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Anharmonic guest atom oscillation has direct connection to the thermal transport and thermo-
electric behavior of type-I Ba8Ga16Sn30 clathrates. This behavior can be observed through several
physical properties, with for example the heat capacity providing a measure of the overall excita-
tion level structure. Localized anharmonic excitations also influence the low-temperature resistivity,
as we show in this paper. By combining heat capacity, transport measurements and our previous
NMR relaxation results, we address the distribution of local oscillators in this material, as well as
the shape of the confining potential and the excitation energies for Ba(2) ions in the cages. We also
compare to the soft-potential model and other models used for similar systems. The results show
good agreement between the previously deduced anharmonic rattler potential and experimental
data.

PACS numbers: 63.20.Pw, 82.75.-z, 72.80.Jc, 65.40.Ba

I. INTRODUCTION

Group IV clathrates are well known cage-structure ma-
terials with a single guest atom able to occupy each cage.
Their outstanding thermoelectric performance and other
potential useful properties have made them interesting
for more than a decade1–6. Because of the loosely-held
guest atoms, localized oscillators might be expected to
represent a good model for their behavior, and this has
been the focus of considerable research activity7,8. In
addition, a number of recent studies have shown that an-
harmonic phonon behavior may be a key element more
generally for other types of thermoelectric materials9,10.
In recent work, we have successfully analyzed the an-
harmonic motion for type-I Ba8Ga16Sn30 using NMR
relaxation measurements with a double well potential
model11, while other methods, such as optical conductiv-
ity and first principles calculations, have also been uti-
lized by other groups for similar systems12–15.
Type-I Ba8Ga16Sn30 clathrate is well-known for its

ultra-low lattice thermal conductivity and glasslike ther-
mal behavior, which are likely caused by the anharmonic
rattling of the guest atoms inside the larger cages16,17.
The well-known type-I clathrate structure features two
structral cages, which for Ba8Ga16Sn30 are each occupied
by a Ba ion6,18. The smaller cage is dodecahedral, and
is occupied by the site designated Ba(1). Ba(2) occupies
the larger cage, offering this ion considerably more space
for vibrational motion. The cages themselves are formed
by a connected network of four-bonded Ga-Sn sites.
The resistivity is very sensitive to electron-phonon cou-

pling, and for the specific case of quasi-localized vibra-
tional excitations, the resistivity can be a very useful
analytic probe19,20. Correspondingly, the heat capacity
provides a measure to assess the density of the local os-
cillators, and the spacing of their energy levels16,21,22.
The heat capacity has been examined in a number of re-
cent studies of clathrate materials23–26. In this article,

we investigate the influence on the resistivity as well as
the heat capacity of the anharmonic rattling in type-I
Ba8Ga16Sn30 clathrate. Our previous NMR results will
be used here to model the anharmonic potential11.
The previous NMR relaxation data, replotted in Fig.

1, were analyzed using a two-phonon Raman process ac-
cording to a recent theory involving a localized one di-
mensional anharmonic oscillator potential27, shown also
in the same figure. The results indicated that a relaxation
mechanism due to anharmonic atomic motion is the lead-
ing contribution. The 1-D potential was thereby solved
to give the calculated expression, V (x) = −18.74x2 +
1.11 × 1023x4, where V (x) is in J with x given in m.
The phonon frequency-temperature relationship and the
energy levels of this double well potential can also offer
corresponding ways to analyze the transport and heat ca-
pacity behavior11. In this paper we report measurements
of this type and analyze for consistent behavior according
to this model for the local anharmonic oscillators.

II. SAMPLE PREPARATION AND

EXPERIMENTAL METHODS

The type-I Ba8Ga16Sn30 samples used here are the
same as we used previously11,28 for structure configu-
ration analysis (sample I-B from ref. 28), as well as
for NMR relaxation studies11. Samples were prepared
using the self-flux method, following a procedure re-
ported previously11,25. Pure elements were mixed based
on the intended composition followed by an arc melt-
ing in argon. Annealing in an evacuated quartz tube
at 900 oC for 50 hours was followed by a controlled
slow cooling to 500 oC in 80 hours25,28. Powder x-
ray diffraction (XRD) was carried out using a Bruker
D8 Advance diffractometer. Rietveld refinement of the
results confirmed the structure to be type-I. No type-
VIII reflections were detected and 1% (per mol of corre-
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FIG. 1: (Color online) 71Ga NMR quadrupole contribu-
tion to inverse T1T product (circles) from ref. 9 for type-
I Ba8Ga16Sn30, and a fit to anharmonic oscillator behavior
(solid curve). Inset: Corresponding 1-D double well potential
and its first few energy levels11.

sponding framework atoms) Ba(Ga,Sn)4 and Sn minority
phases were also obtained28. Wavelength dispersion spec-
troscopy (WDS) measurements were carried out using
a Cameca SX50 spectrometer, along with BaSO4, GaP,
and SnO2 standards. The results correspond to a compo-
sition Ba7.8(1)Ga16.2(1)Sn29.9(1), where errors correspond
to the statistical errors. Taken together these results are
consistent and point to an electron-deficient p-type com-
position, relative to an electron-balanced Zintl phase. All
resistivity and heat capacity measurements were carried
out using a Quantum Design Physical Property Measure-
ment System (PPMS).

III. RESISTIVITY

The resistivity data are plotted in Fig. 2. Note that
there is a superconducting jump at about 4 K, which can
be associated with the Sn minor phase observed in the
XRD result. In this work, only the non-superconducting
part will be shown and analyzed.

For a system with sufficient carrier density to be metal-
lic, and assuming the majority of the electrical resistivity
is caused by the ordinary electron-phonon interaction and
follows the standard Bloch-Grüneisen law29,

ρB(T ) = ρ0 +A

(

T

ΘD

)5 ∫ ΘD/T

0

x5dx

(ex − 1)(1− e−x)
, (1)

where ΘD is the Debye temperature, ρ0 is the residual
resistivity and A is a constant. This is not sufficient
for a system with localized harmonic and anharmonic
oscillators. According to Cooper’s theory20, the Einstein

contribution is proportional to CET/Θ
2
E as

ρE(T ) =
αCET

Θ2
E

=
( κ

T

) eΘE/T

(eΘE/T − 1)2
, (2)

where α and κ are constants, CE is the Einstein contri-
bution to the specific heat and ΘE is the Einstein tem-
perature. Since Ba atoms exist in two different types of
cages, we can consider two different oscillator behaviors
of this type. These local modes are resonances within
the phonon bands, however the localized model works
relatively well, implying a weak coupling to other lattice
modes.
We started with a fit including one Bloch-Grüneisen

term and two Einstein terms with the results shown in
Fig. 2. Here, we define ΘE1 and ΘE2 as the Einstein tem-
peratures for Ba(1) and Ba(2) atoms. The fitted param-
eters from standard deviation calculations are ΘD = 230
K, ΘE1 = 56 K, ΘE2 = 49 K and ρ0 = 243 µΩ cm. This
gives noticeable improvement over the fit with a single
Bloch-Grüneisen contribution (not shown). The Bloch-
Grüneisen term is appropriate for metallic systems, and
our previous NMR results11 showed that a Korringa-like
behavior (constant magnetic NMR shift and T1MT nearly
T -independent) is followed in the material, which is a sign
of metallic behavior.
The overall fit vs. temperature matches particularly

well at high temperature, but the inset of Fig. 2 shows
a mis-match at the low temperature end. Previous stud-
ies have shown a T 2 resistivity behavior in low tempera-
ture caused by anharmonic phonons19,27, which is close to
what is observed here. For example, fitting the data up to
12 K to a function of the form Tα gives α = 2.2. An alter-
native explanation for the deviation from T 5 resistivity
behavior at low temperatures might be semiconducting
behavior as expected in low-carrier density systems. For
example in non-polar semiconductors30 acoustic phonon
scattering can introduce a term proportional to T 1.5. On
the other hand, as described above, the NMR shifts and
magnetic T1 term provide additional local measures to
confirm that the carrier behavior should be regarded as
metallic11. Combined with the strong evidence for anhar-
monic rattling observed in the NMR relaxation results,
which becomes evident in the same range of tempera-
tures, it seems reasonable to model the observed resis-
tivity behavior according to the anharmonic behavior of
the guest Ba(2) atom.
The electrical resistivity due to localized anhar-

monic phonons has been addressed in recent theoreti-
cal work27 and can be calculated from the electron life-
time (τ), which describes the electron scattering from
phonons29,31. The corresponding resistivity is given by,

ρA(T ) =
m∗

n0e2τ(T )
. (3)

The temperature-dependent electron lifetime (τ(T )) can
be obtained by averaging the energy-dependent lifetime,

τ(T ) =

∫ ∞

∞

dEτ(E)

(

−
df(E)

dE

)

, (4)
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FIG. 2: (Color online) Resistivity measurements (open cir-
cles) and fitting (solid curve) from Bloch-Grüneisen function
and Einstein model with ΘD = 230 K and ΘE1 = 56 K,
ΘE2 = 49 K. Inset: Expanded view at the low temperature
end of the data and fitting, where there is a clear mis-match
between the model and data.

where f(E) = 1
exp{E/kBT}+1 is the Fermi function. Fur-

thermore, τ(E) can be obtained from the imaginary part
of the retarded self-energy19,27,

τ−1(E) = πg2N(0)

∫ ∞

0

dΩA(Ω)[2n(Ω) + f(~Ω+ E)

+f(~Ω− E)] (5)

where A(Ω) = − 1
π ImD(Ω) = 1

π
4ω0Γ0Ω

(Ω2−ω2
r
)2+4Γ2

0
Ω2

is as-

sumed to be the phonon spectral function. The effective
localized phonon frequency ω0, phonon damping rate Γ0

and renormalized phonon frequency ωr are all defined
in this way as reported before11,27. The previously re-
ported NMR results yielded a large damping coefficient,
Γ0 = 12 K, which will tend to enhance this mechanism
at low temperatures. Note that a damped 1D anhar-
monic model was considered in an analysis of the optical
conductivity12, yielding a damping coefficient Γ ≈ 0.5
THz = 24 K at low temperatures, not far from the value
we reported. For T << ~ωr/kB , the calculated resistiv-
ity will follow a ρ ∼ T 2 relationship as described above27.
Thus we examine a combination of the Bloch-Grüneisen
function, Einstein model and anharmonic model with re-
spect to the resistivity in the low temperature region.
In fitting the resistivity, we use the model for ΘD, ΘE1,

ΘE2, ρ0 as above with the addition of an anharmonic con-
tribution with the same damping rate Γ0 and tempera-
ture dependent phonon frequencies (ω0, ωr) as our pre-
vious NMR results11. Fig. 3 shows the result from this
combined model with ΘD = 230 K, ΘE1 = 66 K, ΘE2 =
54K, ρ0 = 245 µΩ cm. A single additional parameter rep-
resents the overall strength of the anharmonic contribu-
tion. The high-temperature agreement remains as good
as that in Fig. 2, but the inset of Fig. 3 shows a much
improved fit in the low temperature region. Note that the
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FIG. 3: (Color online) Resistivity data (open circles) and
fitting (solid curve) with rattler contribution added to the
previous model, ΘD = 230 K, ΘE1 = 66 K and ΘE2 = 54
K. Inset: Expanded view of the low temperature region. The
mis-match between the data and the model has been reduced
significantly compared to that of Fig. 2

anharmonic portion only exhibits a strong contribution
at low temperatures. We emphasize that this combined
model starts directly from specific physical mechanisms
in this system, so the results should be consistent with
heat capacity as we examine below.

IV. HEAT CAPACITY

Heat capacity data from 2 K to 200 K are shown in Fig.
4 with a fit including several mechanisms as described
below. In fitting the data, the leading contribution was
taken as a Debye model for the framework atoms,

CD = 9NDR(
T

ΘD
)3
∫ ΘD/T

0

x4exdx

(ex − 1)2
, (6)

where ΘD is the Debye temperature, and ND is fixed at
46, the number of framework atoms per cell.
In a similar way as for the resistivity, the six Ba(2)

atoms are considered to be rattlers with both anharmonic
and harmonic motions corresponding to the different di-
rections. We assume the anharmonicity to be active in
one direction, so the simulation will start with six 1D
anharmonic oscillators and six 2D Einstein oscillators for
these atoms. We use ΘE2 as their Einstein temperature,
NE2 as the 2D Einstein oscillator number and NAnh as
the 1D anharmonic oscillator number. Two Ba(1) atoms,
inside the smaller cages, are treated by a 3D Einstein
model with parameters ΘE1 and NE1. These follow the
standard behavior

CE = 3NER

(

ΘE

T

)2
eΘE/T

(eΘE/T − 1)2
. (7)
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FIG. 4: (Color online) Heat capacity measurement (open cir-
cles) and fitting (solid curve) to the model discribed in text.
Inset: Temperature dependent ΘD(T ) (solid curve). For com-
parison, the Debye temperature from the resistivity fit is also
shown here (dashed line).

For the anharmonic contribution, we used

U =

∞
∑

n=0
Enexp{−En/kBT }

∞
∑

n=0
exp{−En/kBT }

, CA =
dU

dT
, (8)

where the energy levels En, shown in the inset of Fig.
1, are those corresponding to the anharmonic potential.
We generated these by solving the Schrödinger equation
numerically with the 1-D double-well parameters from
our previous NMR results. The lowest 13 levels were
used, after we verified that higher levels add a sufficiently
small contribution to the sum to be ignored.
The fitting result shown in Fig. 4 and 5 gives NE1

= 2, ΘE1 = 70 K, NE2= 6, ΘE2 = 55 K, NAnh = 5.4.
Also, we used a temperature dependent Debye tempera-
ture ΘD(T ) for the fitting, resulting in a typical behavior
as shown in the inset of Fig. 4, with values near 230 K.
While carrier scattering depends upon the phonon mode
so that ΘD extracted from resistivity need not be equal
to the heat capacity-related ΘD

32, often these values are
quite close, as observed here. See comparison in Table. I
of this and other parameters from the fitting. The elec-
tronic contribution, γT, is fitted to γ = 1.85 mJ/mol K2

for each atom. Note that a reduced number of anhar-
monic oscillators is obtained, with about 10% missing,
relative to the expected 6 per cell. To account for the
missing oscillator strength and the observed low temper-
ature tail in C, we added a low energy Einstein term with
NE3 = 0.6, ΘE3 = 14.2 K. The C/T 3 vs. T plot in Fig.
5 shows the contribution of each term. The Einstein part
is a superposition of the three Einstein terms. With the
exception of the small ΘE3 term, the fitted results are
in good agreement with those obtained from resistivity.
Notice that, ΘE3 term only contributes significantly be-

TABLE I: Comparison of fitted parameters from resistivity
and heat capacity analysis.

ΘE1(K) ΘE2(K) ΘE3(K) ΘD(K)
Resistivity 66 54 – 230
Heat capacity 70 55 14.2 [170-260]
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FIG. 5: Measured C/T 3 vs. T and the fit to model discribed
in text (solid curve). Individual contributions as labeled: De-
bye (dash-dotted), Einstein (dotted) and anharmonic oscilla-
tor (dashed). The Einstein part is a superposition of several
oscillators.

low 5 K, so it will not introduce noticeable influence to
the resistivity fit. The broad peak in C/T 3 at low tem-
peratures agrees well with the anharmonic parameters
taken directly from the NMR fit, and the result serves
to quantify the corresponding number of anharmonic os-
cillators. The model dividing the oscillator strength into
localized and extended parts thus provides a consistent
explanation for these results. The model and analysis
work well for NMR, resistivity and heat capacity for this
sample. Further investigations with samples of different
compositions will offer additional understanding of the
mechanism.

V. DISCUSSION

Often for modeling of the heat capacity in clathrate
systems a multi-Einstein model is used to describe
the broad distribution representing the low temper-
ature peak in C/T 3 vs. T . This works reason-
ably well for Ba8Ga16Ge30 and Sr8Ga16Ge30 among
others5,25. However, Ba8Ga16Sn30 exhibits a broad peak,
and correspondingly the large cage-center position is
marginally stable16 or perhaps unstable to off-center ion
displacements12, which suggests an anharmonic rattling
model as has been applied to other results. Our analy-
sis shows that a specific local potential of this type can
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be connected to several experimental results in a consis-
tent way, thus providing a good physical picture for the
vibrational behavior. The large damping coefficient indi-
cated by the resistivity as well as the NMR results implies
that these modes are strongly coupled to other excita-
tions, and thus cannot be regarded as completely inde-
pendent oscillators. Recent research on phonon disper-
sion in clathrates including X8Ga8Ge128, X8Ga16Si128,
Rb2Sr6Ga14Ge32 among others, have shown strong inter-
actions between localized rattler modes and the frame-
work atoms15,33–40, which may offer an explanation for
this phenomenon.

Our fitting works surprisingly well based on an initial
assumption that the anharmonic motion is one dimen-
sional, giving six 1D anharmonic oscillators. This differs
from the expected two dimensional behavior, often as a
four-well potential due to the configuration of the Ba(2)
cages13. However recent studies point to an off-center
symmetry for Ba(2) oscillations16, and our previous ab
initio results28 indicate a static off-center displacement
of as much as 0.5 Å for Ba on this site based on Ga-Sn
alloy disorder. With sufficient cage distortion, rattling-
type vibrations near the cage minimum could be con-
strained to be effectively one-dimensional, with a har-
monic restoring potential in other directions. Our pre-
vious report on atom configuration and bond length cal-
culations also pointed out possible structural distortions
for this material28. An alternative view might be that
among the two-dimensional anharmonic oscillators, ap-
proximately half of the rattlers are not activated, ac-
counting for the corresponding missing spectral weight
from the heat capacity fit. It might be that the presence
of stronger defects, such as vacancies, leads to this situ-
ation in some of the cages. However we also note that
a fit of our heat capacity data using a 2-D rotationally
symmetric anharmonic potential as was also fitted to the
NMR relaxation results11, did not work well and placed
the heat capacity peak at temperatures too high for rea-
sonable agreement.

We should remark that both the WDS and XRD re-
sults show a small reduction of the Ba atom content rel-
ative to the stoichiometric composition. However this
amount is much too small to account for any significant
discrepancy in number of rattler atoms. According to
WDS measurements at several places in the ingot28 the
Ba content is reduced by about 2%. Given the measured
small Ga excess, this sample would be expected to be p
type25. Such a composition would also not be expected
to exhibit a large number of spontaneous vacancies, as
they are not needed to maintain the Zintl electron count.

Another well known approximation, the soft poten-
tial model (SPM), has been introduced into the analy-
sis of heat capacity in many systems with anharmonic
contributions24,25,41,42. This is based on a soft vibra-
tional density of states and the tunneling of an as-
sumed wide distribution of two level systems. A sig-
nificant contribution from two level tunneling systems
was deduced in Ba8Ga16Sn30 and Sr8Ga16Ge30 at low
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FIG. 6: (Color online) Comparison of the anharmonic contri-
bution and total calculated heat capacity with different anhar-
monic potentials. Compared to the model based on previous
NMR results (solid curves), the dotted curves represent a nar-
rower anharmonic potential and the dashed curves represent
a broader anharmonic potential, as described in the text.

temperatures24,25. A very broad distribution of oscilla-
tion frequencies are considered in this model, which can
simulate both the anharmonic contribution and harmonic
contributions. Indeed, the small added Einstein term at
low temperatures in the heat capacity fit may represent
a distribution of tunnel sites of this type. It is not clear
what may be the origin of these additional tunneling sys-
tems, however their number is relatively low. Thus while
the SPM model alone does work reasonably well in ana-
lyzing the heat capacity, we believe that the results shown
here point to a strongly damped anharmonic potential as
a more physical model for this system.
The sensitivity of the overall fit to the fitting param-

eters is also important to discuss. For the heat capac-
ity, the fitted oscillator numbers are important, because
they not only determine the overall shape of the fit, but
also offer a physical picture of the localized motions. For
the anharmonic contribution, a variation in the anhar-
monicity affects the energy levels, changing the position
as well as magnitude of the anharmonic contribution to
the C/T 3 plot. In the original fit we used anharmonic
well parameters taken directly from the reported NMR
results, however Fig. 6 shows results for which the anhar-
monic potential well width was scaled by ±10%, without
changing its shape. This corresponds to a scaling of the
energy levels by ±20%. For these curves, the Debye and
Einstein temperatures were not changed, however the os-
cillator numbers were allowed to adjust, with a result
that the numbers no longer match the composition, and
the agreement with the measured curve is clearly made
worse. This indicates the sensitivity of the fit to the an-
harmonic potential. It is possible to obtain an improved
agreement with such a scaled potential by allowing the
Einstein temperatures to change, however this occurs by
shifting the lowest ΘE values on top of the anharmonic



6

peak, a result that is similar to the SPM model discussed
above, in which a distribution of harmonic oscillators ap-
proximates the distribution of energy levels.

VI. CONCLUSIONS

We have shown that our resistivity, heat capacity and
NMR results are consistent with the anharmonic rattling
model in this type-I Ba8Ga16Sn30 clathrate. We utilized
an x4-type anharmonic potential, which provides good
agreement between the NMR results, heat capacity, and
transport measurements, with a single set of parameters.
The damping parameter is large, indicating that these
vibrations interact strongly with vibrational or electronic
excitations in the framework. However the success of
the 1-D model in this case implies that the expected 2-D
motion of these rattlers is not activated, perhaps through
cage distortion.
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