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ABSTRACT 

Nanostructuring has been shown to be an effective approach to reduce the lattice thermal conductivity 
and improve the thermoelectric figure of merit.  Because the experimentally measured thermal 
conductivity includes contributions from both carriers and phonons, separating out the phonon 
contribution has been difficult and is mostly based on estimating the electronic contributions using the 
Wiedemann-Franz law.  In this paper, an experimental method to directly measure electronic 
contributions to the thermal conductivity is presented and applied to Cu0.01Bi2Te2.7Se0.3, 
[Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02, and Bi0.88Sb0.12.  By measuring the thermal conductivity under magnetic field, 
electronic contributions to thermal conductivity can be extracted, leading to knowledge of the Lorenz 
number in thermoelectric materials. 

I. INTRODUCTION 

The determination of the Lorenz number is an important aspect in thermoelectric research due to the 
fact that ZT enhancement is being realized through the reduction of thermal conductivity, specifically 
focusing on reducing the lattice portion of the thermal conductivity. The total thermal conductivity is 
given by 

latticecarriertotal κκκ +=   (1) 

where carrierκ and latticeκ  are the contributions to the thermal conductivity from the carriers and the 

lattice, respectively. Since only the total thermal conductivity can be measured, the contributions must 
be separated in some way.  This is done using the Wiedemann-Franz Law and by defining a Lorenz 
number (L), which is the given by 

T
L carrier

σ
κ=   (2) 

where σ is the electrical conductivity and T is the absolute temperature.  In metals the Lorenz number 
can be determined by measuring the electrical conductivity and total thermal conductivity at a given 
temperature, from which the Lorenz number is calculated using equation 2.  This method is only useful 



in metals where the total thermal conductivity is approximately equal to carrierκ .  For the classical free 

electron model the Lorenz number is given as 2.44x10-8 V2K-2.1  It is important to note that the Lorenz 
number, as described by the free electron model, is not an accurate value for most materials and in a 
given material depends on the detailed band structure, position of the Fermi level, and the temperature; 

for semiconductors this relates to the carrier concentration.  Therefore, when latticeκ  and carrierκ  

become comparable to each other, there must be a method for differentiating between the two 

components of totalκ .  To date the separation of the two components has been accomplished through 

calculation by approximating the Lorenz number, and hence the carrier contribution, through various 
different formalisms.1,3-4  Determinations of the Lorenz number have also been made experimentally,1 
however there are few. 

In order to separate latticeκ  and carrierκ  experimentally, two approaches have been used to determine 

the Lorenz number.  Both methods utilize a transverse magnetic field in order to suppress the electronic 
component of the thermal conductivity.  One approach uses a classically large magnetic field while the 

other is performed in intermediate fields.  A classically large magnetic field is described as μB >> 1 

where μ is the carrier mobility and B is the magnetic field.1  When this limit is reached, the electronic 

component of κ is completely suppressed so that the measurement yields only the lattice portion of the 

thermal conductivity, from which carrierκ and hence the Lorenz number can be calculated using 

equations 1 and 2.  

Very often it is difficult to reach a classically large field, making this type of measurement not possible 
and therefore other methods have been developed for determining L.  For example, Goldsmid et al. 
developed a Magneto-Thermal Resistance (MTR) method for extracting the Lorenz number at lower 
magnetic fields, specifically in the region where 1≈Bμ .5-8  In the MTR method the sample is kept at a 

constant temperature while the field is varied.  In this case both the electrical conductivity as well as the 
total thermal conductivity will change with the field due to the Lorentz force acting on the carriers, 
which is induced by the transverse magnetic field.  Equation 1 can be rewritten in the form 

latticetotal BLTB κσκ += )()(   (3) 

where now both κ and σ are dependent on magnetic field. It is noted that κ, σ and L are all tensors, 

whose off diagonal components can have a non-negligible contributions in magnetic field.5,9  Both κ(B) 

and σ(B) are measured along the same direction, which we define as κxx(B) and σxx(B).  For an 
anisotropic sample, even to the first order, the magnetic field affects the diagonal terms of the tensors 
as well as the non-diagonal terms. We show that by measuring only the diagonal terms we are able to 

extract the Lorentz number Lxx, which relates the κxx to σxx. The reason behind the validity of this method 

is that both κ(Β)xx and σ(Β)xx have a similar magnetic field dependence and their ratio has only a weak 
dependence on the off-diagonal terms.  Since the samples are isotropic10 and extrinsic it is assumed that 
off diagonal terms can be neglected because thermogalvanomagnetic effects are only dominant in 
intrinsic materials with a proportional number of positive and negative charge carriers.4,11  As long as 

both have the same functional form with respect to the magnetic field, then κ(B) vs. σ(B) will have a 



linear relationship and the Lorenz number Lxx at a given temperature can be directly taken from the 
slope as given in equation 3.  It is important to note that the analysis throughout this paper is based on 
the assumption that the Lorenz number is independent of magnetic field, which is true for some 
materials but in general is not a valid assumption.12-14  Analogous approximations have been used to 
study similar compounds in the past.6,12 

Neither method has been extensively used due to the fact that there are restrictions on the materials 
that can be measured because there must be a significant carrier contribution to the total thermal 
conductivity; also the experimental setup is rather difficult to realize.1,5-9  The advent of the Physical 
Properties Measurement System (PPMS) from Quantum Design makes the experimental setup and 
measurement readily possible for either method.  The purpose of this paper is to present experimental 
techniques for the determination of the Lorenz number from which both the electronic and lattice 
contributions to the thermal conductivity can be directly extracted.  Measurements are compared to 
literature values as well as simple model calculations. There are several different ways to analyze the 
raw experimental data; two different models will be used here and shown to yield similar results.  The 
measurements are performed below 150 K so that bipolar terms will be negligible and therefore 
equations 1 and 3 accurately describe the contributions to the total thermal conductivity.  While this 
technique has been used before, to the best of our knowledge this experimental method has not 
previously been demonstrated on nanostructured thermoelectrics. 

II. EXPERIMENTAL 

Samples were prepared by combining the proper stoichiometric ratios of Cu (99.999%, Alfa Aesar), Bi 
(99.999%, Alfa Aesar), Te (99.999%, Alfa Aesar), and Se (99.999%, Alfa Aesar) for Cu0.01Bi2Te2.7Se0.3, while 
Bi0.88Sb0.12 was prepared with Bi (99.999%, Alfa Aesar) and Sb (99.999%, Alfa Aesar).  Samples were then 
ball milled and pressed using dc hot-pressing techniques.10  Metallic contacts were sputtered onto the 
surfaces so that electrical contacts could be soldered to the sample.  

MTR measurements were performed using the Thermal Transport Option (TTO) of the PPMS in which 
the sample was placed in an orientation where the magnetic field was perpendicular to the heat flow.  A 
standard two point method was used for thermal conductivity and Seebeck coefficient (S) 
measurements with typical sample dimensions of 2x2x3 mm3.  In this case the temperature was held 
constant at 100 K and measurements were made while the field was swept over a range of 0.1 – 5 T.  

Since resistivity (ρ) values in a magnetic field are required, a four point technique must be used which 
was accomplished with the AC Transport option on a different sample of dimensions 1x2x12 mm3 for the 
same temperature and field range.  Since a four point technique is used, there is no concern of electrical 
contact resistance.  For thermal contact resistance, our previous measurements show no difference in 
the thermal conductivity when a two or four point method is used.  Even so, any thermal contact 
resistance is assumed to be negligible in field and since we are looking at the change in thermal 
conductivity with field, there should be no influence on the slope (L) of the measurement. Geometrical 
effects on the magnetoresistance are considered to be negligible because the sample used for resistivity 
measurements in field has the appropriate aspect ratio.  The sample dimensions for the thermal 
magnetoresistance measurements are restricted due to requirements to fit into the PPMS, however it is 



assumed there is a negligible contribution because there was no evidence previously of geometrical 
effects on a similar material which had an aspect ratio of 1.12  Error for the MTR measurements of L and 

latticeκ  were calculated from the standard deviation and propagation of error, and determined to be 3% 

and 7% respectively.  Hall measurements to determine the mobility (μH) from which the scattering factor 

(r) is obtained were made using the PPMS on the same sample as the four point ρ measurement. 

When determining the Lorenz number in a classically large field, the Thermal Transport Option of the 
PPMS in which the magnetic field was perpendicular to the heat flow was again used.  A standard two 
point method was used for all transport measurements on the same sample.  The sample was run in 
magnetic fields of 0, 6, and 9 T. Only the thermal conductivity measurements in field are used, while 
electrical resistivity values are taken from the zero field data. Typical sample dimensions were 2x4x2 
mm3.  Thermal contact resistance is assumed to be negligible for the reasons stated above, and 
electrical contact resistance is negligible from the comparison of two and four point resistivity 
measurements.  There is no concern of geometrical effects on thermal conductivity measurements 
because saturation would not be obtained at higher magnetic fields.  The measurements were 

performed over a temperature range of 5-150 K, with error for L and latticeκ  being 2% and 6% 

respectively determined from the standard deviation and propagation of error. 

III. RESULTS  

The MTR approach can be used only if the thermal and electrical conductivities have the same functional 
form with respect to the magnetic field.  Since the MTR method is used in intermediate fields, or when 

1≈Bμ , only values in magnetic fields from 0.8 – 5 T were used, anything below 0.8 T was too low of a 

field.  The top left inset in Figure 1 plots κ as a function of field while the lower right inset plots σ as a 
function of field for Cu0.01Bi2Te2.7Se0.3.  Both the electrical and thermal conductivity vary with field as 

2

2

1 cB
aB
+  where a and c are constants, which is valid for strong degeneracy.2,16-17  The fits are shown in 

the insets of Figure 1 along with the measured values.  Figure 1 can be fit linearly and taking the slope 
yields LT in equation 3 from which we get L = 2.16x10-8 V2K-2 by dividing by T = 100 K.  The lattice portion 

of the thermal conductivity is given by the y-intercept and gives latticeκ  = 1.49 W/mK.  Care should be 

taken with the determination of latticeκ  this way because a larger error is induced when extrapolating 

over six orders of magnitude to get latticeκ  when σ(B) is zero.  If carrierκ  is calculated from the Lorenz 

number and the electrical conductivity in zero field, latticeκ can be calculated from totalκ – carrierκ which 

gives a value of 1.35 W/mK.  For a comparison with the measured values, a simple model for the 
calculation of the Lorenz number is given by3 
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where r is the scattering parameter, kB is Boltzmann’s constant, e is the electron charge, and )(ξnF  is 

the Fermi integral given by 
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where ξ is the reduced Fermi energy that can be calculated from the Seebeck coefficient (S) as well as 
the scattering parameter (r) given by 
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In this model the Lorenz number can be calculated with knowledge of the Seebeck coefficient and the 

scattering parameter, both of which were measured at 100 K.  The insets of Figure 2 show μH plotted as 
a function of temperature over the entire temperature range (top left), as well as only the data around 
100 K (lower right) which were used to calculate the scattering parameter (r).  The data in Figure 2 are 
for [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02, the same method was used to calculate r for Cu0.01Bi2Te2.7Se0.3.  The 

scattering parameter (r) was determined by taking the slope of ln(μΗ) vs. ln(T) around 100 K, using the 

relationship 1−∝ rTμ .15  The values for the mobility were nearly identical between the two samples 

with values for r being 0.26 and 0.27 for Cu0.01Bi2Te2.7Se0.3 and [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02 respectively.  
Though there is some error induced in the determination of r because the scattering parameter in 
general changes with temperature, these values should be more accurate than the commonly assumed 
r=-1/2 for acoustic phonon scattering.  This fact is seen in the calculated values for L where using r=-1/2 
yields values of L that are 3% higher than when r is calculated from the mobility.  The calculated value 

using equations 4-6 and r=0.26 gives L = 2.34x10-8 V2K-2 and latticeκ = 1.30 W/mK, both of which are close 

to the experimentally determined values. 

The same procedure was followed for [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02 and Figure 2 shows again that κ(B) vs. 

σ(B) is linear.  The measured value for the slope gives L = 2.33x10-8 V2K-2 and from the y-intercept 

latticeκ = 1.27 W/mK.  The calculated values using equations 4-6 give L = 2.36x10-8 V2K-2 and latticeκ = 1.13 

W/mK, again showing the validity of the measurement. Besides the MTR method the data can also be fit 
using the following expressions for the electrical and thermal conductivities as a function of field for 
isotropic samples in the relaxation time approximation.18 
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where 0σ  is the electrical conductivity in zero field and dμ  is the drift mobility.  The drift mobility 

determined by equation 7 and shown in Figure 3 is used in equation 8 in order to determine the carrier 
and lattice contributions to the thermal conductivity as shown in Figure 4.  As opposed to the MTR 
method, the data must be fit using both weak and intermediate magnetic fields and so Figures 3 and 4 
show the thermal and electrical conductivity in fields of 0.1 – 5 T.  Fitting equation 8 to the thermal 

conductivity versus magnetic field data in Figure 4 yields latticeκ = 1.29 W/mK.  It can be seen that using a 

completely different model presented in equations 7 and 8 produces a nearly identical value of latticeκ = 

1.27 W/mK as determined by the MTR method.  

Unlike Cu0.01Bi2Te2.7Se0.3, it was possible to reach the classical high field limit at lower temperatures for 
Bismuth Antimony compounds.  Figure 5 plots the thermal conductivity of Bi0.88Sb0.12 versus temperature 
in magnetic fields of 0, 6, and 9 Tesla.  The fact that the field is classically large in the temperature range 
of 5 – 150 K can be viewed by inspection of Figure 5.  Since there is no change when increasing the field 

from 6 to 9 Tesla below 150 K, the high field limit has been reached and carrierκ has been completely 

suppressed. As can be seen in Fig. 5, there is the onset of the bipolar effect above 150 K, not radiation 
effects since these are negligible under 200 K, which is not eliminated by the magnetic field and results 

in both the increase of the thermal conductivity and the lack of suppression of carrierκ .  The zero field 

values for the Seebeck coefficient and electrical resistivity are plotted in the insets, both confirming the 
onset of bipolar effects around 150 K.  The fact that the electronic thermal conductivity is not 
suppressed due to the bipolar contribution has been described by Uher and Goldsmid and in pure 
Bismuth happens at around 150 K.5  Therefore, extraction of the Lorenz number using this method is 
only possible for temperatures below 150 K where bipolar contributions are negligible.  Once the lattice 
and total thermal conductivities are measured, the electronic portion was calculated using Equation 1.  

Equation 2 can be rewritten as LT = carrierκ ρ where ρ is the zero field value for the electrical resistivity.  

Since in this case, the lattice portion is measured over a range of temperature, carrierκ ρ can be plotted 

versus temperature and the slope of the line will yield L for that temperature range.  Figure 6 shows only 
the portion of the temperature range over which the plot is linear.  At higher temperatures, above 150 
K, the classical field approximation is no longer valid due to a drastic decrease in mobility as well as the 

onset of the bipolar contribution,5,7 while at lower temperatures latticeκ  dominates and therefore totalκ is 

unaffected by magnetic field as can be seen in Figure 5.  Fitting linearly as shown in Figure 6, gives the 
measured value for the Lorenz number to be 2.21x10-8 V2K-2 in the temperature range 35-150 K; 
meaning L is constant over this range of temperature.  Sharp et al. measured a sample of identical 
composition in fields up to 1 T where they were unable to reach the high field limit and therefore used 
the MTR method described above.6  They obtained L = 2.31x10-8 V2K-2 at 100 K which is less than a 5% 
difference from our measurement.  When comparing values for the lattice portion of the thermal 
conductivity our measured value at 100 K yields 2.14 W/mK while the value determined using the MTR 
method from extrapolation is 2.19 W/mK.6  It should be noted that the grain sizes in both samples are of 
the same order of magnitude, with average grain sizes being roughly one and five microns for our 
sample and that of Sharp respectively.6  Again, as in the low field limit, the measured values are not only 
reasonable, but within 5% of published values on the same material. 



IV. DISCUSSION 

There is excellent agreement between the two models used to fit the data in the low field limit for 
Cu0.01Bi2Te2.7Se0.3 and [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02 as well as decent agreement with simple parabolic band 
model theory.  There is also excellent agreement between both low and high field methods as shown in 
the measurements of Bi0.88Sb0.12 and their comparison with literature values.  While measurements for 
Bi0.88Sb0.12 were made near the typical temperature range of operation, these temperatures are far from 
optimal for Cu0.01Bi2Te2.7Se0.3 which operates in a much higher temperature range.10  The purpose of 
measuring Cu0.01Bi2Te2.7Se0.3 was to see first if the measurement was possible in nanostructured 
materials, and second to see how high the temperature could be raised while performing the 
measurement.  Therefore the measurement was also tried at 250 K, however there was no variation in 
the thermal conductivity data outside of experimental error.  This is due to the fact that the mobility 
decreased by a factor of 3 at 250 K.   

The requirement of high mobility is one of the limitations of this technique.  Other limitations include 

the requirements for a high magnetic field, again to satisfy μB >> 1, as well as the electronic portion of 
the thermal conductivity being at least 5%.  Ideal thermoelectric materials will have a high mobility 
along with a low lattice thermal conductivity which is comparable to the electronic portion, and so the 

use of magnetic field to separate out carrierκ  would be perfect for the ideal nanostructured 

thermoelectric material.1,5-9  The assumptions that are being made for the analysis (models used to fit 
the data) using this method are that: the Lorenz number is independent of magnetic field, the lattice is 
unaffected by magnetic field, there is no bipolar contribution, and electron-phonon interactions are 
negligible.  The assumption that the Lorenz number and lattice are independent of magnetic field is true 
for some materials, which we take to be the case for these materials,12 but in general is not true and can 
be affected by secondary magnetic impurities; the authors are investigating the generality of this 
assumption further.  Bipolar contributions should be negligible at 100 K.  Electron-phonon interactions 
would manifest themselves when comparing the high and low field methods in Bi0.88Sb0.12.  In the high 
field limit the carrier completes a full orbit and therefore should be more likely to scatter a phonon, this 
would lead to a difference in the thermal conductivity between the high and low field measurements.  
Since there is no difference between the two methods, we believe the electron-phonon interactions to 
be negligible.  It is noted that it would be interesting to devise an experiment from which electron-
phonon interactions could be determined. 

Because of the limitations on the material, only metals (W,13 Cu,19 Pb,20 Rb,21 etc.) along with a few 
alloyed compounds (Cd3P2,22 Cd3As2

23) have been measured using magnetic field; what the authors have 
found is referenced here and throughout the paper.  Review articles written by Butler17 and more 
recently by Kumar10 attempt to give several literature values, though many were missed, for the Lorenz 
number of different elements and alloys determined by all types of experimental methods, not just in 
magnetic field.  Another example of experimentally determining the Lorenz number being through the 

introduction of impurities in alloys, where the change in electrical conductivity and carrierκ  is used to 

determine latticeκ .  A nice description, with examples as well as shortcomings, of the alloying method is 

given by Butler in reference 17. 



Further investigation is required into higher temperature measurements as well as other types of 
materials14,24 for which this technique can be useful.  It should also be mentioned that we have only 

looked at the diagonal components, specifically κxx and σxx, of the transport tensors and it could be 
possible to extract even more data from the off diagonal components through measurements of the 
Righi-Leduc and Hall coefficients.24-25  Future work will include systematic measurements of the 
transport tensors on a specific material over a larger temperature range along with more complex 
theoretical analysis. 

V. CONCLUSION 

Two methods for experimentally determining the Lorenz number are presented for nanopolycrystalline 
Bi0.88Sb0.12, Cu0.01Bi2Te2.7Se0.3, and [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02.  Measured values of Cu0.01Bi2Te2.7Se0.3 and 
[Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02 analyzed using equations 1-3 as well as equations 7-8 yield similar results and 
are close to calculated values using the single parabolic band model presented in equations 4-6.  The 
measured values for Bi0.88Sb0.12 are the same as previously published results.  Now that the two methods 
have been clearly demonstrated to work on these nanopolycrystalline alloys at a given temperature, it is 
possible to look at other materials as well as the temperature range for which this technique can be 
used.  A systematic study can then be done of the temperature dependence of the Lorenz number for a 
given material, making it possible for more complex theoretical models to be verified within 
experimental error leading to more accurate determinations of the lattice portion of the thermal 
conductivity. 
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List of Figures and Captions 

Figure 1: Thermal conductivity is plotted against electrical conductivity of Cu0.01Bi2Te2.7Se0.3 at 100 K with 
the magnetic field being varied from 0.8 T to 5 T.  The slope of the linear fit provides the Lorenz number 

L = 2.16x10-8 V2K-2 and the y-intercept gives latticeκ  = 1.49 W/mK.  The upper left inset plots the 

dependence of the total thermal conductivity on magnetic field.  The lower right inset plots the 
dependence of electrical conductivity on magnetic field.  Both the thermal and electrical conductivity 

varying with field can be fit using 2

2

1 cB
aB
+

as shown in the insets. 

Figure 2: Thermal conductivity is plotted against electrical conductivity of [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02 at 
100 K with the magnetic field being varied from 0.8 T to 5 T.  The slope of the linear fit provides the 

Lorenz number L = 2.33x10-8 V2K-2 and the y-intercept gives latticeκ  = 1.27 W/mK.  The upper left inset 

plots lnμΗ vs. lnT over the whole temperature range.  The lower right inset plots only the points in the 
vicinity of 100 K from which the slope is taken to derive the scattering parameter. 

Figure 3: Electrical conductivity is plotted against magnetic field from 0.1-5 T and fit using equation 7.  

The electrical conductivity in zero field is used in order to determine the drift mobility, dμ . 

Figure 4: Thermal conductivity is plotted against magnetic field from 0.1-5 T and fit using equation 8 and 

dμ from Figure 3.  It is found that latticeκ = 1.29 W/mK. 

Figure 5:  Thermal conductivity is plotted against temperature at magnetic fields of 0, 6, and 9 T for 
Bi0.88Sb0.12.  The upper right inset plots the Seebeck coefficient against temperature while the upper left 
inset plots r vs. T from 5-300 K in zero magnetic field.  It can be clearly seen that the bipolar contribution 
to the Seebeck coefficient becomes non negligible around 150 K. 

Figure 6: carrierκ ρ is plotted against temperature from 35-150 K.  The black points represent the 

measured data while the red line is the linear fit. The slope of the linear fit provides the Lorenz number L 

= 2.21x10-8 V2K-2 and the y-intercept gives latticeκ  = 2.14 W/mK. 
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