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Electrical resistivity of heavy rare-earth metals has a dominant contribution from thermal spin
disorder scattering. Here this spin-disorder resistivity is calculated for the Gd-Tm series of metals
in the paramagnetic state. Calculations are performed within the tight-binding linear muffin-tin
orbital method using two complementary methods: (1) averaging of the Landauer-Büttiker conduc-
tance of a supercell over random noncollinear spin-disorder configurations, and (2) linear response
calculations with the spin-disordered state described in the coherent potential approximation. The
agreement between these two methods is found to be excellent. The spin-disorder resistivity in the
series follows an almost universal dependence on the exchange splitting. While the crystallographic
anisotropy of the spin-disorder resistivity agrees well with experiment, its magnitude is significantly
underestimated compared to experiment. These results suggest that the classical picture of slowly
rotating self-consistent local moments is inadequate for rare-earth metals. A simple quantum correc-
tion improves agreement with experiment but does not fully account for the discrepancy, suggesting
that more complicated scattering mechanisms may be important.

I. INTRODUCTION

Scattering on spin fluctuations in magnetic met-
als adds an “anomalous” contribution to the electrical
resistivity.1–3 Contrary to other scattering mechanisms,
such as impurity and phonon ones, this spin-disorder
scattering is not well understood, because the theory of
spin fluctuations at elevated temperatures is far from be-
ing complete.4 The minimal model of spin-disorder resis-
tivity (SDR) is based on the s-d (or d-f) Hamiltonian,
containing on-site interaction of the conduction electrons
with spins localized on lattice sites, which are subject
to thermal fluctuations.5–7 This interaction is also re-
sponsible for the indirect exchange coupling described by
the RKKY theory.8,9 Extensions of this model to include
Fermi surface anisotropy and the appearance of “super-
zones” (in the helically ordered state) in the heavy rare-
earths have also been proposed.8–13 These modifications
involve explicitly including the integral of the velocity
squared taken over the Fermi surface in the semiclassi-
cal expression for the conductivity and calculating the
changes to the resistivity due to the appearance of new
zone boundaries that perturb the energy bands and open
up additional gaps in the band structure.
First-principles calculations of SDR provide an oppor-

tunity to test the models of spin disorder quantitatively
by comparing the predicted SDR with experiment. In
particular, such a study of spin-disorder resistivity of Fe

and Ni14 suggests that the spin fluctuations in these ma-
terials are described reasonably well by slowly rotating,
classical local magnetic moments, supporting the widely
used “adiabatic” model of spin fluctuations.15

The series of heavy rare-earth metals (Gd-Tm) pro-
vides an interesting case study, because the 4f electrons
supplying most of the local moment are much more lo-
calized compared to the transition metals, while the or-
bitals moments are not quenched. It may therefore be
expected that treatment of spin fluctuations in rare-earth
materials as classical spin rotations may be inadequate.
Systematic experimental studies of the electrical proper-
ties of heavy rare earths were carried out by Legvold et

al. These included polycrystalline16,17 and single-crystal
samples,18–23 allowing a compilation of the SDR in the
in-plane and c-axis directions of the hexagonal crystal
structure. Single-crystal resistivity measurements have
also been performed by other group.24–28

In the f -d model picture, the assumption that the 4f
local moment can be treated as a quantum multiplet with
a fixed angular momentum J leads to the SDR being pro-
portional to J(J + 1) in the paramagnetic state (in the
Born approximation). The effective scattering potential
is, however, provided largely by spin alone. Therefore, in
this picture the SDR in the Gd-Tm series should behave
as S2(J + 1)/J . This picture appears to agree reason-
ably well with experimental data,10,29 but only after an
empirical electronic correction is included.10
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The choice of the angular momentum J for the quan-
tum multiplet10,29 is based on the assumption that
spin-orbit coupling is sufficiently strong to enforce the
collinearity of S and L at all times. If spin-orbit cou-
pling is small compared to other relevant energy scales,
then the role of J should be played by S and SDR should
behave as S(S + 1) in the Gd-Tm series. However, band
structure calculations30 show that the 4f bandwidth is
comparable to or greater than the spin-orbit splittings of
the localized 4f multiplets with different J values, which
are of the order of 0.1 eV. The local exchange potential
acting on the conduction electrons by the fluctuating 4f
moments is on the order of 1 eV in Gd and decreases lin-
early with the 4f spin moment later in the series. This
fluctuating exchange potential should induce an uncer-
tainty of the conduction electron energy on the order of
a few tenths of an electronvolt. Therefore, the assump-
tion that the J value of the fluctuating 4f shell should be
conserved in the scattering process is not well justified.
Since all the relevant energy scales (spin-orbit splittings,
exchange splitting, bandwidth) are roughly of the same
order of magnitude, the effect of spin and orbital momen-
tum quantization on SDR may be quite complicated.
In this paper we study the SDR for the Gd-Tm series

using first-principles calculations based on density func-
tional theory. We use two complementary approaches,
one using supercell averaging of the Landauer-Büttiker
conductance, and the other based on linear response cal-
culations applied to the paramagnetic state described
within the coherent potential approximation. In most
calculations the 4f electrons are treated as fully localized,
but the effect of including them in the valence basis is
also considered. The results of our calculations represent
the predictions of the classical spin model. Contrary to
the case of transition metals,14 our results for Gd-Tm are
systematically and significantly lower compared to exper-
imental data, suggesting that the quantum character of
the 4f shell is indeed important. However, we found that
neither a (J + 1)/J nor an (S + 1)/S correction brings
the results in close agreement with experiment, support-
ing the qualitative argument that the fluctuations of the
4f shell are not well described either by the fixed-J model
or by the assumption that S and L are weekly coupled.

II. COMPUTATIONAL METHODS

The 4f electrons in rare earths are strongly localized
and obey Hund’s rules, producing large local magnetic
moments. These electrons are not well described by the
local density approximation,30 which places the 4f en-
ergy bands close to the Fermi level in disagreement with
photoemission experiments.31 This problem can be ad-
dressed in two ways. First, one can use the LDA+U
method for the 4f electrons, which introduces a corre-
lation gap and removes the 4f states from the Fermi
level. The second way is to treat the 4f orbitals as
fully localized by excluding them from the valence ba-

sis and filling them in accordance with Hund’s rules (the
“open-core” approximation). In both cases the partially
filled 4f states supply local moments and contribute to
the scattering (exchange) potential. In the open-core ap-
proach they are explicitly prevented from carrying cur-
rent; in the LDA+U approach their contribution to the
current is expected to be small, but they can still affect
the scattering rates by modifying the final states. Both
solutions produce similar band structures near the Fermi
level,30 and therefore they can be expected to produce
similar results for transport.
Our calculations of SDR are based on the tight-

binding linear muffin-tin orbital (TB-LMTO) method.32

In most of our calculations we used the open-core
approximation33 for the 4f states, but we have also con-
sidered the effect of including the 4f states in the valence
basis. As expected, this inclusion increases the resistivity
by a small amount.
We used two approaches for SDR calculations, the

Landauer-Büttiker (LB) method and the linear response
technique applied within the disordered local moment
(DLM) model. In all calculations we consider the para-
magnetic state to be a completely random, uncorre-
lated distribution of local moment directions on different
atomic sites. The results are compared with experimental
data, from which the phonon and impurity contributions
have been removed by an appropriate fitting.
While the LB approach can be used for more compli-

cated spin statistics,14 the DLM method is, by design,
appropriate only to uncorrelated spin disorder due to
its reliance on the single-site approximation. The DLM
method uses the bulk geometry and computes the re-
sistivity by a reciprocal-space integration of the Kubo-
Greenwood formula, while the LB approach requires the
construction of supercells.

A. Landauer-Büttiker approach

The method used for SDR calculations was described
in Ref. 14. All heavy rare earth elements examined in this
study (Gd, Tb, Dy, Ho, Er and Tm) have a hexagonal
close-packed crystal structure. The resistivity tensor has
two independent components for current flowing parallel
and perpendicular to the hexagonal c axis. For transport
along the c axis we used supercells with a 4 × 4 cross-
section (16 atoms per monolayer, interlayer spacing c/2)

of area 8a2
√
3. The in-plane SDR was calculated for the

current flowing parallel to one of the in-plane lattice vec-
tors. For this direction we used supercells with 3 × 2
(12 atoms per monolayer, interlayer spacing a) rectan-

gular cross-section of width 3a
√
3 and height 2c. The

integration of the conductance over the two-dimensional
Brillouin zone is performed using a 24× 24 k-point mesh
for both transport directions, and the result is averaged
over 15 random noncollinear spin distributions. For a
convergence test see Appendix A.
Fig. 1 shows the configurationally averaged area-
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FIG. 1. Area-resistance product RA vs the thickness L of the
disordered region for both transport directions for Gd, Tb and
Tm (LB method). Each point corresponds to an average of
15 or more random spin-disorder configurations. (a) In-plane
direction, open shapes, (b) c−axis direction, closed shapes.
Triangles: Gd, Circles: Tb, Squares: Tm.

resistance product RA as a function of the thickness L
of the active disordered region in our supercell calcula-
tions for Gd, Tb and Tm for both transport directions.
The plots for other three elements (Dy, Ho and Er) are
similar. Ohmic regime is quickly reached for all elements.
The SDR is obtained from the slope of the fit to the linear
region.

To check the validity of the open-core approximation
for transport calculations, we include the 4f orbitals in
the valence basis set and calculate the self-consistent po-
tentials using the fully localized limit of LDA+U34 ap-
plied to the 4f electrons. The population of the 4f states
is specified manually by a diagonal density matrix in the
spherical harmonic representation (which is not subject
to self-consistency); the orbitals are filled according to
Hund’s rules. For Gd we used U = 6.7 eV and J = 0.7
eV. The band structure agrees with Ref. 30 with the un-
occupied 4f states located 2 eV above the Fermi energy.
For Ho we fixed J = 0.7 eV and adjusted the U param-
eter to U = 8.0 eV to place the minority-spin 4f bands
at 2 eV above the Fermi level, according to the photoe-
mission data.31 For transport calculation we then use the
(less expensive) Ising approximation by randomly assign-
ing “up” and “down” directions for the local moments.
(This approximation is justified by good agreement with
DLM results in all other cases.) The orbital occupations
are also adjusted so that the orbital moments are parallel
to spin moments on all sites.

B. Disordered local moment (DLM) model

The DLM approach15 describes the paramagnetic state
above the Curie point, approximating it as an ensemble
of randomly oriented local magnetic moments. The elec-
tronic structure of this state is evaluated self-consistently
using the coherent potential approximation (CPA). The
solution for the spherically symmetric vector model is
conveniently equivalent to that for the fictitious equicon-
centrational binary alloy, whose two components repre-
sent atoms with antiparallel local moments. The spin-
disorder part of the total resistivity can then be asso-
ciated with the “residual” resistivity of the DLM state
viewed as a binary alloy, which is calculated within the
Kubo-Greenwood approach (Strict justification of the va-
lidity of this calculation will be published elsewhere).
The first implementation of the DLM method for resis-
tivity studies was done in Ref. 35. Our implementation of
the linear response technique within the TB-LMTO-CPA
method including disorder-induced vertex corrections is
described in Refs. 36 and 37.
As a test case we calculated the SDR for bcc iron us-

ing the DLM method and the spd basis. The resistivity
is 85 µΩ cm, which agrees well both with supercell LB
calculations14 and with experiment, while the value ob-
tained in Ref. 35 is almost twice larger. The origin of
this disagreement is unclear. The method of Ref. 35 uti-
lizes a hybrid method where the electronic structure is
described by DLM method, but the resistivity is found
from the slope in the multilayer geometry as a limit from
large imaginary parts of the energy (1 and 2 mRy). This
method also neglects vertex corrections, thus violating
current conservation.

III. REVIEW OF EXPERIMENTAL DATA

The experimental data in Table I are those of Legvold
and coworkers17–23 and those of other groups.24,26–28 The
former set of SDR values for Gd, Tb, Dy, Ho and Er are
taken from the compilation plot in Ref. 10 and agree well
with our own fits to the single-crystal resistivity data.
The in-plane and c-axis SDRs for Tm are explicitly re-
ported in Ref. 23, as are the single-crystal data for Gd
by Maezawa et al.26 and for Er28 and Tm27 by Ellerby et

al. The additional values for Dy are obtained from the
plots of Ref. 24 by an appropriate fitting.
For Gd and Dy the resistivity curves and SDR val-

ues reported by different references agree quite well.
For Er and Tm the resistivity curves from different
measurements are similar in shape and indicate the
same transition temperatures, but the absolute values
of the residual-subtracted resistivities differ. For Er,
the residual-subtracted resistivities reported by Ellerby
et al. are systematically larger compared to the results
of Legvold et al. For example, the resistivity at the Néel
temperature TN = 85 K is about 6 µΩ cm larger in the c-
axis direction and about 19 µΩ cm larger in the in-plane
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direction. The SDRs do not agree either, with SDRs from
Ellerby et al. being a factor of 1.4 to 1.5 larger. For Tm
the disagreement is in the opposite direction; Ellerby et

al. note that their c-axis (in-plane) resistivity curves are
a factor of 2 (factor of 1.3) smaller compared to Legvold
et al. The SDRs in the two studies, however, are in agree-
ment.
The source of these disagreements is currently un-

known. Ellerby et al. mentioned27 that the discrepancy
might be due to errors in determining the cross-sectional
areas of the samples. Another problem may be the pu-
rity of the samples. The residual resistivities reported
by Legvold et al. for Er are rather large and of the same
order as the SDRs. In the rest of the heavy rare-earth
experiments by Legvold et al. the residual resistivities
are between 3 and 6 µΩ cm. These discrepancies intro-
duce some ambiguity, at least in the case of Er, when
comparing the calculated SDR with experiment.

IV. RESULTS

For each element and transport direction we per-
formed two sets of calculations corresponding to differ-
ent atomic potentials. The first set of calculations used
self-consistent potentials from the collinear ferromagnetic
ground state of each metal. These results are listed in
the first row for each element in Table I. The second
set used potentials with reduced local moments taken
from the self-consistent DLM calculations for the para-
magnetic state. These results are listed in the second
row for each element. To compare the effect of local mo-
ment reduction in both methods, the atomic potentials
are calculated self-consistently in the presence of an ap-
propriately adjusted external field, constraining the local
moments to their DLM values. These atomic potentials
are then used in LB calculations. We refer to these as
the fixed-spin moment (FSM) calculations.
In order to compare the band structure obtained us-

ing the DLM method with explicit supercell calculations
(to which DLM is an approximation), we constructed 64-
atom supercells for Gd (4 hexagonal monolayers with 16
atoms per monolayer, periodically repeated in three di-
mensions). We used FSM potentials as input and gener-
ated 7 different spin disorder configurations by randomly
assigning the directions of all local moments in the su-
percell. Then the partial density of states (DOS) for
each site was calculated in the local reference frame (z
axis collinear with local moment direction) and then av-
eraged over all sites and all 7 configurations. At the same
time the output local moments were also calculated and
averaged. This average output moment was 7.46µB with
a standard deviation of of 0.03µB, comparing well with
the input moment of 7.44µB. The averaged local DOS
shown in Fig. 2 is almost indistinguishable from the self-
consistent DLM result of Ref. 38. This agreement shows
that the DLMmethod provides an accurate description of
the band structure of rare-earth metals. This agreement

extends to transport calculations, as discussed below.
Table I lists the SDR results obtained using both LB

and DLM methods. SDR for a polycrystal was estimated
using the empirical formula39

ρpoly =
1

3

(

2ρ⊥ + ρ‖
)

. (1)

The overall trend in the Gd-Tm series is represented
by Fig. 3, where the LB results are plotted as a function
of the square of the exchange splitting ∆. The graphs in-
clude the results obtained using both ferromagnetic and
FSM input potentials listed in Table I. We also show
the c-axis SDR in Gd calculated using several other val-
ues of the local moment constrained by FSM. The ex-
change splitting ∆ is defined as the difference between
the majority- and minority-spin 5d band centers (LMTO
C parameters) obtained from the LMTO parametriza-
tion of the (third-order) potential function P (E).40 To
improve the accuracy of this determination, these param-
eterizations are performed with the LMTO linearization
energies ǫν for both spins selected so that they are close
to the C parameter for the same spin.
Calculated SDR for Gd and Ho with the 4f orbitals

treated using the LDA+U method are also shown in
Fig. 3. LDA+U calculations enhance the local moments
compared to the open-core approximation to 7.87µB for
Gd and 4.64µB for Ho. The calculated SDR are also en-
hanced to 81.7 µΩ cm (in-plane) and 68.2 µΩ cm (c-axis)
for Gd, and to 44.4 µΩ cm (in-plane) and 31.6 µΩ cm (c-
axis) for Ho.
As seen from Table I, the calculated results are system-

atically and significantly lower compared to experimental
data, particularly when DLM local moments are used.
Fig. 4 shows the effect of applying quantum corrections
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FIG. 2. Spin-projected local DOS of paramagnetic Gd aver-
aged over 64-atom supercells with random noncollinear local
moment orientations. The valence basis includes s, p, and d
states, while the fully spin-polarized 4f shell is included in the
open-core approximation. The total (input) local moment is
7.44µB . (Note excellent agreement with the DLM result of
Ref. 38.)
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TABLE I. SDR of heavy rare-earth metals calculated using Landauer-Büttiker (LB) and disordered local moment (DLM)
methods. First (second) row for each element: Atomic potentials taken from the ferromagnetic state (from self-consistent DLM
local moments). Experimental data are from Refs. 17–23 or as cited.

Element Lattice Parameters Moment In-plane SDR c-axis SDR Polycrystal SDR

(a.u.) (µB) (µΩ cm) (µΩ cm) (µΩ cm)

LB DLM Exp LB DLM Exp LB DLM Exp

Gd
a = 6.858 7.72 58.9 59.1

108, 10526
44.9 41.5

96, 9526
54.2 53.2

106.4
c = 10.952 7.44 42.0 40.2 31.3 26.9 38.4 35.7

Tb
a = 6.805 6.64 45.6 46.0

82
33.5 30.2

66
41.6 40.7

85.7
c = 10.759 6.35 29.1 27.7 22.2 17.6 26.8 24.3

Dy
a = 6.784 5.58 35.4 35.3

62, 5724
25.1 22.6

44, 4524
32.0 31.1

57.6
c = 10.651 5.27 19.4 18.6 14.1 11.7 17.6 16.3

Ho
a = 6.760 4.46 23.8 22.8

41
16.8 14.3

24
21.5 20.0

32.3
c = 10.612 4.20 12.0 10.8 7.93 6.8 10.6 9.43

Er
a = 6.725 3.33 13.4 12.2

21, 32.428
8.56 7.5

13, 18.028
11.8 10.6

23.6
c = 10.559 3.14 6.68 5.94 4.11 3.44 5.82 4.81

Tm
a = 6.685 2.21 5.96 5.23

22.3, 21.227
3.43 3.2

7.4, 9.027
5.12 4.56

14.9
c = 10.497 2.088 3.00 2.32 1.67 1.44 2.56 2.02
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FIG. 3. SDR as a function of the squared exchange splitting
∆2 in the open-core approximation (or as indicated). Filled
shapes: in-plane SDR; open shapes: c-axis SDR. Circles: Gd,
squares: Tb, triangles: Dy, inverted triangles: Ho, diamonds:
Er, crosses: in-plane Tm, pluses: c-axis Tm. Points labeled
50/50 Ising LDA+U : calculations with LDA+U for 4f or-
bitals in the basis set and Ising spin disorder.

according to the models mentioned in the Introduction.
For this purpose we used the LB results obtained using
the atomic potential from the ferromagnetic state, which
are somewhat closer to experiment. The experimental
data are plotted for comparison.
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FIG. 4. Comparison of calculated SDR with experiment and
the effect of quantum corrections. (a) In-plane direction, (b)
c axis direction. Insets: enlarged scale. Crosses: experimen-
tal data (Legvold et al.); filled circles: LB calculations with
atomic potentials taken from the ferromagnetic state. Filled
diamonds: LB results multiplied by (S + 1)/S; open circles:
LB results multiplied by (J + 1)/J .

V. DISCUSSION

Table I demonstrates excellent agreement between the
LB and DLM methods. Since the DLM method may be
viewed as a single-site approximation to LB results, this
agreement shows that the DLM method is quite accurate
for transport calculations in all of the heavy rare-earth
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metals. This is not surprising in view of the excellent
agreement of the DOS demonstrated above.

The dependence of SDR on ∆2 shown in Fig. 3 in-
dicates a fairly universal linear trend for both crystal-
lographic directions of transport. Since the exchange
splitting plays the role of the disorder strength for SDR,
this approximately linear dependence is natural. Still,
Fig. 3 also reveals systematic deviations from this general
trend. The ρ(∆2) dependencies for individual elements
(obtained using FSM) tend to have a larger slope com-
pared to the universal ρ ∝ ∆2 trend for the series. In
particular, when two different elements are constrained
by FSM to have the same exchange splitting ∆, the heav-
ier element has a somewhat larger SDR for both crystal-
lographic directions (compare the nearby points for Dy
and Tb or those for Ho and Dy). These deviations can
at least partially be related to the systematic reduction
of the Fermi velocities in the series. Table II lists the
values of the Fermi surface integral, which appears in
the semiclassical expression for the conductivity in the τ -
approximation. Note, however, that a direct application
of the semiclassical theory to the SDR problem would
be rather questionable. Indeed, such treatment requires
that the electronic bands are well-defined, and that the
typical separations between them are small compared to
the scattering potential. In the SDR problem the bands
are spin-degenerate in the absence of the scattering po-
tential; in the paramagnetic state the band splitting and
the scattering potential are of the same order.

TABLE II. Calculated integrals
∫
v2αδ(E − EF )dk (atomic

units) in the fictitious non-magnetic state

Element In-plane c-axis

Gd 0.679 1.247

Tb 0.655 1.257

Dy 0.609 1.217

Ho 0.571 1.166

Er 0.548 1.135

Tm 0.532 1.108

The calculated in-plane resistivity is greater compared
to the c-axis direction for all elements, and the magni-
tude of this anisotropy gradually increases in the Gd-Tm
series. These features agree very well with the experi-
mental data, suggesting that first-principles calculations
correctly capture the anisotropy of the electronic struc-
ture near the Fermi surface and its dependence on the
local moment of the 4f shell. Note that the anisotropy
of SDR is much smaller than that of the Fermi surface
integral for σ in the τ -approximation (see Table II); this
latter anisotropy, moreover, barely depends on the nu-
clear charge.

Contrary to the crystallographic anisotropy of SDR
and its trend in the series, the magnitude of the cal-
culated SDR is significantly smaller compared to exper-
iment, even when the atomic potentials from the ferro-

magnetic state are used (see Table I and Fig. 4). The
experimental values are larger by factors of 1.83/2.14
(in-plane/c-axis) for Gd, 1.80/1.97 for Tb, 1.75/1.75 for
Dy, 1.72/1.43 for Ho, 1.57/1.52 for Er and 3.74/2.16 for
Tm. The worst agreement is found for Gd, Tb and es-
pecially Tm. Similar disagreement is, of course, found
for polycrystals. This systematic underestimation sug-
gests that while the electronic structure is likely de-
scribed reasonably well, the scattering rates are in reality
much higher than predicted by our classical frozen-spin-
disorder model.

We have verified the reliability of our description of the
electronic structure by comparing the electronic bands of
Gd to highly precise full-potential calculations and found
that a slightly improved treatment with added empty
spheres does not materially change the results (see Ap-
pendix B for details). We have also checked the effect of
including the 4f states in the basis set using the LDA+U
method, as described in Section IIA, using Gd and Ho
as representative examples. As shown in Fig. 3, the SDR
values obtained in this way for both Gd and Ho are en-
hanced compared to the open-core approximation, but
the majority of this enhancement is due to the larger ex-
change splitting in LDA+U calculation. (This effect is
likely due to the dependence of the f -d exchange inte-
gral on the energy of the 4f wavefunction.) There is also
a small enhancement of about 5% due to the use of a
collinear Ising-like random distribution instead of a fully
non-collinear random distribution. After accounting for
these contributions, we find that the remaining effect of
including the 4f states in the basis set is an SDR en-
hancement in the range of 12-20%. According to photoe-
mission data,31 the 4f states of other heavy rare-earth
elements also lie far from the Fermi level compared to
the exchange splitting and therefore should not strongly
affect spin-disorder scattering.

As discussed in the Introduction, the localized charac-
ter of the 4f states suggests that their quantum character
needs to be taken into account. In two simple models as-
suming either very strong or very weak S-L coupling in
the fully localized 4f shell, the quantum correction to our
classical results is either (J + 1)/J or (S +1)/S. In Ref.
10 it was argued that all experimental results agree with
the strong-coupling (J + 1)/J correction, but only after
an empirical electronic correction was introduced. Since
in our calculations all electronic structure effects are al-

ready included, we can see whether a quantum correction
can systematically improve agreement with experiment
without any additional adjustable parameters. The re-
sults predicted by two kinds of quantum corrections are
included in Fig. 4.

Both correction factors are always greater than 1, and
therefore they tend to improve agreement with experi-
ment. It is clear, however, that the (J + 1)/J correc-
tion is generally insignificant. The (S + 1)/S correction
provides a much more notable improvement, particularly
for Ho and Er, and to a lesser degree for other elements.
However, the disagreement for Gd and Tb remains sig-
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nificant, particularly considering that the results shown
in Fig. 4 are based on the atomic potentials taken from
the ferromagnetic state. Therefore, it is likely that the
(S + 1)/S correction does not fully capture the effects
of the quantum character of the 4f shell on conduction
electron scattering.
Full-potential band structure calculations show that

the conduction band structure is quite insensitive to the
orbital structure of the 4f shell, as long as its total spin
is kept fixed (see Appendix C). Therefore, the random
multipole potential generated by the (hypothetical) fluc-
tuations of the orbital structure of the 4f shell does not
provide an important scattering mechanism. Neverthe-
less, these fluctuations can affect the scattering rates by
modifying the allowable sets of initial and final states for
electron scattering.
Apart from more complicated quantum corrections,

two other mechanisms can further enhance SDR. First,
we found that the inclusion of spin-orbit coupling for con-
duction electrons in DLM increases the resulting SDR of
Gd by approximately 20% for both transport directions,
and for both ferromagnetic and DLM values of the local
moments. Second, the assumption that phonon and spin-
disorder scattering mechanisms are entirely independent
and contribute additively to the total resistivity may be
wrong. If deviations from Matthiessen’s rule for phonon
and spin-disorder mechanisms are important, they should
be more pronounced in Gd and Tb where the Curie tem-
perature is large and comparable with the Debye tem-
perature. This issue deserves a separate study, which is
beyond the scope of the present paper.

VI. CONCLUSIONS

In this paper we investigated the SDR of the heavy
rare-earth metals using two complementary approaches,
one based on the explicit spin-disorder averaging of the
Landauer-Büttiker conductance of a supercell, and an-
other one using linear response calculations in the para-
magnetic state described by the coherent potential ap-
proximation (DLM method). The two methods agree
well with each other and properly capture the crystal-
lographic anisotropy of the spin-disorder resistivity. A
fairly universal linear ρ(∆2) dependence is obtained for
the series, where ∆ is the exchange splitting of the con-
duction band in the ferromagnetic state.
The calculated spin-disorder resistivities are systemat-

ically smaller than experiment, suggesting that the scat-
tering rates are underestimated by the classical frozen-
spin-disorder model. A quantum correction factor of
(S + 1)/S significantly improves agreement with experi-
ment, especially for heavier elements. Moderate improve-
ment is also obtained in individual cases by including the
4f states in the basis set and by including spin-orbit cou-
pling. Still, all these corrections are insufficient at least
for Gd and Tb. Since in these two elements the Curie
and Debye temperatures are comparable, it is possible

that deviations from Matthiessen’s rule for spin-disorder
and phonon scattering may be important.
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Appendix A: Convergence with respect to supercell
cross-section

The cross-section of our supercells used in the LB cal-
culations was chosen to be large enough to minimize
finite-size effects. The sufficiency of these sizes was es-
tablished by convergence tests for Gd, Ho and Tm. For
c-axis transport we increased the cross-section to 5 × 5
(area of 12.5a2

√
3 with 25 atoms per monolayer) and

integrated using a 20 × 20 k-point mesh. For in-plane
transport we increased the cross-section to 4 × 3 (area

of 12ac
√
3 with 24 atoms per monolayer) and integrated

using a 12× 12 k-point mesh.
Table III summarizes the dependence of the SDR on

the supercell cross-section. The local moment used for
each element is included in the table. We used the re-
duced moment taken from DLM for Ho, and both the fer-
romagnetic and DLM local moments for Tm. The results
for different cross-sections agree very well in all cases.

TABLE III. The dependence of the SDR on the supercell
cross-section (units of µΩ cm).

in-plane c-axis

Element 3x2 4x3 4x4 5x5

Gd (7.72µB) 44.9 43.8

Ho (4.20µB) 16.7 16.5 8.4 8.6

Tm (2.21µB) 5.96 6.05 3.43 3.55

Tm (2.088µB) 3.00 3.09 1.67 1.71

Appendix B: Comparison with full-potential band
structure

To verify the adequacy of our TB-LMTO represen-
tation of the band structure, we chose Gd as a rep-
resentative example and performed a full potential lin-
earized augmented planewave (FLAPW) calculation us-
ing the FLEUR software package41 for comparison. The
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4f states were kept in the partially polarized core, as in
most of the TB-LMTO calculations reported here. The
FLAPW and LMTO band structures for Gd are shown in
Fig. 5a. Our FLAPW calculation is consistent with the
one reported in Ref. 30 and well with angle-resolved pho-
toelectron spectroscopy measurements.42 Near the Fermi
level the TB-LMTO band structure is quite close to
FLAPW, but there is a notable deviation along the H-K
and K-Γ symqmetry lines.
The agreement with FLAPW band structure is im-

proved by adding empty spheres in the TB-LMTO basis
set. We included the unoccupied 5f orbitals in the basis
set for Gd and reduced the local Gd moment to 7.603µB

using FSM. The resulting band structure is shown in Fig.
5b; the agreement with FLAPW near the Fermi level is
now almost perfect.
The SDR was calculated in the same way as described

in Section IIA with the following modifications: the c-
axis was calculated using a 2 × 2 supercell with 4 Gd
atoms per monolayer (there are 12 empty spheres sur-
rounding each monolayer of 4 Gd atoms); random spin
disorder is introduced only on the Gd sites; 48 × 48
k-point mesh for Brillouin zone integration; configura-
tionally averaging over 30 random spin configurations for
each thickness.
The calculated SDR using the adjusted band struc-

ture is 47.4 µΩ cm, which is 6% larger than the result

of 44.9 µΩ cm reported in Table I. This increase is not
statistically significant. Therefore, we conclude that the
original TB-LMTO representation of the band structure
is sufficiently accurate for SDR calculations.

Appendix C: Fluctuations of the orbital structure of
the 4f shell

The effect on the conduction bands of the multipole
potential generated by variations in the orbital structure
of the 4f states (violating Hund’s rules) was evaluated
using a FLAPW41 calculation for Ho. For this purpose
the 4f states were included in the valence basis and sub-
jected to the LDA+U potential (fully localized limit34

with U = 7.5 eV and J = 0.7 eV). The band struc-
tures for different orbital occupations of the 4f shell cor-
responding to orbital momenta L = 0, 4, 5, 6 were cal-
culated self-consistently. We found no detectable effect
of the 4f shell orbital structure on the conduction bands
near the Fermi energy; the bands were modified only close
to the unoccupied 4f states, which in all cases were more
than 1 eV above the Fermi energy. Therefore, we con-
clude that fluctuations of the orbital structure of the 4f
shell do not materially contribute to the scattering po-
tential seen by the conduction electrons.
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FIG. 5. Band structures calculated using TB-LMTO and full-potential linear augmented plane wave (FLAPW) methods. Solid
red line: majority-spin LMTO, dashed blue: minority-spin LMTO. Open red circles: majority-spin FLAPW, blue plus signs:
minority-spin FLAPW. (a) No empty spheres in the LMTO basis set. (b) With empty spheres in the LMTO basis. Note the
improved agreement along the H-K and K-Γ symmetry lines.
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