure factors (Fig. 2(a)). 
In Fig. 2(b) we depict the real space images obtained using 
Barton transform, from five holograms acquired  with equally 
spaced energies from 8.0 to 9.6 keV (b), and a single energy 
hologram at 8 keV (c), on the same contrast scale.  

     Note that the atomic images by Barton transform look 
particularly distorted because of the presence of the heavy Ho 
atoms in the HoMnO3 structure and the low symmetry of the 
P63cm space group. The intensity of the interference ripples is 
proportional to that of the heaviest elements in the structure. 
The ripples caused by Ho (atomic number 67) are more intense 
than the image intensity of Mn (25) and O(8) atoms, thus the 
signal from the Ho dominates the pattern. Because of the low 
symmetry of the system, the center atom Mn has different 
distances to the four neighboring Ho atoms in the (100) plane, 
causing difference in their image intensities.  

     Comparing the result of the spherical harmonic analysis and 
the Barton transform clearly reveals that the new method 
greatly improved the structure-resolving capability of the XFH 
method. It also demonstrates that the essential structural 
information is already contained in a single energy hologram. 
The electron density map displays precise atomic positions and 
proper intensity ratios between the Ho, Mn, and O atoms, thus 
providing adequate information to resolve the structure without  
a priori knowledge of the atomic constituents of the unit cell. 
Importantly, the position and shape of oxygen atoms are shown 
clearly, despite the presence of the heavy holmium atoms in the 
unit cell. Hence, XFH undoubtedly is an effective tool to probe 
systems with high variations in electron density. Further, the 
spherical harmonic analysis on XFH data affords us a novel 
method to study the non-spherical distributions of the  electron 
density without resorting to model building or phase 
refinement. This new application of XFH may become an 
unique tool for x-ray crystallography studies of  electron 
density.  
    The ambiguity caused by the multiple symmetry distinct 
fluorescence centers is an intrinsic limit of the XFH method and 
can be resolved by making use of space group symmetry and 
bond length constraints. Spherical harmonic analysis, as well as 
the Barton transform method, require a hologram data set in full 
4π solid angle. Currently, most XFH measurements are taken 
from a flat surface of large single crystals, and hence, it is 
difficult to directly measure the hologram in a full 4π solid 
angle in this geometry. Therefore, the point group symmetry of 
the crystal is employed to extend the data set to its full range.   
With the advancements in techniques of synchrotron radiation, 
XFH can be measured from small crystals in the transmission 
mode using a highly focused beam. XFH in transmission mode 
will make it possible to directly measure the full range 
hologram, to measure the holograms in two polarization 
geometries with same diffractometer setup (to depolarize the 
direct XFH data), and to extend the application of XFH to other 
fields of crystallography, such as structural biology.       
  
      Our   reconstruction algorithm based on spherical harmonic 
analysis provides an efficient method that is readily automated 
to directly extract structural information from single energy x-
ray fluorescence holograms. This   method makes XFH a 
quantitative method that is highly applicable to fields of 
materials characterization. Since the method does not rely on 
the isolated-atom approximation, it can be used to retrieve 
electron density from high resolution XFH data, and thus 
provides a new benchmark for the quantum-chemical 



calculations based on density functional theory.    
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