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Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable
wavelengths from 9.22 to 10.67 µm, we studied cyclotron resonance in large-area graphene grown by
chemical vapor deposition. Circular-polarization dependent studies reveal strong p-type doping for
as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows
for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the
Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the
magnetic quantum limit, even though the sample is still p-type, due to graphene’s linear dispersion
and unique Landau level structure. These high-field studies therefore allow for a clear identification
of cyclotron resonance features in large-area, low-mobility graphene samples.

PACS numbers: 78.67.Ch, 63.22.+m, 73.22.-f, 78.67.-n

The band structure of graphene exhibits a zero-gap
linear dispersion relation near each of the Dirac points,
which results in a variety of exotic properties of two-
dimensional (2D) Dirac fermions.1–3 While a number
of electronic transport studies have revealed novel phe-
nomena in the presence of a high magnetic field, in-
cluding half-integer quantum Hall states observed at
room temperature,1,2,4 magneto-optical properties are
expected to be equally unusual,5–15 especially in the mag-
netic quantum limit12 where the Fermi level resides in the
lowest Landau level (LL). Even in conventional 2D elec-
tron systems such as found in GaAs quantum wells, stud-
ies of cyclotron resonance (CR) in the magnetic quantum
limit have shown many-body effects,16–19 such as spin-
splitting in the fractional quantum Hall regime, even
though CR is not expected to be sensitive to electron-
electron interactions due to Kohn’s theorem.20 The linear
dispersions of graphene automatically evade this basic re-
quirement for Kohn’s theorem, motivating CR studies of
graphene in ultrahigh magnetic fields.

An applied magnetic field (B) creates LLs for charge
carriers both in the conduction and valence bands, and
CR measures resonant optical transitions between ad-
jacent LLs (∆n = ±1, where n is the Landau level
index).21 CR is a well-established and powerful technique
to determine many fundamental parameters of a sam-
ple, such as carrier effective masses, densities, mobilities
and scattering rates. When performed with circularly
polarized radiation, the sign of the charge carriers can
also be determined. Furthermore, owing to graphene’s
nonparabolic (i.e., linear) dispersion, LL energies are not

equally spaced; rather, they follow En,± = ±c∗
√
2e~Bn,

where n ≥ 0 and c∗ = 1.0 × 106 m/s corresponds to

the slope of the linear dispersions. Thus, different inter-
Landau level (LL) transitions occur at different ener-
gies or magnetic fields. Hence, the absence or presence
of a certain resonance can determine the Fermi energy.
This is in marked contrast to conventional materials with
parabolic dispersions, which form equally spaced LLs in a
magnetic field (En = (n+1/2)e~B/m∗, where m∗ is the
effective mass) and in which all inter-LL transitions (∆n
= ± 1) occur at the same energies (for a given magnetic
field) or at the same magnetic field (for a given probe
photon energy).

A number of CR measurements have been performed
on graphene,22–32 successfully resolving the unusual LL
structure, particularly when the graphene samples in-
vestigated have relatively high mobilities, such as ex-
foliated graphene or epitaxial graphene on SiC. How-
ever, for technologically important applications requir-
ing large-area graphene films grown via chemical vapor
deposition (CVD), we still face the current problem of
low mobilities (∼103 cm2V−1s−1), which severely broad-
ens CR. Therefore, for these low-mobility samples, CR
measurements must be explored within the regime of ul-
trahigh magnetic fields that makes the CR observabil-
ity condition ωcτ > 1 achievable (here, ωc is the cy-
clotron frequency and τ is the carrier scattering time).
Furthermore, a pulsed high-field magnet can be read-
ily combined with an infrared laser to perform CR mea-
surements with circularly-polarized radiation,21,33 allow-
ing us to distinguish between electron-like and hole-like
CR transitions. Magneto-spectroscopy using circularly-
polarized radiation indeed played a crucial role in elu-
cidating electron and hole states in graphite.34–37 Fur-
thermore, a recent magneto-optical study on multilayer
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graphene on SiC using circularly-polarized radiation re-
vealed multiple CR components, demonstrating the exis-
tence of multiple species of carriers with different Fermi
velocities.32

Here, we present an experimental study of CR in CVD-
grown graphene at ultrahigh magnetic fields. Circularly-
polarized magneto-transmission of CO2 laser light (wave-
length λ = 9.22 µm to 10.7 µm) revealed a strong and
unintentional p-type (hole) doping of these nominally-
undoped graphene samples. A small CR feature at 10 T
and a larger CR feature at 65 T corresponds to the n =
0 to n = −1 and n = −1 to n = −2 inter-LL tran-
sitions, respectively. Wavelength-dependent magneto-
transmission data show a good agreement with calcu-
lated LL transitions, allowing the Fermi energy (EF ) of
the sample to be determined (−250 meV). Moreover, we
found that annealing the graphene samples in vacuum
to remove physisorbed molecules shifts the Fermi energy
markedly closer to the Dirac point (EF = −34 meV). Due
to graphene’s unique Landau level structure, we show
that in the magnetic quantum limit this allows both hole
(n = 0 to n = −1) and electron (n = 0 to n = +1) CR
to be observed simultaneously, even though the sample
is still p-type.

We measured graphene samples grown via CVD on a
large-area (∼4 cm2) copper foil, resulting in the growth
of large-area, high-quality graphene.38 A poly (methyl
methacrylate) (PMMA) film was spin-coated onto the
graphene-covered copper foil and was heated up to 60 ◦C
for 5 min to cure the PMMA film. Then the PMMA/
graphene layer was separated from the copper foil by
etching in a 1 M CuCl2/6 M HCl aqueous solution and
was placed on the surface of Milli-Q water to remove
any water-soluble residues. The PMMA/ graphene film
was then transferred onto a thallium bromoiodide (KRS-
5) substrate, which is transparent at mid-infrared wave-
lengths. The PMMA film was dissolved away by soaking
the substrate in acetone for 8 hours,38 thus leaving only
the CVD-graphene sheets remaining on the KRS-5 sub-
strate.

Transmission measurements were performed at room
temperature in the Faraday geometry (where light prop-
agates parallel to the magnetic field), using a continuous-
wave, single-mode CO2 laser that is tunable from 9.2
to 10.7 µm. The combination of a linear polarizer and
quarter-wave plate was used to switch between opposite
circular polarizations (historically called “electron CR ac-
tive” and “electron CR inactive”), and the transmission
was detected with a mercury cadmium telluride detector
sensitive in the 2-12 µm spectral range. The handedness
of the circular polarization and direction of the magnetic
field were cross-checked via electron CR of bulk n-type
GaAs.

To access ultrahigh magnetic fields, we used the Sin-
gle Turn Coil (STC) magnet at the National High Mag-
netic Field Laboratory (NHMFL) in Los Alamos39,40 (see
Fig. 1a). The STC magnet combines a low-inductance,
60-kV capacitor bank with a 10-mm diameter, 10-mm
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FIG. 1: (color online) (a) Experimental configuration for
magneto-transmission using the STC magnet. (b) Magneto-
transmission of 10.67 µm light through a nominally-undoped
CVD-grown graphene sample, during a 170 T magnet pulse.
Data for both circular polarizations are shown. The pro-
nounced CR absorption that appears for “electron CR inac-

tive” polarization indicates that the graphene is p-type (hole
doped). (c) Electron CR inactive transmission versus mag-
netic field shows two CR features at 10 T and 65 T, corre-
sponding to n = 0 to n = −1 and n = −1 to n = −2 inter-LL
transitions.

long single-turn copper coil that discharges a maximum
current of ∼4 MA in ∼6 µs and reaches magnetic fields in
excess of 200 T during standard operation. The large cur-
rent, magnetic field, and associated Lorentz forces cause
an outward, radial expansion (and eventual destruction)
of the copper coil within ∼15 µs. However, the sample
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and sample probe are not damaged, and repeated mea-
surements on the sample are possible.

Figure 1(b) shows the magneto-transmission of both
electron CR active and electron CR inactive circularly
polarized light at 10.67 µm through a nominally-undoped
graphene sample at room temperature. The magnetic
field reaches a peak field of 170 T in less than 2.5 µs, with
a total rise and fall time of ∼6 µs. Within this time dura-
tion, we observe clear CR absorption as transmission dips
only for the electron CR inactive polarization. Therefore,
not only does this graphene sample have a nonzero den-
sity of charge carriers, these charge carriers are holes.
This p-type doping is typical for as-grown, nominally-
undoped graphene, most likely due to physisorption of
molecules, such as H2O and O2, that causes the Fermi
energy of undoped graphene to be shifted away from the
Dirac point and into the valence band.38,41

The data actually reveal two CR features, one large
absorption at ∼65 T and a smaller absorption at ∼10 T
[Fig. 1(c)]. We also notice the lack of any hysteresis of the
transmission data between the upsweep and the down-
sweep of the magnetic field, which not only rules out any
heating effects but also verifies the sufficient speed of the
measurement system. From the linewidth of the larger
CR feature, we can calculate the effective carrier scat-
tering time, τ , to be ∼14 fs (ωcτ = Bc/∆Bc), which is
typical for CVD-grown graphene.42

Figure 2(a) compares magneto-transmission data using
9.22 µm and 10.67 µm radiation (134 meV and 116 meV
photons, respectively). We again observe two CR absorp-
tions for each wavelength, and we find that the resonance
fields increase from 10 to 15 T and 65 to 80 T, respec-
tively, with increasing photon energy. In the Appendix,
we calculate the Landau levels and the expressions for cir-
cularly polarized CR absorption. Using a Landau level
fan diagram calculated for graphene, Fig. 2(b) shows the
calculated n = 0 to n = −1 and n = −1 to n = −2
transitions at 9.22 µm (blue) and 10.67 µm (red). Com-
paring our measured CR features to the calculated inter-
LL transition energies, we can assign the low-field (high-
field) feature to the n = 0 to n = −1 (n = −1 to n = −2)
transition. Figure 3 shows the wavelength-dependent
magneto-transmission as a function of

√
B and we note

a significant improvement in the symmetry of the CR
peaks as compared to Figure 2(a).

Taking into account the measured integrated peak in-
tensities from Fig. 2(a), we see a decrease in CR absorp-
tion with increasing photon energy due to a decrease in
population of the n = −1 LL with increasing magnetic
field. Because we do not observe any CR absorption cor-
responding to the n = −2 to n = −3 transition (expected
at 103 T and 135 T for these wavelengths, respectively),
we can first conclude that the Fermi energy EF must
reside within the n = −1 LL at 65 T and must there-
fore have a zero-field value in the range between −140
to −400 meV. However, to more accurately determine
the Fermi energy, we need to consider the degeneracy
of each LL, which is eB/2π~ (× 4 for valley and spin
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FIG. 2: (color online) (a) Wavelength-dependent electron-
CR-inactive transmission traces versus magnetic field. Each
trace exhibits two CR features (hole CR). (b) Landau level
fan diagram with calculated LL transitions for 10.67 µm (red)
and 9.22 µm (blue).

degeneracy), at the resonance fields 65 T and 80 T. Cal-
culating the ratio of the 65-T CR peak intensity to the
80-T CR peak intensity and using this ratio alongside
the LL degeneracy, we can estimate the hole occupation
within the n = −1 LL at 65 T and 80 T. We directly
calculate the hole density of our sample, nh = 1.6 ×
1012 cm−2, which translates to a zero-field Fermi energy,
EF = ~c∗

√
4πnh ≈ −295 meV. We note here that the ob-

servation of the low-field CR peaks (the n = 0 to n = −1
transition) appears inconsistent with this calculated zero-
field Fermi energy; this is likely due to charge-density
inhomogeneities of the graphene sample.43
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FIG. 3: (color online) Wavelength-dependent electron-CR-
inactive transmission traces versus the square root of mag-
netic field.

This relatively large value of EF due to accidental
p-doping through physisorption of H2O and O2 is typ-
ical for graphene but can be controlled if we can remove
the physisorbed molecules. Figure 4 demonstrates that
one can use thermal annealing to control the Fermi en-
ergy. Here, we measured CR with electron CR inactive
(that is, hole CR active) polarization before annealing
[Fig. 4(a)] and immediately after we annealed the sam-
ple for 2 hours at 150◦C and 10−6 mbar to remove any
physisorbed molecules [Fig. 4(b)]. As shown in Fig. 4(b),
the majority of the doped holes are removed during the
annealing process, and we now see two smaller CR peaks
at +10 T and −10 T, corresponding to the n = 0 to
n = −1 transition and the n = 0 to n = +1 transition,
i.e., to hole and electron CR in the magnetic quantum
limit. Note that, since the polarization is hole CR active
for positive magnetic field, any resonance on the negative
magnetic field side is due to electron CR (note that the
field swings negative to about −40 T following a +170 T
pulse, allowing both positive and negative fields to be ex-
amined in a single pulse). The emergence of the two 10 T
peaks with opposite signs, and the absence of the ∼60 T
peak (the n = −1 to n = −2 transition), unambiguously
demonstrate that the Fermi energy now resides in the n
= 0 LL — the magnetic quantum limit — at 10 T.

Furthermore, as the integrated hole CR absorption is
stronger than the electron CR absorption [see Fig. 4(b)],
the graphene sample is still slightly p-type and the in-
tensity ratio between the two peaks provides informa-
tion about the ratio of occupied versus unoccupied states
within the n = 0 LL. More specifically, comparing the
peak intensities, we calculate the ratio of occupied to un-
occupied states within the n = 0 LL to be ∼1:1.5. We

can then use this ratio and the LL degeneracy to cal-
culate the hole density of our sample after annealing to
be nh = 2.1 × 1010 cm−2. As a result, we can deter-
mine the zero-field Fermi energy after annealing to be
EF = −34 meV, again through EF = ~c∗

√
4πnh. Fig-

ure 4(c) shows the oscillations of the Fermi energy with
increasing magnetic field for both before (blue) and after
(red) annealing. As Fig. 4(d) depicts, before annealing
the Fermi level sits within the n = −1 LL at 65 T and
after annealing the Fermi energy now sits within the n
= 0 LL at 10 T. The annealing process has successfully
removed most of the physisorbed molecules that p-doped
the graphene, leaving the system only slightly p-type.
Qualitatively similar thermal effects were observed for
other monolayer graphene samples that we investigated.

It should be emphasized here that the simultaneous ap-
pearance of both hole and electron CR is an unusual phe-
nomenon, made possible only via the unique electronic
structure and Landau quantization of graphene. This
phenomenon cannot occur in conventional materials con-
taining only one carrier type. At B = 0, our graphene
samples are still slightly p-type even after annealing, and
they contain only hole carriers. However, as soon as a
finite magnetic field is applied, a Landau level with ex-
actly zero energy appears, i.e., the n = 0 Landau level
(4-fold degenerate due to valley and spin). This level
never moves with B in energy but simply grows in de-
generacy. As long as the Fermi energy lies within this
level, this level is partially filled, containing both holes
and electrons, allowing the observation of both electron
and hole CR even at T = 0.

Detailed calculations confirm these results. In the Ap-
pendix, we compute the CR absorption for both electron-
active and hole-active circular polarizations. The results
are given by Eqs. (A.33) and (A.37). The results show a
number of interesting and unusual features that we have
discussed: i) The optical field Hamiltonian for graphene
comes in through an A · σ term rather than the usual
term A ·p; ii) the expressions show that even an undoped

sample will show CR in contrast to conventional semi-
conductors where the sample must be doped; iii) if the
Fermi energy lies in the n = 0 level, then CR is present
for both electron-active and hole-active circular polariza-
tions; and iv) if the Fermi level lies in the n = 0 level, the
ratio of CR absorption between the electron-active and
hole-active peaks allows one to accurately determine the
Fermi level and carrier density.

In summary, we have measured cyclotron resonance in
graphene at ultrahigh magnetic fields. From polariza-
tion and wavelength dependent measurements, we have
shown unintentional chemical doping is strongly p-type
by observing the n = 0 to n = −1 and n = −1 to n = −2
transitions in nominally-undoped graphene. Addition-
ally, we demonstrated that annealing effectively removes
p-doping from graphene, shifting the Fermi energy much
closer to the Dirac point. This shift completely blocked
the n = −1 to n = −2 hole cyclotron resonance transition
and revealed the n = 0 to n = +1 electron cyclotron res-
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FIG. 4: (color online) (a) Electron CR inactive transmission at 10.6 µm before annealing, and (b) after annealing. (c) Landau
fan diagram showing the Fermi energy oscillation with magnetic field for before (blue) and after (red) annealing, and (d) depicts
that annealing moves the Fermi energy from −295 to −34 meV.

onance transition. As a result, due to graphene’s unique
band structure, we simultaneously observed both hole
and electron cyclotron resonance in the magnetic quan-
tum limit, even with a p-type graphene sample. These
high-field studies therefore allow for a clear identification
of cyclotron resonance features in large-area graphene
samples, and an accurate determination of their low car-
rier mobilities and fast scattering times.
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Appendix: CALCULATION OF CYCLOTRON

RESONANCE AND INTERBAND

MAGNETO-ABSORPTION FOR GRAPHENE

Here, we calculate the circular polarization dependence
of the cyclotron resonance absorption of graphene in a
magnetic field. We use CGS units here as opposed to the
text so that we can compare our expressions to others. In
addition, we calculate the interband magneto-absorption
(i.e., the valence band to conduction band transitions).
The Hamiltonian for graphene near the K point is given

by

H = ~c∗σ · k = ~c∗
(

0 kx − iky
kx + iky 0

)

, (A.1)

where c∗ is the Fermi velocity (and slope of the linear
dispersion), σ are the Pauli matrices and k is wavevec-
tor measured from the K point k = kΓ − K (kΓ is the
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wavevector measured from the Γ point). The energy
eigenvalues for this Hamiltonian are

ε = ±~c∗|k|. (A.2)

A similar Hamiltonian H = ~c∗σ∗ · k′ exists at the K′

point but we will focus only on the K point. In the results
for our final expressions, we simply add a factor of four
to account for both the spin degeneracy and the K,K′

degeneracy.
In the presence of an external field (DC magnetic or

AC optical), one uses the Peierls substitution (minimal
coupling) k → k + eA/~c (note the electron charge is
−e), where A is the vector potential, to yield

H = ~c∗σ ·
(

k+
eA

~c

)

. (A.3)

To determine the cyclotron resonance and absorption, we
will consider the case of both a DC magnetic field and
AC optical field so that the Hamiltonian becomes

H = ~c∗σ ·
(

k+
eAB

~c
+

eAopt

~c

)

. (A.4)

The magnetic field will be oriented in the ẑ direction
(perpendicular to the graphene layer), and we will use
the Landau gauge in the form

AB = (0, Bx, 0). (A.5)

For the AC optical field, we will take plane waves prop-
agating in the ẑ direction (i.e., in the same direction as
the magnetic field). The vector potential Aopt for the
photon field can be related to the AC electric field by

Eopt = E0 exp [i (q · r− ωt)] (A.6)

Aopt =
cE0

iω
exp [i (q · r− ωt)] . (A.7)

Here q is in the ẑ direction and E0 can be left or right
circularly polarized in the x-y plane. We write the Hamil-
tonian [Eq. (A.4)] as a sum of an unperturbed term and
a perturbation term

H = HB +H1, (A.8)

where HB is the unperturbed Hamiltonian with only a
DC magnetic field. This can be solved exactly by re-
placing k with ~∇/i in Eq. (A.4) and keeping only the
magnetic field term. The spectrum in the absence of the
perturbation H1 is simply the Landau level spectra

En,± = ±γ
√
n, (A.9)

where γ =
√
2c∗~
lB

= c∗
√

2e~B
c

, n = 0, 1, 2..., and the

magnetic length, lB, is given by lB =
√

~c/eB. Note that

the energies vary with
√
n and also with

√
B (through the

magnetic length). Note also that there is an n = 0 level.
We can also write Eq. (A.9) in a simplified form

En,± = ±~ω0

√
n , (A.10)

with ω0 =
√
2c∗/lB being the characteristic frequency.

The wavefunctions are two-component spinors given by

〈x, y | n,±, k〉 = Ψn,±,k(x, y) = bn

(

Φn−1,k

±iΦn,k

)

. (A.11)

We treat n as positive or zero and the + sign corre-
sponds to the positive energy solution and the − sign
corresponds to the negative energy solution. The nor-
malization is given by

bn =

{

1 if n = 0
1√
2

if n 6= 0 (A.12)

and the component functions Φn are given by

Φn,k =
1

√

2nn!
√
π

1
√

LylB
ei k y exp

(

− (x− kl2B)
2

2l2B

)

×Hn

(

(x − kl2B)

lB

)

, (A.13)

with Φ−1=0, Hn being the Hermite Polynomial of or-
der n, and k the quantum number associated with the
y motion in the Landau gauge. The wavefunctions in
Eq. (A.13) are harmonic oscillator wavefunctions in the
x direction and plane waves in the y direction.
We will treat the radiative Hamiltonian H1 perturba-

tively using the spinor wavefunctions in Eq. (A.11). The
perturbation term is

H1 = c∗σ ·
(

eAopt

c

)

= − iec∗

ω
exp(i q · r)

×
(

0 Ex − iEy

Ex + iEy 0

)

. (A.14)

This is not the usual A · p term that one uses in calcu-
lating the optical properties of conventional semiconduc-
tors. If we had used the entire Hamiltonian for graphene
instead of the Dirac approximation for the K and K

′

points we could have used an A · p term in treating this
interaction.
The optical matrix element corresponding to a transi-

tion caused by the perturbation term (for in-plane polar-
ization, i.e., q is along the z-direction) from state n to m
is calculated to be

〈m,α, k′ | H1 | n, β, k〉 = −
∫∫

d2r
i e c∗

ω
e(i q z)bmbn ×

(Φ∗
m−1,k′ ,−αiΦ∗

m,k′)

(

0 Ex − iEy

Ex + iEy 0

)(

Φn−1,k

βiΦn,k

)

.

(A.15)

We note that n and m are ≥ 0 and that α, β = ± de-
pending on whether the state is the positive energy state
(conduction band) or the negative energy state (valence
band). Cyclotron resonance absorption corresponds to
α = β and the inter-band magneto-absorption to α 6= β.
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For positive circularly polarized light ⊕, we have E0 =
E0(x̂ + iŷ)/

√
2 so that Ex = E0/

√
2, Ey = iE0/

√
2 and

the matrix element becomes:

〈m,α, k′ | H1 | n, β, k〉⊕ = −
∫∫

d2r
i e c∗

ω
e(i q z)bmbn

×(Φ∗
m−1,k′ ,−αiΦ∗

m,k′)

(

β i
√
2E0Φn,k

0

)

, (A.16)

which integrates to

〈m,α, k′ | H1 | n, β, k〉⊕ = β

√
2E0 e c

∗

ω
e(i q z)

× bm bn δm−1,n δk,k′ . (A.17)

Using the Fermi Golden Rule, we can evaluate the tran-
sition rate Wnm for an electron in state n going to an
unoccupied state m, n → m

Wnm =
2π

~
|〈m,α, k′ | H1 | n, β, k〉|2δ(~ω −∆Em,α

n,β ),

(A.18)

where ∆Em,α
n,β = Em,α − En,β . Taking into account the

probability fn,β that the state (n,β) is occupied and (1−
fm,α) that the state (m,α) is unoccupied, the transition
rate per unit volume is

Rn→m =

(

1

V

)

2π

~
|〈m,α, k′ | H1 | n, β, k〉|2

× fn,β(1− fm,α)δ(~ω −∆Em,α
n,β ). (A.19)

We must also take into account the inverse process
(through emission of a photon), m → n. The transition
rate per unit volume is given by

Rm→n =

(

1

V

)

2π

~
|〈n, β, k′ | H1 | m,α, k〉|2

× fm,α(1− fn,β)δ(−~ω +∆Em,α
n,β ). (A.20)

The total net rate/volume is the difference between the
two,

Rnm = Rn→m −Rm→n

=

(

1

V

)

2π

~
|〈m,α, k′ | H1 | n, β, k〉|2

× (fn,β − fm,α)δ(~ω −∆Em,α
n,β ).

(A.21)

For undoped systems at T= 0, fm,− = 1 and fm,+ =
0 for m > 0, i.e., all conduction band states are empty
and all valence bands states are occupied, while f0,− =
f0,+ = 1/2.
For positive circular polarized light,

R⊕
mn =

4πe2c∗2

V ~ω2
E2

0b
2
mb2n

× (fn,β − fm,α)[δm−1,nδk,k′ ]2δ(~ω −∆Em,α
n,β ).

(A.22)

The total transition rate R⊕ summed over all possible
transitions is

R⊕ =
4

V

∑

m,n
α,β

∑

k,k′

4πe2c∗2

~ω2
E2

0b
2
mb2n [δm−1,n δk,k′ ]

2

× (fn,β − fm,α)δ(~ω −∆Em,α
n,β )

=
4

V

∑

n≥0
α,β

∑

k

2πe2c∗2

~ω2
E2

0b
2
n

× (fn,β − fn+1,α)δ(~ω −∆En+1,α
n,β ).

(A.23)

The factor of 4 comes from the 2-fold spin degeneracy and
the 2-fold valley degeneracy. Since the Landau levels are
shifted harmonic oscillators in the x direction centered
about

x0 = kl2B (A.24)

and since the oscillator center should be within the sam-
ple, following Roth44, we require that

0 < x0 < Lx ⇒ 0 < k < Lx/l
2
B. (A.25)

This restricts the allowed values of k. Converting the sum
over k into an integral

∑

k

→
∫ kmax

0

Ly

2π
dk =

LyLx

2πl2B
, (A.26)

it follows that

R⊕ =
4

Lz

∑

n≥0
α,β

e2c∗2

~ω2l2B
E2

0b
2
n

× (fn,β − fn+1,α)δ(~ω −∆En+1,α
n,β ), (A.27)

where Lz is the thickness of the graphene layer. The total
power loss per unit volume is

P⊕
L = R⊕

~ω =
4

Lz

∑

n≥0
α,β

e2c∗2

ωl2B
E2

0b
2
n

× (fn,β − fn+1,α)δ(~ω −∆En+1,α
n,β ). (A.28)

The absorption coefficient, αabs, is defined to be45

αabs =
# of photons absorbed/unit volume× second

# of photons injected/unit area× second

=
R

S/~ω
=

R~ω

S
, (A.29)

where S is the magnitude of the average Poynting vector:

S = |〈S(r, t)〉| = nrcE
2
0

8π
. (A.30)
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Therefore, for positive circularly polarized light,

α⊕
abs = 4

∑

n≥0
α,β

8πe2c∗2

Lzωl2Bnrc
b2n

× (fn,β − fn+1,α)δ(~ω −∆En+1,α
n,β ). (A.31)

We will set Lz = 1 to get the dimensionless absorption
per graphene layer. For cyclotron resonance, α = β,
and for positive circularly polarized light, the require-
ment that

~ω = ∆En+1,β
n,β = γ

(

β
√
n+ 1− β

√
n
)

> 0 (A.32)

restricts the cyclotron resonance transitions to the elec-
tron (β = +) Landau levels and yields:

α⊕
abs =

16πe2c∗2~

nrcl2B

∑

n≥0

2b2n
γ
(√

n+ 1−√
n
)

× (fn,+ − fn+1,+)δ(~ω −∆En+1,+
n,+ ). (A.33)

If we account for scattering which results in linewidth
broadening, we can replace the delta function by a
Lorentzian:

δ(~ω −∆En+1,α
n,β ) → 1

π

~τ−1

(~ω −∆En+1,α
n,β )2 + (~τ−1)2

=
1

π

~τ−1

(~ω − γα
√
n+ 1 + γβ

√
n)2 + (~τ−1)2

,

(A.34)

yielding the expression:

α⊕
abs =

16πe2c∗2~

nrcl2Bγ
2

∑

n≥0

2b2n
(√

n+ 1−√
n
) (fn,+ − fn+1,+)

×
γτ
π~

γ2τ2

~2

(

~ω
γ

−
√
n+ 1 +

√
n
)2

+ 1
. (A.35)

This expression agrees with the results of Abergel and
Fal’ko10 (up to spin and valley degeneracy), who obtained
these results using the Keldysh technique.
From Eq. (A.33), we see that the strength of the tran-

sitions depend upon
√
B. A factor of B comes from the

1/l2B term (which comes from the degeneracy of the Lan-

dau levels) and a factor of 1/
√
B comes from the 1/ω

dependence of Eq.(A.28) at the ω=ω0
√
n resonance.

For cyclotron resonance (α = β) with negatively circu-
larly polarized light, the relation between energy of the
photon and Landau levels

~ω = ∆En−1,β
n,β = γ

(

β
√
n− 1− β

√
n
)

> 0 (A.36)

requires that β = −, i.e., only valence band transitions
are allowed. One can repeat the calculation for the cy-
clotron resonance for negative circularly polarized light

in a similar manner to obtain:

α⊖
abs =

16πe2c∗2~

nrcl2B

∑

n≥1

2b2n−1

γ
(√

n−
√
n− 1

)

× (fn,− − fn−1,−)δ(~ω −∆En−1,−
n,− ), (A.37)

To obtain the inter-band magneto-absorption (valence
band to conduction band), we use α 6= β and worry only
about absorption (not emission) to get:

α⊕
abs =

16πe2c∗2~

nrcl2B

∑

n≥1

2b2n
γ
(√

n+ 1 +
√
n
)

× (fn,− − fn+1,+)δ(~ω −∆En+1,+
n,− ), (A.38)

and

α⊖
abs =

16πe2c∗2~

nrcl2B

∑

n≥1

2b2n−1

γ
(√

n+
√
n− 1

)

× (fn,− − fn−1,+)δ(~ω −∆En−1,+
n,− ). (A.39)

Note that the usual ∆n = 0 selection rule for the inter-
band magneto-absorption now becomes ∆n = ±1 de-
pending on the circular polarization.
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