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Abstract 

  In this article, we demonstrate theoretically that an electric-field-dependent multimode 

quantized thermal conductance can be achieved in a composite polymer in the frame of 

ballistic phonon transport.  The composite polymer consists of three segments, where an 

ionic polymer is introduced as its central part and the non-polar polymers are designed on the 

left and the right parts, respectively.  By increasing the applied electric field, the dispersion 

relation of phononic torsion mode is tuned, hence multiple phononic channels are adjusted 

one by one in the composite polymer.  As a result, multiple-step quantized thermal 

conductance can be manipulated by external electric field.  The analysis based on Landauer 

formula is in good agreement with both the numerical calculations with transfer-matrix 

method and the molecular dynamics simulations.  By designing such three-segment 

composite polymer, multi-mode quantized thermal conductance tuned by external electric 

field becomes an exact analog to multi-step quantized electrical conductance tuned by 
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external magnetic field in the quantum Hall effect.  The investigations may have potential 

applications in thermal manipulation and information transfer in mesoscopic phonon 

systems. 
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I. Introduction 
Quantized thermal conductance can be achieved when the coherence length of phonons 

becomes comparable to sample size, which is often analogized to quantized electrical 

conductance[1,2] in mesoscopic electronic systems.  It is well known that due to the quantum 

confinement in mesoscopic systems, there exist discrete channels for electron transport, and 

each ballistic channel contributes a quantum 22 /eG e h=  to the electrical conductance.  

Similarly in mesoscopic phonon systems, thermal conductance of a single channel for 

phonon transport is limited by its universal thermal conductance quantum 

2 2 3/( )Q BG k T hπ= ,[3,4] which has been experimentally verified in some nanostructures.[5,6]  

In the past decades, quite a few investigations on phononoic transport and thermal 

conductance in mesoscopic systems have been reported.[7-16]  However, thermal 

conductance quantization has two obvious differences comparing with electric conductance 

quantization.  First, thermal conductance quantum depends linearly on temperature,[4] 

whereas the electrical conductance quantum is temperature-independent. Second, electrical 

conductance quantization is demonstrated by a series of conductance steps.  For example, in 

the case of quantum Hall effect, the electrons are confined in a number of discrete Landau 

levels.  The external field (e.g., magnetic filed) may change Landau levels of the system.  

By tuning the external field, multiple Landau levels are reached and quantum channels are 

opened sequentially.  For phonons, however, thermal conductance quantization is featured 

by only one plateau of conductance at low temperature regime,[4,5] i.e., the thermal transport 

is restricted to acoustic phonon channels.  Is it possible to open multiple phononic channels 

with the help of external fields, so we can manipulate heat flux as we do for electrical 

conductance? The simplest way might be tuning the temperature. However, changing 

temperature fails to open phononic channels sequentially, since phonons are bosons, and a 

broader Bose distribution cannot be used to control the occupation of the channels one by 
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one.[17,18]  Clearly alternative approaches have to be explored in order to open multiple 

phononic channels.  

Recently, Cao et al.[19] has proposed an approach to realize field-dependent multimode 

quantized thermal conductance by introducing both harmonic and anharmonic couplings[20-22] 

to a quantum wire.  By stretching or compressing the wire, phononic band structures are 

tuned and multiple phononic channels are opened one by one. However, practically it 

remains challenging to stretch a nanowire homogeneously in a controllable way.  

So far it has been well established that single polymeric molecule is an attractive system 

for exploiting thermal conduction in one-dimensional (1D) phononic systems.[23,24]  

Although bulk polyethylene is a thermal insulator, the thermal conductivity of single polymer 

chain can be very high.[25]  Very recently, Menezes et al.[26] have demonstrated the coupling 

between high ionic polymers and electric field, and proposed a single-molecule field-effect 

transistor for phonons.  Motivated by the fact that external electric field can influence the 

lattice vibration in ionic polymers, in this paper we propose a composite polymer to achieve 

an electric-field-dependent multimode quantized thermal conductance.  The proposed 

composite polymer consists of three segments, where an ionic polymer is introduced as its 

central part and the non-polar polymers are designed on the left and the right parts, 

respectively.  We demonstrate theoretically that by applying external electric field, 

multimode quantized thermal conductance can be achieved in this composite polymer.  It is 

shown that when external electric field is applied on the composite polymer, the dispersion 

curve of phononic torsion mode is tuned, thereafter, multiple phononic channels are shut 

down one by one with increasing external electric field.  As a result, the multiple-step 

quantized thermal conductance tuned by external electric field is realized.  By designing 
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such a three-segment composite polymer, multi-mode quantized thermal conductance tuned 

by external electric field becomes an exact analog to multi-step quantized electrical 

conductance tuned by external magnetic field in the quantum Hall effect.  The 

investigations may have potential applications in thermal manipulation and information 

transfer in mesoscopic phonon systems. 

In this paper, we start from ballistic phonon transport in the composite polymer, and 

analytically deduce the thermal conductance in the polymer based on Landauer formula in 

Sec. II.  Then by using the transfer-matrix method, we calculate the phononic transmission 

and the heat current as a function of electric field in the composite polymer in Sec. III.  In 

order further to give direct results, we carry out numerical simulations based on molecular 

dynamics.  The power spectral density of phonons and the heat current versus electric field 

in the composite polymer are presented in Sec. IV.  Finally, a summary is given in Sec. V. 

 

II. Theoretical model 

We consider the ballistic phonon transport in a three-segment polymer as shown in Fig. 

1(a).  To couple the external electric field and the system, we select a high ionic polymer as 

the central one of the three segments, while the left (or right) segment is a random n-mer (RN) 

chain consisting of non-polar particles A and B.  Particles A and B are arranged in such a 

way that particle A and a cluster of n particles B…B are randomly assigned, known as RN 

model.[27]  In contrast, the central segment is a single monomer periodic chain composed of 

highly polar particles C.[26]  When an electric field is applied to the composite polymer, the 

coupling between the field and the polar particles C breaks the full rotational symmetry of 
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the chain, thus transforming the phononic torsion branch from acoustic one to optical one. As 

a result, the transport of the torsion-mode phonons through the whole chain is changed due to 

its transformed phononic band.  This feature makes it possible for us to manipulate 

phonon-assisted thermal transfer via tuning external electric field.  

Now we consider the heat flow carried by phonons in the system.  For simplicity, we 

describe the system analogous to Kirkwood model.[28]  All interaction potentials are chosen 

to be harmonic, and there are two kinds of interactions, i.e., translation interaction and 

torsion interaction, respectively.  Suppose each monomer unit i has dipole moment ip
→

 

perpendicular to the chain and a moment of inertia iI  with respect to the chain axis (as 

shown in Fig.1(a)).  The Hamiltonian of the system can be expressed as 
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where K is the angular restoring force constant in the harmonic approximation, E
→

 is the 

applied electric field, and L, R and C correspond to the left, right and central segments, 

respectively.  The first two terms are the Hamiltonian of torsion mode, where iθ  is torsion 

angle, and the next two terms correspond to the Hamiltonian of translation mode, where im , 

ix  and V  are the atom mass, position displacement and translation potential, respectively.  

The last term is the coupling of applied electric field to dipole moments of particles.  The 

coupling breaks the full rotational symmetry of the chain, thus changing the dispersion 

relation of torsion-mode phonons. 

Due to the fact that the external electric field does not influence the translation modes, 

the manipulation of thermal conductance in this composite polymer only relies on tuning the 
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transmission of torsion phonons by the applied electric field.  In the following paragraphs of 

this paper, we will focus on torsion modes.  Assuming that the ground-state configuration 

corresponds to the case that all dipoles are in anti-parallel direction of the electric field, the 

Hamiltonian of torsion mode in the harmonic approximation can be expressed as 

2
22

1
, , , ,

1 1 ( ) (1 )
2 2 2

i
torsion i i i i C

i L R C i L R C i C

H I K p E θ
θ θ θ+

∈ ∈ ∈

= + − − −∑ ∑ ∑
       

(2)
 

where pC is the dipole moment of the monomer unit in the central segment.  For the left (or 

right) segment, the last term in Eq.(2) equals to zero because of non-polarity of the particles.  

But for the central segment, the polar particles are coupled with the electric field, then the 

last term in Eq.(2) becomes non-null and depends on the applied electric field.  It is obvious 

that this composite polymer can be considered as one-dimensional harmonic oscillators, and 

the dispersion relation of torsion-mode phonons can be described as[26] 

2 (1 cos )C

C

p E K qa
I

ω
+ −

=
,                        

(3)
 

where q is the wave vector, IC is the moment of inertia of particle C, and a is lattice constant 

of the polymer.  For zero field, the torsion mode belongs to the acoustic branch with phonon 

velocity 1/2( / )Cv Ka I= ; while for the positive electric field, the torsion mode has two cutoff 

frequencies, i.e., a down cutoff frequency 1/2( / )down C Cp E Iω =  at q=0 and an up cutoff 

frequency 1/2[( 4 ) / ]up C Cp E K Iω = +  at qa=π. 

The phononic transmission of the whole polymer is determined by the phonons 

penetrating through all three segments.  The left (or right) segment is RN chain containing 

particle A and cluster B…B.  Due to the localization-delocalization transition of phonons in 

the RN polymer, phononic transmission occurs at the modes denoted by ωj
2=2K/IB(1-cosjπ/n), 
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where j=1, 2, …, n-1.[19,27]  As a result, discrete multiple resonant modes can be achieved in 

the RN polymer as shown in the left (right) of Fig. 1(b).  For the central segment, when the 

electric field is applied, there exist both a down cutoff frequency ωdown and an up cutoff 

frequency ωup.  By increasing the electric field, both cutoff frequencies move up 

simultaneously, as shown in the central of Fig. 1(b).  The dependence of the down cutoff 

frequency ωdown as a function of external electric field is given in the insert of Fig. 1(b).  

Subsequently, only the modes between these two cutoff frequencies can propagate through 

the whole polymer.  Thus the effective Hamiltonian of the whole composite polymer is 

contributed by three parts: translation phonons, localized phonons, and delocalized torsion 

phonons, i.e.,   

,
j

trans loc j j j
Q

H H H a a
ω

ω +

∈

= + + ∑
                    

(4)
 

where j ja a+  is the number of delocalized phonons, and ωj is the resonant frequency given by 

ωj
2=2K/IB(1-cosjπ/n), where j=1, 2, …, n-1.[19,27]  Q corresponds to the propagating 

phononic band of the central segment, and Q is between the down cutoff frequency (ωdown) 

and the up cutoff frequency (ωup).  By increasing the applied electric field from zero to a 

positive value, the cutoff frequencies move upwards and the phononic band structure is 

changed. 

Now let us consider the scenario that the composite polymer (CP) is connected to two 

heat reservoirs with temperatures TH and TL, respectively.  By taking Eq. (4) to Landauer 

formula,[4]  the heat current J through composite polymer can be written as 

( ) ( )[ ( ) ( )],up

down
trans j hot cold

j

J J d T
ω

ω
ω ωδ ω ω ω η ω η ω= + ⋅ − −∑∫

        
(5)  
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where Jtrans comes from the contribution of translation phonons, and / ( )hot coldη ω  is the 

Bose–Einstein distribution of two heat reservoirs.  T(ω) is transmission coefficient of the 

torsion phonon, which depends on phonon scattering in the multi-channels.  It follows that 

the thermal conductance can be expressed as 

0
lim ( ) ( ),trans q j down up jT j

J
T

κ κ κ θ ω ω θ ω ω
Δ →

= = + ⋅ − ⋅ −
Δ ∑

          
(6)  

where κtrans is the contribution coming from the translation phonons, ( )xθ  is a step function, 

[i.e., ( ) 1xθ =  if 0,x ≥  or ( ) 0xθ =
 

if 0],x <  and κq is the quantum of thermal 

conductance.  We can deduce the quantum of thermal conductance as 

                       

22

2( 1)

j

j
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q x

x ek T
e
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− ,                             

(7)  

where xj=ħωj/kBT , and kB is the Boltzmann constant.  Obviously, the thermal conductance 

in the composite polymer appears as a series of conductance steps, which can be tuned by the 

external electric filed (as shown in Fig.1(c)).  

If the applied electric field approaches zero, the photonic band structure of the central 

segment tends to cover all the resonant frequencies of the left and right segments.  When the 

electric field is increased, the down cutoff frequency ωdown moves upward gradually.  When 

the field exceeds the resonant field 2( ) /C j CEs j I pω= , the down cutoff frequency ωdown is 

beyond the corresponding resonant frequency ωj.  As a result, the phononic channel 

corresponding ωj is shut down, and the thermal conductance has a jump.  Therefore, by 

increasing the electric field, multiple phononic channels are closed sequentially, and 

multiple-step thermal conductivity is achieved (shown in Fig. 1(c)).  In this way, 

multiple-step quantized thermal conductance can be achieved by tuning the applied electric 
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field.           

 

III. Numerical simulations based on transfer-matrix method 

Numerical calculations have been carried out to verify the above analytical analysis. 

Based on the transfer-matrix method,[23] we first calculate transmission coefficient of 

torsion-mode phonons in the composite polymer by increasing the applied electric field.  

The motion equation of torsion mode can be expressed as  

              1 1 ,( ) ( ) ,i i i i i i i c C i
c C

I K K p Eθ θ θ θ θ δ θ+ −
∈

= − + − −∑                  (8)  

where the last term equals to zero for the left and right segments in the composite polymer.  

Considering 2
i iθ ω θ= −  in this harmonic system, we can rewrite Eq. (8) in a matrix form as 
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where Qi is the transfer matrix that correlates the adjacent rotation angles θi and θi±1. For the 

left (or right) segment and the central segment, Qi can be expressed as 

2

,
2 / 1

1 0
i

i L R
I K

Q
ω

∈

⎛ ⎞− −
= ⎜ ⎟
⎝ ⎠

                              (10)  

and            
2(2 ) / 1

1 0
C i

i C
K p E I K

Q
ω

∈

⎛ ⎞+ − −
= ⎜ ⎟
⎝ ⎠

,                      (11)  

respectively.  Thereafter, the torsion mode through the whole polymer is determined by a 

global transfer matrix  

     11 12

1 21 22

( ) ,
N
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q q
G Q

q q
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=
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where N is the number of atoms in the composite polymer.  

Based on the global transfer matrix, the transmission coefficient T(ω) can be expressed 
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as[27] 

2
2

, 1

4( ) .
2ij

i j
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q

ω
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=
+∑

                               (13)  

Suppose the two boundaries of composite polymer are connected with two different 

fixed-temperature heat reservoirs, we can numerically obtain T(ω) based on Eqs.(10)-(13). 

Then by using Eqs. (5) and (6), we can calculate the heat current and thermal conductivity of 

composite polymer.  Please note that the central region in the system should be large enough 

in order to achieve continuous phonon modes (given by Eq.(3)) which may couple to the RN 

modes. Usually there should be more than 100 particles in central segment.  Figure 2(a) 

presents the heat current as a function of the applied electric field in a dimer polymer ( n=2 

in the composite polymer), where the insert illustrates the transmission spectra in different 

applied electric fields.  While the applied field is zero, the heat current presents a 

comparatively high level.  When the applied field is increased gradually, the heat current 

quickly jumps and then keeps stable on a lower level.  This quickly jump of the heat current 

originates from the fact that long-wavelength phonons are blocked by the central polymer.  

By increasing the electric field up to around the resonant electric field ES(1), the heat current 

jumps again and keeps stable on an even lower level with stronger electric field.  Here ES(1) 

is resonant electric field corresponding to the delocalized frequency ω1=(2K/IB)1/2.  Further 

increasing the electric field, heat current keeps stable.  However, once the electric field 

becomes larger than ES (1), the down cutoff frequency ωdown in the central polymer is beyond 

the corresponding resonant frequency ω1.  As a result, the phononic channel is shut down, 

and the heat current has a jump. This feature is essential to shut down the phononic channel 
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and hence to achieve a reduced heat transfer. 

In order to manipulate multiple phononic channels by applied electric field, we come to 

the RN chain with higher n.  Figure 2(b) presents the heat current versus the electric field in 

a trimer polymer (n=3 in the composite polymer), where the insert illustrates the 

transmission spectra in different applied electric fields.  By increasing the electric field, heat 

current jumps three times, where two happens around resonant electric field ES(1) and ES(2), 

respectively. It is known that in the trimer polymer, there are two localization-delocalization 

transitions of phonons, which happen around the phononic frequencies ω1=(K/IB)1/2 and 

ω2=(3K/IB)1/2, respectively. These two delocalized frequencies correspond to the resonant 

electric field ES(1) and ES(2).  When the electric field is nonzero but far below ES(1), the 

two channels are both allowed.  When the electric field is stronger than ES(1), the first 

phononic channel is shut down, and thermal conductance has a jump.  Further increasing the 

electric field to a value beyond ES(2), the second channel of phonons is shut down and the 

heat current has another jump.  Similarly, increasing electric field can shut down 

sequentially three phononic channels in the quadramer polymer ( n=4 in the composite 

polymer), where heat current presents three steps as shown in Fig. 2(c).  In principle, n-1 

steps of thermal conductance can be found in the composite polymer by increasing electric 

field.  Therefore, multimode quantized thermal conductance which can be tuned by electric 

field is achieved.                        

To show the presence of channels for phononic transport in the polymer more clearly, 

we have analyzed the transmission spectra of phonons versus the electric fields.  For 

example, the phonon transmission spectra of the dimer polymer with different electric fields 
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are shown in the insert of Fig. 2(a).  When the electric field is E0, there exist two phononic 

transmission bands, i.e., the low-frequency band and the transmission band around ω1 which 

offers one channel of torsion phonons for the thermal conductance.  With the electric field 

increased to E1 but below ES(1), the low-frequency phonons are blocked, and only the 

transmission band exists around ω1.  When the electric field is beyond ES(1), the 

transmission is very limited, which means that there is no channel for torsion modes.  As a 

result, the heat current jumps to a lower level.  Therefore, we can conclude that by 

increasing electric field, the channels for thermal transfer can be shut down sequentially in 

dimer polymer. Similar phenomena can also been observed in the trimer and quadramer 

polymers (shown in the inserts of Fig. 2(b) and Fig. 2(c)), and multimode quantized thermal 

conductance is finally achieved in the composite polymer by tuning the external electric 

field. 

 

IV. Numerical simulations based on molecular dynamics 

To further verifying the multimode quantized thermal conductance in the composite 

polymer, molecular dynamics(MD) simulations have also been explored.  Compared with 

transfer-matrix method, the MD simulation doesn't rely on the assumption of ballistic 

phonon transport and can give direct results.  We have carried out the numerical 

simulations based on the dynamical equation of the particles.  Firstly, we thermalize the 

first and the last particles in the composite polymer at temperature HT  and LT  ( H LT T> ) 

by using Nosé-Hoover heat baths.[29,30,31]  This heat bath is one kind of deterministic heat 

baths [31] , and it works as following.  Firstly the particles in the baths are coupled with 
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external restoring forces.  Whenever the kinetic temperature of the particles goes up or 

falls down to the prescribed temperature, the restoring forces act as dissipation or 

enhancement, respectively, to make the temperature return to the prescribed one.  This 

process represents a stabilizing feedback around the prescribed temperature.  Under 

Nosé-Hoover heat baths, we integrate the dynamical equations with the fourth-order 

Runge-Kutta method[32], and achieve the information on phonon transport and the heat 

current in the system.  By this way, the contributions of both torsion modes and translation 

modes to the heat current have been included in current MD simulation.  However, with 

increasing the electric field, the contributions from translation modes do not change and 

give a constant part to the total heat current. 

Figures 3-5 present the heat current and the power spectral density of torsion phonons 

in the dimer, trimer and quadramer polymers, respectively. For example, Figure 3(a) 

presents the heat current as a function of the applied electric field in a dimer polymer (n=2 

in the composite polymer).  It is obvious that the heat current jumps around the resonant 

electric field 2
1(1) /C CEs I pω= , and 1 2 / BK Iω = .  As shown in Fig. 3(b)-3(d), we have 

also calculated the power spectral density of torsion modes in the central segment with 

applied electric field as E0, E1 and E2, respectively.  Here the power spectral density is 

obtained by carrying out the Fourier transform of the particle velocity in the central 

segment.  When the applied electric field is E0, there exist both low-frequency phonon 

band and the torsion phonon band around ω1 (as indicated with dashed line in Fig. 

3(b)-3(d)).  By increasing the applied electric field, the down cutoff frequency ωdown 

firstly sweeps the low-frequency phonons, then the corresponding channel for 
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low-frequency phonons is closed.  Further increasing the applied electric field, ωdown 

sweeps the phonon band around resonant frequency ω1, and the corresponding channel is 

closed.  Thus there are two plateaus and one jump in heat current curve of the dimer 

polymer (as shown in Fig.3(a)). 

Figures 4(a) and 5(a) present the heat current versus the electric field in a trimer 

polymer (n=3 in the composite polymer) and a quadramer polymer ( n=4 in the composite 

polymer), respectively.  In the trimer polymer, as shown in Fig. 4(a), the heat current has 

three plateaus and jumps three times around E0 and two resonant electric fields 

2( ) /C j CEs j I pω= , where j=1, 2.  As shown in Fig. 4(b)-4(e), when the applied electric 

field is increased from E0 to E3, the phononic channels around low-frequency regime and 

also around the resonant frequencies 1 / BK Iω = and 2 3 / BK Iω =  are shut down 

sequentially, which leads to three steps in heat current curve.  In Fig. 5(a), the heat current 

of quadramer polymer (n=4 in the composite polymer) has four plateaus and jumps four 

times around low frequency regime and around three resonant electric fields, respectively. 

The phononic channels around low-frequency regime and three resonant frequencies are 

shut down sequentially by increasing electric field as shown in Fig. 5(b)-5(f).  Obviously, 

the MD simulations shown in Figs.3-5 are in good agreement with the numerical 

calculations shown in Fig.2, which are based on transfer-matrix method in Sec.III.  These 

two types of approaches have demonstrated that multimode quantized thermal conductance 

in the composite polymer can be tuned by electric field.   

It is interesting to mention that quantized thermal conductance in the composite 

polymer could be simulated by molecular dynamics which belongs to classical methods.  
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Actually in our composite-polymer model, due to the localization-delocalization transition 

of phonons in the RN polymer of the left and right segments, phononic transmission occurs 

at multiple discrete resonant modes [19] denoted by ωj
2=2K/IB(1-cosjπ/n), where j=1, 2, …, 

n-1.  These resonant modes provide multiple discrete thermal channels, which leads to 

multimode quantized thermal conductance. This physical picture can be understood in the 

point of either quantum or classical view.  Thereafter, by using the classical MD 

simulation, we can verify the multimode quantized thermal conductance in the composite 

polymer.  

Actually, both phononic channels and heat current are strongly influenced by 

temperature gradient.  The opening up of phononic channels relies on the harmonic 

approximation approach, which only works at low temperature regime.  By increasing the 

temperature of the heat baths, the amplitude of particle torsion increases until the harmonic 

approximation approach fails.  Figures 6(a) and 6(b) show the heat current in dimer and 

trimer polymers with different temperature gradients, respectively.  Here we fix up the low 

bath temperature (TL) and change the high one (TH).  When the temperature is low, the heat 

current has a jump-like response to the increasing electric field, and multiple steps are 

distinct.  By increasing temperature, the jumps on the heat current are weakened and the 

steps become unclear.  By further increasing TH, the heat current shows approximately a 

linear response to the electric field, where harmonic approximation approach does not work 

and the phononic channel become uncontrollable. 

It is noteworthy that our model may be realized experimentally with high ionic 

polymers, such as PVDF ([C2H2F2]n) , PVC([C2H3Cl]n) and PPy([C5NH3]n).[26]  In high 
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ionic polymers, lattice vibrations couple strongly to the external electric fields.    

Consequently the thermal conductance can be effectively tuned by the external electric field.  

According to Ref. 26, the required electric field for tuning torsion phonons is about 

10MV/cm in the proposed high ionic polymers, which is a typical field for nanoscale field 

effect devices.  Comparing with stretching-nanowire model,[19] our present model possesses 

some distinct features. For example, electrical operation allows much faster switching rate 

and more precise control comparing to the mechanical stretching.  Furthermore, electric 

modulation could be easier to manipulate than the mechanical stretching on nanoscale.  

More interestingly, multi-mode quantized thermal conductance tuned by external electric 

field in the composite polymer becomes an exact analog to multi-step quantized electrical 

conductance tuned by external magnetic field in the quantum Hall effect. 

  

V. Summary 

We have demonstrated theoretically the field-dependent multiple quantized thermal 

conductance in a composite polymer.  By introducing ionic polymer, we could manipulate 

the torsion phonon band structure with external electric field.  Through tuning the down 

cutoff frequency of photonic band structure in the central segment by increasing the electric 

field, multiple phononic channels are shut down sequentially and multiple quantized thermal 

conductance steps can be achieved.  The analysis based on Landauer formula is in good 

agreement with both the numerical calculations from transfer-matrix method and the 

molecular dynamics simulations. Our results may have potential applications in nano-scalar 

thermal manipulation and phonon-assisted information transfer.  
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Figure Captions: 

Fig. 1 (a) Schematic diagram of a composite polymer (CP), which consists of three segments: 

the left (or right) segment is a random n-mer (RN) chain consisting of different non-polar 

particles A and B; and the central segment is a single monomer periodic chain composed of 

highly polar particles C.  (b) Schematic diagram of a tunable phononic transmission modes 

in the CP. In the left and right segments, multi discrete resonant modes can be identified 

around the resonant frequencies ωj.  While in the central segment, photonic band structure 

(PBS) is tuned by applied electric field, where the down cutoff frequency ωdown moves up by 

increasing the electric field.  The inset shows the relationship of the down cutoff frequency 

ωdown as a function of the applied electric field. Es(j) ( j=1,2,3 ) are the resonant fields which 

correspond to resonant frequency ωj.  (c) Schematic diagram of multimode thermal 

conductance tuned by external electric field. 

 

Fig. 2 The heat current as a function of the electric field (E/Ec) in the composite polymer 

with different n.  Here Ec=10MV/cm.  (a) The dimer polymer (n=2). The total number of 

particles N = 919. (b) The trimer polymer (n=3). The total number of particles N = 1306. (c) 

The quadramer polymer (n=4). The total number of particles N = 1640.   In all polymers, 

the number of particles in the central segment NC = 200, and IA=1.0, IB=2.0, IC=1.0, pC=1.0, 

K=2.0, the reduced temperature of heat baths as TH /T0=0.01 and TL /T0=0.001.  The inserts 

illustrate the phonon transmission spectra at different applied electric fields which are 

marked in the curve of heat current.  
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Fig. 3 (a) The heat current versus the electric field (E/Ec) in the dimer polymer (n=2) based 

on MD simulations. Here Ec=10MV/cm. The total number of particles N = 919, and the 

number of particles in the central segment NC = 200. E0=0, E1=1.0 and E2=2.7, respectively. 

(b)-(d) correspond to numerical calculations of the power spectral density of torsion modes in 

the central segment with applied E0, E1 and E2 electric field, respectively. 

 

Fig. 4 (a) The heat current versus the electric field (E/Ec) in the trimer polymer (n=3) based 

on MD simulations. Here Ec=10MV/cm. The total number of particles N = 1306, and the 

number of particles in the central segment NC = 200. E0=0, E1=0.5, E2=2.0 and E3=3.4, 

respectively.  (b)-(e) correspond to numerical calculations of the power spectral density of 

torsion modes in the central segment with applied E0, E1, E2 and E3 electric field, 

respectively. 

 

Fig. 5 (a) The heat current versus the electric field (E/Ec) in the quadramer polymer (n=4) 

based on MD simulations. Here Ec=10MV/cm. The total number of particles N = 1640, and 

the number of particles in the central segment NC = 200. E0=0, E1=0.25, E2=1.4, E3=2.8 and 

E4=3.6, respectively.  (b)-(e) correspond to numerical calculations of the power spectral 

density of torsion modes in the central segment with applied E0, E1, E2, E3 and E4 electric 

field, respectively. 

 

Fig. 6 Heat current J versus the electric field (E/Ec) with different temperature gradients: (a) 

The dimer polymer (n=2).  The total number of particles N = 919. (b) The trimer polymer 
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(n=3). The total number of particles N = 1306. Here Ec=10MV/cm, J0 is the heat current 

when the applied electric field is 3.5, TH /T0 and TL /T0 are the reduced temperature of heat 

baths. 
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Fig. 1 (a) Schematic diagram of a composite polymer (CP), which consists of three segments: 
the left (or right) segment is a random n-mer (RN) chain consisting of different non-polar 
particles A and B; and the central segment is a single monomer periodic chain composed of 
highly polar particles C.  (b) Schematic diagram of a tunable phononic transmission modes 
in the CP. In the left and right segments, multi discrete resonant modes can be seen around 
the resonant frequencies ωj.  While in the central segment, photonic band structure (PBS) is 
tuned by applied electric field, where the down cutoff frequency ωdown moves up with 
increasing electric field.  The inset shows the down cutoff frequency ωdown varying with 
increasing electric field. Es(j) ( j=1,2,3 ) are resonant fields which correspond to resonant 
frequency ωj.  (c) Schematic diagram of multimode thermal conductance tuned by external 
electric field. 
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Fig. 2 The heat current as a function of the electric field (E/Ec) in CP with different n. Here 
Ec=10MV/cm.  (a) The dimer polymer (n=2). The total number of particles N = 919. (b) 
The trimer polymer (n=3). The total number of particles N = 1306. (c) The quadramer 
polymer (n=4). The total number of particles N = 1640.  In all polymers, the number of 
particles in the central segment NC = 200, and IA=1.0, IB=2.0, IC=1.0, pC=1.0, K=2.0, the 
reduced temperature of heat baths as TH /T0=0.01 and TL /T0=0.001.  The inserts illustrate the 
phonon transmission spectra at different applied electric fields which are marked in the curve 
of heat current. 
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Fig. 3 (a) The heat current versus the electric field (E/Ec) in the dimer polymer (n=2) based 
on MD simulations. Here Ec=10MV/cm. The total number of particles N = 919, and the 
number of particles in the central segment NC = 200. E0=0, E1=1.0 and E2=2.7, respectively.  
(b)-(d) correspond to numerical calculations of the power spectral density of torsion modes 
in the central segment with applied E0, E1 and E2 electric field, respectively. 
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Fig. 4 (a) The heat current versus the electric field (E/Ec) in the trimer polymer (n=3) based 
on MD simulations. Here Ec=10MV/cm. The total number of particles N = 1306, and the 
number of particles in the central segment NC = 200. E0=0, E1=0.5, E2=2.0 and E3=3.4, 
respectively.  (b)-(e) correspond to numerical calculations of the power spectral density of 
torsion modes in the central segment with applied E0, E1, E2 and E3 electric field, 
respectively. 
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Fig. 5 (a) The heat current versus the electric field (E/Ec) in the quadramer polymer (n=4) 
based on MD simulations. Here Ec=10MV/cm. The total number of particles N = 1640, and 
the number of particles in the central segment NC = 200. E0=0, E1=0.25, E2=1.4, E3=2.8 and 
E4=3.6, respectively.  (b)-(e) correspond to numerical calculations of the power spectral 
density of torsion modes in the central segment with applied E0, E1, E2, E3 and E4 electric 
field, respectively.
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Fig. 6 Heat current J versus the electric field (E/Ec) with different temperature gradients: (a) 
The dimer polymer (n=2). The total number of particles N = 900. (b) The trimer polymer 
(n=3). The total number of particles N = 1306.  Here Ec=10MV/cm, J0 is the heat current 
when electric field is 3.5, TH /T0 and TL /T0 are the reduced temperature of heat baths. 

 


