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We have used scanning tunneling microscopy to study the structure of graphene 

islands on Au(111) grown by deposition of elemental carbon at 950˚C. Consistent with 

low-energy electron microscopic observations, we find that the graphene islands have 

dendritic shapes. The islands tend to cover depressed regions of the Au surface, 

suggesting that Au is displaced as the graphene grows. If small tunneling currents are 

used, it is possible to image simultaneously the graphene/Au moiré and the Au 

herringbone reconstruction, which forms underneath the graphene on cooling from the 

growth temperature. The delicate herringbone structure and its periodicity remain 

unchanged from the bare Au surface. Using a Frenkel-Kontorova model we deduce that 

this striking observation is consistent with an attraction between graphene and Au of less 

than 13 meV per C atom. Raman spectroscopy supports this weak interaction. However, 

at the tunneling currents necessary for atomic resolution image of graphene, the Au 

reconstruction is altered, implying influential tip-sample interactions and a mobile Au 

surface beneath the graphene. 
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PACS number(s): 81.05.ue, 61.48.Gh 

 

I. INTRODUCTION 

 The graphene-Au system is currently being investigated for two primary reasons.  

First, gold has potential as a substrate for graphene growth.1-4 Second, gold is commonly 

used for electric contacts within graphene based devices. A better understanding of the 

graphene-Au interaction is crucial to the continued development of graphene devices.  

According to first-principles calculations with and without considering van der Waals 

forces, the binding energy between graphene and Au is smaller than 40 meV per C 

atom.5-6 Various experiments have detected a charge transfer to the Au rendering the 

graphene slightly p-doped.5, 7-8 The Dirac cones of graphene are preserved on 

graphene/Ni intercalated by 1 ML Au,7 suggesting that graphene interacts more weakly 

with Au than with Cu, where a small band gap opens.9 

The potential of gold as a growth substrate is enhanced by its limited carbon 

solubility, an attribute that self-limits growth by chemical vapor deposition on Cu to 1-2 

graphene layers.2 Cu has thus far attracted the most attention as a substrate since it is 

relatively inexpensive and because techniques for separating the resulting graphene films 

are well established.2, 10 However, graphene films grown on Cu are composed of many 

different rotational domains,11-13 a consequence the weak film/substrate bonding. In 

contrast, graphene on Au(111) can be strongly aligned to a single in-plane orientation 

despite the weak film/substrate interaction.3, 14 The interplay between the strength of the 
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graphene/metal bond, the graphene growth mechanism, and the achievable 

crystallographic perfection in a complete layer remains poorly understood.3-4, 15-16 

 Here we use scanning tunneling microscopy (STM) to gain new insight into how 

graphene grows on Au(111) and the strength of interaction between the two materials. 

Graphene islands are found to be dendritic, indicating that a diffusion-limited mechanism 

controls their growth. The islands are located on large terraces at the bottom of depressed 

substrate regions, suggesting that Au step edges are etched during growth. Interestingly, 

the herringbone reconstruction of the Au(111) surface still forms under graphene during 

cooling. Simulations of the herringbone periodicity provide an upper limit of the van der 

Waals binding energy between graphene and gold of 13 meV per C atom. Raman 

spectroscopy confirms the weak graphene/Au interaction, which is comparable to that 

between graphene and SiO2. Scanning with the relatively aggressive tunneling parameters 

needed to resolve graphene’s atomic structure significantly alters the reconstruction of 

the underlying Au surface, revealing a high mobility of Au atoms under graphene. 

 

II. EXPERIMENT 

 Graphene was grown at ~ 950 °C on a Au(111) single crystal by depositing 

carbon from a graphite rod in an electron beam evaporator. The growth was monitored in 

real-time with low-energy electron microscopy (LEEM). The growth temperature was 

measured with a thermocouple spot welded to a molybdenum ring pressed against the 

back of the crystal. Prior to growth, the Au substrate was cleaned by cycles of Ar 

sputtering and annealing. After growth, the sample was removed from the LEEM and 

quickly transferred through air into an Omicron VT-STM. In the STM chamber, the 
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sample was degassed at ~500 °C for 10 min prior to analysis. All STM experiments were 

conducted at room temperature with tungsten tips. Raman spectra were measured with a 

532.45 nm laser and a 100× objective lens.  

 

III. RESULTS AND DISCUSSION 

A. Graphene island morphology and growth mode on Au(111) 

The Au(111) surface analyzed in this study was about 30 % covered by graphene. 

Fig. 1(a) shows a LEEM image acquired immediately after growth. The graphene islands 

are bright and have dendritic shapes, similar to diffusion-limited growth of graphene on 

Cu(111).12 The selected-area low-energy diffraction (LEED) pattern in Fig. 1(b) shows 

the graphene in-plane orientation; the blue arrow marks one of the 6-fold diffraction spots 

of Au. Due to the smaller lattice constant of graphene (2.46 Å) compared with Au(111) 

(about 2.88 Å for bulk Au), the diffraction spots from graphene occur at a larger radius, 

as is indicated by the red arrow in Fig. 1(b). Most of the graphene spots form narrow arcs 

aligned azimuthally with the Au spots. A weaker set of graphene spots is rotated by 30°, 

and there is also some diffraction intensity at intermediate angles. Thus, the majority of 

the graphene has its lattice closely aligned with the Au(111) lattice. A small fraction is 

rotated by 30° and some other angles.3, 5 Close inspection reveals that each Au spot splits 

into a group of closely spaced spots due to the herringbone reconstruction of the Au(111) 

surface.17  

Raman spectroscopy (Fig. 1(c)) yields additional information about graphene 

formation on Au. The graphene was analyzed while still on the Au(111) substrate. The 

spectra were spatially uniform across the sample surface. The spectrum in Fig. 1(c) has 
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been background subtracted. However, some weak, spurious features introduced by the 

very strong luminescence from Au remain in Fig. 1(c) (peaks and dips). The G (1588 cm-

1) peak position is indistinguishable from quasi free-standing graphene on SiO2 (~ 1586 

cm-1)18, suggesting little substrate induced strain or doping.18-19 The full width at half 

maximum (FWHM) of the G’ (2D) peak is about 30 cm-1, consistent with single-layer 

graphene.18 The D (1355 cm-1) peak from this sample is significant, possibly resulting 

from the large relative edge lengths of the dendritic islands.19 Since the Raman spectrum 

in Fig. 1(c) was acquired with graphene still on Au, the ratio of G’ to G peaks is not an 

appropriate metric for the number of graphene layers.4, 20   

STM offers a closer look at the graphene-covered surface. Figure 2(a) shows the 

typical morphology of the partial graphene layer comprised of dendritic islands. Growth 

at high temperature roughens the Au surface, forming a hill-and-valley morphology that 

obscures the subtle contrast between the regions of covered and bare substrate. To 

distinguish the covered regions, we color them blue in Fig. 2(b). In contrast to graphene 

grown on Cu(100), where graphene sits on top of Cu hills,11 graphene is located at local 

depressions in the Au(111) surface. Mounds of Au are found around the periphery of 

graphene islands. Evidently the branches of the dendrites grow up the staircase of Au 

steps, removing atoms from the Au steps that abut the graphene sheets. The ejected Au 

accumulates around the island edge. Figure 2(c) provides a schematic illustration. This 

process enlarges the Au terraces under the graphene. Similar etching has been observed 

as graphene grows on Ru(0001).21 In that system, though, the graphene sheets do not 

grow over the ascending substrate steps, unlike what we observe in the graphene/Au 

system. 



 6

Even though the uncovered Au terraces are not very smooth, the well-known 

Au(111) herringbone structure is still visible, although it is more difficult to identify than 

on a clean Au surface. Surface pitting is also seen in uncovered regions of Fig. 2(a), 

likely the result of sublimation during growth. Surprisingly, Fig. 2(d) shows that the 

Au(111) herringbone is still present when the Au is covered by graphene. The ready 

observation of the herringbone reconstruction under graphene is somewhat surprising 

given the small height corrugation (~0.2 Å) of the reconstruction.22 In section IIIC we use 

this observation to define a range for the strength of the graphene/Au interaction. Also 

note that the Au(111) herringbone is not stable at the growth temperature.23 During 

cooling, the Au surface reconstructs under the graphene, which requires Au diffusion, a 

subject discussed further in section IIID. 

 

B. Moiré structures of graphene on Au(111) 

Similar to graphene grown on other weakly interacting metals such as Ir(111),24 

Pt(111),25 Cu,11-12 and Pd(111),26 graphene grown on Au(111) also has rotational domains. 

We next analyze the distinctive moirés that arise from the lattice mismatch of graphene 

and Au(111). Figure 3(a) and (c) give two examples. In both STM images, the fine-scale 

periodicity is that of the graphene honeycomb, and the larger-scale periodicities result 

from the interference of the two lattices. Since the Shockley partial dislocations (see 

section IIIC) of the herringbone reconstruction lie along Au < 211 > directions, the angle 

between graphene and Au is easily measured from the atomically resolved STM images. 

The graphene lattice in Fig. 3 (a) is rotated 1.5° relative to the Au lattice. Most graphene 

areas showed similar moirés, consistent with the LEED observations that the majority of 
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the graphene is very closely aligned to the Au lattice. Figures 3(b) shows geometric 

simulations of the moirés using the lattice constants of bulk Au (2.88 Å) and graphene 

(2.46 Å). The carbon atoms are color-coded according to their height using simple rules 

based on their local coordination to the underlying Au atoms.24 The orientation and 

periodicity of the simulated moiré agree well with the measured values. Figure 3(d) 

shows the simulation of the domain in Fig. 3(c), which has 11° rotation.  Indeed, from 

these simulations we find that the graphene lattice constant is 2.46±0.03 Å, i.e., the 

graphene is unstrained.  In some areas, like Figs. 3(e) and (f), the moiré is not directly 

observed, likely due to its small corrugation. In these smaller-scale images, the 

periodicity is that of the graphene honeycomb. The lattice rotation can still be measured 

from the atomic-resolution images, being about 14° (Fig. 3(e)) and 26° (Fig. 3(f)). The 

observations of Fig. 3 show that the corrugation of the moiré in STM varies considerably 

with rotation angle, similar to the graphene/Ir(111) system,24 where the aligned moiré is 

ten times more corrugated than the 30°-rotated alignment. 

For certain imaging conditions, both the graphene/Au moiré and the Au(111) 

herringbone can be observed simultaneously, as shown in Fig. 4. In these larger-scale 

images, the finest-scale periodicity is the moiré (not the graphene honeycomb). In Fig. 

4(a), the graphene is rotated 11° relative to Au, the same as in Fig. 3(c). In Fig. 4(b) the 

graphene is aligned exactly with the Au. Both images illustrate how the Au herringbone 

reconstruction affects the moiré lattice. The effect is easily seen by viewing image 4(b) 

inclined bottom to top. The moiré lattice shifts when crossing the herringbone stripes, 

where the Au atoms switch between fcc and hcp stacking.22 We emphasize that the 

graphene lattice itself is not distorted. Instead the relationship between the two lattices 
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changes whenever a herringbone stripe is crossed, disturbing the periodicity and direction 

of the interference between the two lattices.  

 

C. Interaction between graphene and Au(111) 

The clean Au(111) surface is compressed in-plane relative to a bulk-truncated 

surface. The herringbone reconstruction is a manifestation of this increased density: each 

bright line in STM images is a Shockley partial dislocation that separates regions of hcp 

stacking from regions of fcc stacking. Atoms in the bright regions are in higher-lying 

bridge sites and compressed relative to bulk gold.22 On the graphene-covered surface we 

measured the average distance between pairs of the Shockley partial dislocations to equal 

23.3±0.4 bulk Au spacings. That is, 24 Au surface atoms lie over 23 Au atoms in the 

underlying substrate as shown in Fig. 5(a). This distance is the same as for the clean Au 

surface, to within experimental uncertainty.23, 27 

We will now estimate the upper limit of the graphene-Au interaction strength 

consistent with our observation that the periodicity of the Au reconstruction is unchanged 

when covered with graphene. A simple way to understand the reconstruction is that it 

compensates for the lower coordination of the Au surface atoms by allowing stronger 

bonding between them. The presence of the graphene film might either strengthen or 

weaken these bonds. Bonding with the graphene might weaken the surface Au-Au 

interaction, decreasing the density of the Au surface. On the other hand, an attractive Au 

graphene interaction would tend to decrease the energy of Au surface atoms and, thus, 

increase the surface density. This higher density would reduce the distance between 

Shockley partial dislocations. To quantitatively interpret the lack of a measureable 
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change in periodicity in terms of Au-graphene interactions, we use the two-dimensional 

Frenkel-Kontorova (FK) model of the reconstruction discussed in Ref. 28. The energy of 

the top Au layer is taken as 

E = 1
2

k (rij − b)2 +
〈ij 〉
∑ V (ri )

i
∑ +V0N  

where N is the number of top layer Au atoms, k is the spring constant between nearest 

neighbor atoms, b is the preferred lattice constant in the top Au layer, V(r) describes the 

variation of the energy of the Au surface atoms with their binding site on the next-lower 

Au layer, and V0 is the interaction between Au and the graphene.  We use the form of 

V(r) derived in Ref. 28 from first principles calculations of the relative binding of Au in 

fcc, hcp, bridge and atop sites (0,12, 42 and 190 meV, respectively29). To estimate the 

spring constant we compared the distances u between nearest neighbor atoms in the 

[ ]011 direction with those obtained from first-principles local density approximation 

(LDA) calculations. (The calculation is described in Ref. 30.) Choosing k to minimize the 

difference between the FK model (blue dashed line) and the surface structure (red solid 

line), as shown in Fig. 5(b), yields k = 2900 meV/Å2. We chose b = 0.9619 a, where a is 

the bulk in-plane atomic separation, so that the minimum of the energy per Au (1×1) unit 

cell occurs at the same equilibrium stripe periodicity l as in the experiment, 23 Au atoms.  

The black solid line in Fig. 5(c) plots the energy per 1×1 Au unit cell, e, as a function of l. 

 We then examined by how much the presence of the graphene layer would have 

to modify the parameters of the FK model to cause an increase or decrease of the stripe 

periodicity by one atomic spacing. In general, the interaction will change all the 

parameters simultaneously. However, if the interaction is dominated by van der Waals 

interactions, or if charge transfer is small, only V0 will change appreciably (because Au-
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Au forces are unchanged.) As shown by the blue dot-dashed line in Fig. 5(c), choosing V0 

= -35 meV, corresponding to an attraction of 13 meV per carbon atom, decreases the 

periodicity by one spacing. Thus the absence of the change in the Au reconstruction 

places severe limits on the strength of the Au-graphene interaction. The 13 meV per 

carbon interaction is weaker the 40 meV per carbon predicted by previous first principles 

calculations.5-6 However, these calculations strained the graphene to fit the Au substrate, 

whereas in reality the graphene forms a large period moiré superstructure. Our results 

suggest the moiré graphene/Au interaction might be weaker than the previously simulated 

commensurate structures. As stated above, this estimate of interaction strength applies to 

the case when the graphene-metal interactions do not significantly modify Au-Au forces. 

Charge transfer, however, could weaken the enhanced binding between surface Au atoms 

causing the preferred lattice spacing b to increase. We find that making b larger by a 

mere 0.001 a, increases the Au-stripe periodicity by a (red dashed line in Fig. 5(c)). This 

change corresponds to a reduction in surface stress by only 3kΔb ≈ 5 meV/Å2.31 This is 

just 3% of the surface stress for the reconstructed surface estimated in Ref. 31, 150 

meV/Å2. Thus, the reported charge transfer between graphene and Au3 has a very small 

effect on Au-Au interactions in the top Au layer. 

 

D. Changing the buried Au surface structure using STM 

 Figure 3 shows that the Au herringbone is not observed when imaging conditions 

are such that the graphene is atomically resolved. Figure 6 suggests the reason. Figure 

6(a) was obtained using gentle tunneling conditions (i.e., large tip-surface separation). A 

nicely ordered herringbone pattern is seen under the graphene. Then the region was 
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imaged several times under atomic-resolution conditions (i.e., small tip-surface 

separation). The same area was then imaged using the original, gentle conditions. 

Unexpectedly, the Au herringbone pattern is markedly different, as shown in Fig. 6(b). 

This observation suggests that aggressive imaging removes the Au herringbone in the tip 

vicinity, which also accounts for the inability to see the herringbone in atomically 

resolved images of Fig. 3. When the herringbone reforms after the aggressive imaging, 

the dislocations (stripes) settle into a modified pattern. Such change has been reported on 

bare Au surface with STM scanning in air.32 Furthermore, the Au herringbone has been 

found to change due to scanning even at “ultralow field” (It = 2 pA, Vtip = -0.6 V) at 80 K 

after adsorption of styrene molecules.33 One possible explanation of STM’s strong effect 

is that the closely approached tungsten scanning tip causes the graphene to bind more 

strongly to the Au. This, in turn, decreases the Au-Au interaction enough to lift the 

surface reconstruction. Another possibility is that the Au-W chemical interaction leads to 

enhanced Au-C bonding34 and hence weaker Au-Au bonding. Whatever the detailed 

mechanism, the ease at which STM changed the buried Au surface structure, which 

requires high Au mobility, is striking. 

 Additional evidence for high Au mobility below graphene comes from 

investigating graphene-covered Au steps. On most metals, graphene can grow without 

disruption across substrate steps.35 Figures 6(c) and (d) show two examples of graphene 

overlying a monatomic Au step. The graphene on either side of the steps has the same in-

plane orientation. But the graphene seems discontinuous across the steps. However, the 

images also reveal that the Au steps themselves are diffuse, not sharp. We suggest that 

the diffuse step edges result from fluctuations induced by scanning, which mask 
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graphene’s continuity across the steps. Such gold-atom motion induced by STM scanning 

has been observed on clean Au surfaces at room temperature.36 Clearly, Au’s mobility 

remains high even when covered by graphene.  

 

IV. CONCLUSIONS 

We find that graphene on Au(111) forms a moiré with a period that reveals that 

the graphene is unstrained.  The corrugation of the moiré depends strongly on the 

graphene orientation. The occurrence of graphene in valleys surrounded by berms of Au 

suggest that graphene growth displaces Au on its (111) surface. Our images reveal that 

the well-known Au(111) herringbone reconstruction forms underneath the graphene. 

Analysis of the herringbone enables us to estimate an upper limit for the interaction 

between graphene and Au, a material commonly used for contacts. The previously 

reported5-7 charge transfer from graphene to Au is expected to reduce the tension in the 

Au surface, which could lift the herringbone reconstruction or make its periodicity larger. 

That we observe the same periodicity suggests that the presence of the graphene changes 

the surface stress by less than 3% compared to the bare Au surface. An attraction between 

graphene and Au, on the other hand, tends to increase the preferred density of the Au 

surface layer. An attraction of just 13 meV per C atom would suffice to reduce the 

herringbone periodicity by one atomic spacing, which we do not observe. Raman 

spectroscopy corroborates this weak interaction. This work also shows that care must be 

taken in interpreting STM images of graphene corrugations: Attempts to image the 

atomic structure of graphene led to modifications of the Au surface, suggesting that 

scanning significantly enhances the Au-graphene interactions. 
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FIG. 1 (a) 5-μm LEEM image of graphene/Au(111) grown at 950 °C. The bright features 

are dendritic islands of graphene. Gray background corresponds to the bare Au surface. 

(b) LEED (40 eV) from an area 2 μm in diameter. (c) Raman spectrum (average of 10 

spectra from separate regions) from graphene on Au(111) after background subtraction. 

 

FIG. 2 (color online) (a) STM image (500 nm × 500 nm) of dendritic graphene islands 

grown on Au(111) (Vtip = 1 V, It = 10 pA). (b) Same as (a) with the graphene islands 

shaded blue. (c) Schematic showing how gold atoms are displaced during graphene 

growth, etching the Au steps. The process roughens the Au(111) surface to form hills and 

valleys, with graphene islands located in the flat valleys. (d) Blow up of white-boxed 

region of (b) with the image contrast adjusted to make the gold herringbone under the 

graphene visible. The preservation of the Au(111) herringbone structure of Au(111) 

highlights the weak graphene-Au interaction. 

 

FIG. 3 (color online) Atomic-resolution STM images and simulated structures of 

graphene on Au(111). (a) STM image and (b) simulated moiré of graphene rotated 1.5° 

relative to Au(111) (5.9 nm × 5.9 nm, Vtip = 0.1 V, It = 300 pA). The measured 

periodicity and corrugation of moiré are about 17.3 Å and 0.1 Å, respectively. (c) STM 

image and (d) simulated moiré of graphene rotated 11° (6 nm × 6 nm, Vtip = -0.1 V, It = 

300 pA). The measured periodicity and corrugation of moiré are about 10.7 Å and 0.8 Å, 

respectively. (e) Graphene rotated ~14° (2.7 nm × 2.7 nm, Vtip = -0.1 V, It = 500 pA). (f) 

graphene rotated ~26° (2.8 nm × 2.8 nm, Vtip = 0.4 V, It = 15 pA). 
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FIG. 4 (color online) STM images of moiré modified by the Au herringbone. (a) 

Graphene [ ]0211  rotated 11° relative to Au [ ]011  (45 nm × 45 nm, Vtip = 1 V, It = 10 pA). 

The corrugation of the moiré is about 0.05 Å. (b) Graphene [ ]0211  aligned with Au [ ]011  

(50 nm × 50 nm, Vtip = 1 V, It = 10 pA). The corrugation of the moiré is about 0.2 Å. The 

periodicity and direction of the moiré lattice change over the herringbone stripes because 

the Au atoms change stacking there. 

 

FIG. 5 (color online) (a) Schematic of the surface atoms in the 23× 3  surface unit cell 

of the Au surface reconstruction. Underlying Au atoms are blue, hcp binding positions 

are red and fcc sites are green. The surface atoms are shaded according to their energy as 

in Ref. 28. (b) Comparison of the distance between surface atoms in the [ ]011  direction 

calculated with the LDA of DFT (red solid line) and with the Frenkel-Kontorova model 

(blue dashed line) described in the text.  (c) Surface energy as a function of unit cell size 

for the FK model of the clean Au surface (black solid line), for an attractive interaction of 

13 meV per C atom between Au and graphene (blue dot-dashed line), and for a surface in 

which the Au-Au bond distance has been reduced by 0.001 a (red dashed line). 

 

FIG. 6 (color online) (a) and (b) STM images of the same area showing how aggressive 

scanning reorders the Au(111) herringbone pattern (100 nm × 100 nm). (a) First scan 

(Vtip = 1 V, It = 10 pA) (b) The same area re-examined (Vtip  = 1 V , It = 10 pA) after 

aggressive tunneling (up to Vtip = -0.1 V, tunneling current It = 1 nA). (c) and (d) STM 

images of graphene over two different monatomic Au steps (8 nm × 8 nm, Vtip = 0.1 V, It 
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= 300 pA). To make the graphene lattice visible on both sides of the step, the images are 

a mixture of 90% differentiated topography along the horizontal direction and 10% 

topography. The fuzziness of the monatomic Au step edges likely results from their 

motion, possibly induced by scanning.  














